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Significance

Propagating activity patterns 
including waves are prevalent 
across cortical areas, but 
experimental evidence for their 
role in carrying behaviorally 
relevant information is rare, and, 
when present, often reflects the 
general behavioral state. This 
work provides the first evidence, 
to our knowledge, of a spatially 
organized recruitment order of 
activity across the motor cortical 
sheet that informs details of the 
upcoming movement. 
Furthermore, characteristics of 
propagation provide additional 
predictive power in decoding 
kinematics beyond information-
rich activity amplitudes. The 
nonredundant movement-
specific information exhibited by 
these propagating patterns not 
only has scientific implications 
for the functional organization of 
motor cortex but also holds 
potential to aid translational 
brain–machine interface 
research.
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Propagating spatiotemporal neural patterns are widely evident across sensory, motor, 
and association cortical areas. However, it remains unclear whether any characteristics 
of neural propagation carry information about specific behavioral details. Here, we 
provide the first evidence for a link between the direction of cortical propagation and 
specific behavioral features of an upcoming movement on a trial-by-trial basis. We 
recorded local field potentials (LFPs) from multielectrode arrays implanted in the pri-
mary motor cortex of two rhesus macaque monkeys while they performed a 2D reach 
task. Propagating patterns were extracted from the information-rich high-gamma band 
(200 to 400 Hz) envelopes in the LFP amplitude. We found that the exact direction of 
propagating patterns varied systematically according to initial movement direction, ena-
bling kinematic predictions. Furthermore, characteristics of these propagation patterns 
provided additional predictive capability beyond the LFP amplitude themselves, which 
suggests the value of including mesoscopic spatiotemporal characteristics in refining 
brain–machine interfaces.

primary motor cortex | spatiotemporal patterns | propagating activity | kinematic decoding |  
nonhuman primates

The primary motor cortex (M1) is well known to possess a somatotopic organization such 
that movement representations of different body parts are segregated spatially across the 
cortical sheet (1). However, particularly in the upper limb area of M1, the spatial organ-
ization is rather crude such that particular limb segment representations are highly dis-
tributed and partially overlapping with other limb segment representations (2). Moreover, 
the somatotopic perspective is a static view of the function of M1 and does not consider 
both time and space. We have recently demonstrated that spatially organized propagating 
patterns of excitability signal the initiation of movement but do not specify the details of 
the particular movement (3, 4). These propagating patterns of excitability were observed 
in the attenuation of beta oscillation (15 to 35 Hz) amplitude of the local field potential 
(LFP). Here, we examined high-gamma band (200 to 400 Hz) amplitude prior to move-
ment execution and observed planar propagation in the onset times of high-gamma ampli-
fication across different sites in M1. Unlike beta oscillation attenuation propagation, 
however, the propagating direction of high-gamma amplification times carried kinematic 
information about the upcoming movement. High-gamma amplitude is known to be a 
reasonable proxy for multiunit activity (5–7), and, therefore, these results suggest that a 
spatially organized recruitment order of neural activity across the cortical sheet occurs 
prior to executing movements, and properties of this recruitment order specify the detailed 
kinematics of the upcoming movement.

Results

Spatially Organized Amplification in the High-Gamma Envelope upon Movement. Two 
rhesus macaques (Bx and Ls) were trained to perform reach tasks with their right upper 
limbs constrained in a 2D exoskeletal robot with the hand holding a joystick. In this 
reach task, they were required to hold the joystick stably for a length of time (600 ms for 
Ls and 1,000 ms for Bx) at a center hold target, then move the joystick to one of eight 
peripheral targets upon presentation of a peripheral target (see the Inset in Fig. 1 A). The 
mean (SD) reach duration across trials was 669.8 ms (253.0 ms) and 372.8 ms (162.8 ms) 
for Bx and Ls, respectively, and mean reaction time was 392.7 ms (85.7 ms) and 186.7 ms 
(74.9 ms) for Bx and Ls, respectively. While they were performing the task, we recorded 
MUA and LFPs from two 64-electrode arrays implanted in M1 (see SI Appendix, Fig. S1 
Top panels for implant locations). We filtered LFPs from 200 Hz to 400 Hz and took 
the amplitude of their Hilbert transform—this is the signal which we refer to as high-
gamma envelopes. Trial-averaged high-gamma envelopes were different for different reach 
directions (Fig. 1A), exhibiting directional tuning. Tuning curves for the high-gamma 
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envelopes and MUA were generally similar in shape for the same 
electrode (Fig. 1B compares turning curves for a representative 
electrode). We correlated the tuning curves between MUA and 
high-gamma activity for the same electrodes and found that the 
mean (SD) tuning correlation was 0.75 (0.35) for Bx and 0.80 
(0.29) for Ls (Fig. 1C). We also looked at the cross-correlation of 
MUA and high-gamma activity on a single-trial basis over a wide 
range of lags. In general, high-gamma activity preceded MUA—
the mean (over electrodes) lag at peak correlation for each session 
ranged from 15.4 to 34.2 ms across sessions for Bx and from 32.6 
to 83.3 ms for Ls; the mean peak correlation of the time-series 
ranged from 0.32 to 0.36 for Bx and from 0.41 to 0.57 for Ls.

While trial-averaged high-gamma envelopes generally exhibited 
directional specificity and amplification upon movement onset, 
it was not possible to extract meaningful information from sin-
gle-trial envelopes because of weak signal-to-noise. Thus, we 
denoised single-trial envelopes by using a contractive autoencoder 
(8) and then smoothed the envelopes (Fig. 1D) (see Materials and 
Methods for details). Note that all the electrodes at all timepoints 
were concatenated into a long vector for denoising so that no 
spatial information was used in the denoising process. The high-
gamma envelopes from different electrode locations tended to 

amplify around movement initiation but at different times. To 
precisely quantify the amplification time for each electrode, we 
took the first derivative of the smoothed envelope and determined 
the maximum-attaining time within a time window of [−300 ms, 
100 ms] relative to movement onset (Fig. 1D continued). We 
computed the median amplification time across electrodes within 
a trial and then averaged those medians across trials. For Bx, the 
mean (SD) of the median amplification times relative to move-
ment onset was −120.3 ms (45.6 ms) for the lateral array and 
−64.4 ms (108.4 ms) for the medial array. For Ls, the mean 
median amplification time was −81.1 ms (60.0 ms) for the lateral 
array and −81.5 ms (67.9 ms) for the medial array.

We then sought to characterize the spatial organization of these 
amplification times across each cortical array by fitting the ampli-
fication times to a 2D plane from which three propagating param-
eters were extracted: the direction of propagation, the speed of 
propagation, and the fitness (R2) of the planar fit (Fig. 2 A, Middle 
and Right). It should be emphasized that the definition of spatial 
patterning in our work contains only the times of amplification on 
each electrode and not their amplitudes. To determine statistical 
significance of the planar fit, we randomly shuffled the locations of 
the electrodes 500 times for each trial and fit a plane to each shuffle 

Fig. 1. Processing information-rich high-gamma envelopes. (A) Trial-averaged high-gamma amplitude envelopes amplify right before movement onset (0 ms), 
modulating with target reach directions (targets distinguished by different colors). Results from a representative electrode are shown. Error shades represent 
SEM. Inset shows the target locations in different colors. (B) Tuning properties of the high-gamma envelopes (in blue) closely track those of multiunit activities 
(MUA in orange) on a representative channel. (C) Distribution of correlation coefficients between the tuning curves of high-gamma envelopes and tuning curves 
of MUAs on the same electrodes, for monkey Bx (in black) and monkey Ls (in white). (D) Sequential steps for processing single-trial high-gamma envelopes, where 
each trace represents a single electrode: from left to right, envelopes are z-scored by electrode baselines, then PCA-ed and denoised with an autoencoder, and 
then low-passed below 5 Hz. The amplification times (red dots) were then determined from the maximums of their first-derivatives (in green) within the time 
window of interest (blue dotted window).
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to form an overall distribution of shuffled R2 values. We determined 
the significant threshold of R2 as the top 5 percentile of the shuffled 
R2 values—if the actual R2 exceeded that threshold, we took that 
as a significant planar propagating pattern (see Materials and 
Methods for details). For the lateral arrays, 1,235 out of 2,460 trials 
(50%) exhibited significant planar propagation patterns for Bx and 
898 out of 1,050 trials (86%) for Ls exhibited significant planar 
propagation patterns. For the medial arrays, fewer trials exhibited 
significant planar propagation patterns in general (408 out of 2,460 
trials or 17% for Bx and 482 out of 1,050 trials or 46% for Ls).

Movement-Specific Propagation Patterns. As the monkey 
reached for targets in different directions (Fig. 2 A and B, Left), 
the propagating directions of the high-gamma envelope varied 
(Fig. 2 A and B, Middle and Right), indicating that there might 
be movement- or goal-related information expressed in the 
propagation patterns. There were, in fact, systematic and significant 
differences in propagation direction (P < 0.001 for both monkeys, 
nonparametric test for common median for multiple groups of 
angles) across trials with significant planar propagation in the 
lateral arrays (Fig.  3 A and B, Top). The probability density 
(SI Appendix, Fig. S2 A, Top) and mean propagating directions 
for monkey Bx primarily formed two modes (each corresponding 
to four adjacent reach directions, i.e., 0,45,90,135° targets versus 
180,225,270,315° targets; see Materials and Methods for target 
degree assignment), one centered ~210° and one centered ~0° 
(Fig. 3 A, Bottom). We also examined the probability density of 
propagation speed for the significant trials (SI Appendix, Fig. S2 A, 
Bottom), which also differed by reach directions and followed 
similar grouping as the propagating directions (see Table  1 for 

descriptive statistics of propagation characteristics for Bx). For 
monkey Ls, the probability densities of propagation direction 
and speed did not exhibit clear clustering (SI Appendix, Fig. S2B) 
although mean propagation directions clustered into two modes 
albeit not as distinct as with Bx (Fig. 3 B, Bottom; see Table 2 for 
descriptive statistics of propagation characteristics for Ls).

The formation of these two modes in the propagation charac-
teristics can be explained by the biased kinematic trajectories gen-
erated by the monkeys due to training history. The monkeys were 
heavily trained on the blue and brown targets; thus, Bx tended to 
generate initial trajectories for other adjacent reach targets that 
were clustered around the trajectories of the heavily trained targets. 
This was evident from the initial mean paths for each target 
(Fig. 4 A, Top Inset) and the mean velocity angles for each target 
(Fig. 4 A, Top) suggesting that the propagation properties were 
more closely linked to movement execution rather than the move-
ment goal. The relationship between mean launch angles and 
mean propagation directions for each target is shown more clearly 
in Fig. 4 A, Bottom. For monkey Ls, initial mean kinematic paths 
(Fig. 4 B, Top Inset) and mean velocity angles (Fig. 4 B, Top) also 
roughly formed two groups (45, 90, 135, and 180° targets versus 
225, 270, 315, and 0° targets), which corresponded to the group-
ing of the propagation directions with the exception of the 45° tar-
get (Fig. 4 B, Bottom).

For the medial arrays, although there was not an obvious 
correspondence between kinematics groupings and propaga-
tion characteristics (Fig. 5 A and B and SI Appendix, Fig. S3), 
propagation directions were significantly different (or border-
line significantly different) across target directions (P <  0.001 
for Ls, P = 0.064 for Bx, nonparametric test for common 

Fig. 2. Single-trial propagation directions were different for different movement directions. (A and B) are two different trials for monkey Bx. Left: movement path 
plotted on the target map. Middle: the amplification times (w.r.t. movement onset) of electrodes from the lateral array were color-coded, with the propagation 
direction marked with the arrow (the length of the arrow represents the R2 of the fit: A: R2 = 0.390, B: R2 = 0.210). Right: The amplification times (w.r.t. movement 
onset) of electrodes from the lateral array were represented as heights of the green dots in a 3D space where x and y axes represent electrode locations. Black 
grid represents planar fit.

http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
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median for multiple groups of angles). The descriptive statis-
tics for propagation characteristics can be found in Tables 3 and 
4.

Although we examined planar propagation in medial and 
lateral arrays separately, the propagation characteristics of the 
lateral array and medial array were not isolated. The propagation 
speed in the medial array was correlated with the propagation 
speed in the lateral array for both monkeys (for Bx, Pearson 
correlation coefficient r = 0.377, P < 0.001, n = 248; for Ls, 

r = 0.473, P < 0.001, n = 415, see SI Appendix, Fig. S5, Top). 
Also, the median amplification times in the medial array were 
correlated with the median amplification times in the lateral 
array for both monkeys (for Bx, Pearson correlation coefficient 
r = 0.610, P < 0.001, n = 248; for Ls, r = 0.838, P < 0.001, 
n = 415, see SI Appendix, Fig. S5, Bottom). These results suggest 
that the propagating patterns we examined in isolated arrays are 
part of a more global pattern that extends across the upper limb 
area of M1.

Fig. 3. Summary of single-trial spatiotemporal propagation directions for the lateral arrays. (A and B) are for Monkey Bx and Ls, respectively. Top: polar scatter 
plot of propagation directions. Each dot is a single trial color-coded by reach direction. Angle represents propagation direction, while radius represents the 
associated R2. Black solid circle represents the threshold of significant R2 values. Bottom: summary of propagation directions for significant trials for each reach 
direction. Angle of arrow represents the mean propagation direction, while the error bar represents the 68.27% CI for the mean. The bottom summary plot in 
B was zoomed in to show details.

Table 1. 200 to 400 Hz propagation characteristics of trials with significant planar propagation on the lateral array 
for monkey Bx

Reach target (deg)
Propagating direction (deg) 

(mean ± SEM) (r)
Propagating speed (m/s) 
(mean ± SEM) (median) Sample size

0 205.0 ± 4.2 (r = 0.67) 0.065 ± 0.004 (0.051) 162

45 213.4 ± 2.8 (r = 0.81) 0.061 ± 0.003 (0.047) 220

90 205.0 ± 2.7 (r = 0.83) 0.052 ± 0.003 (0.037) 212

135 207.7 ± 4.2 (r = 0.66) 0.059 ± 0.003 (0.055) 170

180 340.6 ± 7.2 (r = 0.52) 0.088 ± 0.005 (0.079) 104

225 359.6 ± 2.9 (r = 0.88) 0.098 ± 0.003 (0.094) 162

270 3.7 ± 5.0 (r = 0.68) 0.100 ± 0.004 (0.091) 111

315 15.7 ± 20.8 (r = 0.20) 0.094 ± 0.006 (0.086) 94
SEM is standard error of mean. r is length of the mean resultant vector of angles, which is a measure of concentration.

http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
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Decoding Kinematics with Propagation Patterns. Given the 
relationship between kinematics and propagation patterns 
observed above, we set out to test if that relationship could 
be useful in kinematic decoding. We used propagation 
parameters (propagation direction, propagation speed, and 
planar regression goodness-of-fit, R2) from both arrays to 
decode hand velocity at particular times with generalized linear 
models (GLMs). We built a different model for each time 
point relative to movement onset, as there existed only one 
set of propagation parameters for each trial, and we sought 

to determine where in time over the trial these propagating 
parameters best predicted the hand velocity. For monkey Bx, 
the fraction of variance explained (or R2) of this prediction 
(plotted in red) reached a peak average R2 of 0.427 at 100 ms, 
which was significantly better than shuffled control (P = 0.001 
for single-tailed Wilcoxon test, w = 0.0; Fig. 6 A, Top); in other 
words, the spatiotemporal variables were most predictive of 
velocities at 100 ms after movement onset for Bx. For monkey 
Ls, the fraction of variance explained of this prediction (in 
red) reached a peak average R2 of 0.268 at 40 ms, which was 

Table 2. 200 to 400 Hz propagation characteristics of trials with significant planar propagation on the lateral array 
for monkey Ls

Reach target (deg)
Propagating direction (deg) 

(mean ± SEM) (r)
Propagating speed (m/s) 
(mean ± SEM) (median) Sample size

0 276.7 ± 4.4 (r = 0.74) 0.078 ± 0.004 (0.072) 113

45 272.9 ± 3.8 (r = 0.81) 0.084 ± 0.003 (0.081) 120

90 286.1 ± 3.1 (r = 0.88) 0.085 ± 0.003 (0.082) 134

135 292.3 ± 1.7 (r = 0.95) 0.084 ± 0.002 (0.081) 132

180 288.0 ± 1.4 (r = 0.97) 0.079 ± 0.002 (0.078) 123

225 273.4 ± 2.7 (r = 0.91) 0.089 ± 0.004 (0.085) 88

270 277.0 ± 4.9 (r = 0.71) 0.075 ± 0.004 (0.068) 100

315 270.5 ± 5.6 (r = 0.67) 0.071 ± 0.004 (0.067) 88
SEM is standard error of mean. r is length of the mean resultant vector of angles, which is a measure of concentration.

Fig. 4. Clustering of hand kinematics and corresponding propagation directions for the lateral arrays. (A and B) are for Monkey Bx and Ls, respectively. Top: mean 
angle of velocity traces across time w.r.t. movement onset (error shade represents the 68.27% CI for the mean). The mean hand paths are shown in the Inset. Colors 
represent different targets. Bottom: stars on the inner circle represent mean propagation directions for each reach target, while dots on the outer circle represent 
mean launch direction at movement onset (0 ms) for each reach target. The lines connecting the inner and outer dots were linearly interpolated for visualization 
purposes. Clusters of propagation directions correspond to clusters of kinematic launch directions for all targets in both monkeys, except for the blue direction in Ls (B).
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significantly better than shuffled control (P = 0.001 for single-
tailed Wilcoxon test, w = 0.0; Fig. 6B).

Next, we looked at the contributions of each type of propagating 
parameter by using each separately to predict velocities. For Bx, 
models using only propagation direction reached performance levels 
nearly as good as the complete set of parameters, and R2 also had 
some predictive power (Fig. 6 A, Bottom). For Ls, models using 
propagation direction parameters only and using R2 only both had 
similar predictive power, though not as good as the complete set 
(Fig. 6 B, Bottom). For both monkeys, the propagation speed lacked 
predictive power when used alone. These consistent prediction 
results across monkeys indicated that despite the different extents 
of spread in the propagation parameters, the spatial patterns 

provided meaningful kinematic information regarding velocity. It 
might be argued that the propagation patterns were, in fact, pre-
dicting movement speed rather than velocity, and our prediction of 
velocity could be accounted for by a potential link between move-
ment speed and velocity. However, in this task, movement speed 
only weakly accounted for movement velocity (the composite R2 
using instantaneous speed to predict instantaneous velocity was 0.03 
for Bx and 0.16 for Ls, which were much lower than the perfor-
mance of velocity prediction using spatial variables for the majority 
of time points in Fig. 6).

High-gamma band amplitude is known to carry rich kinematic 
information and has been used in online and offline motor output 
decoding (5–7, 9). Thus, we wanted to test whether characteristics 

Fig. 5. Summary of single-trial spatiotemporal propagation directions for the medial array. (A and B) are for Monkey Bx and Ls, respectively. Top: polar scatter 
plot of propagation directions. Each dot is a single trial color-coded by reach direction. Angle represents propagation direction, while radius represents the 
associated R2. Black solid circle represents the threshold of significant R2 values. Bottom: summary of propagation directions for significant trials of each reach 
direction. Angle of arrow represents the mean propagation direction, while the error bar represents the 68.27% CI for the mean.

Table 3. 200 to 400 Hz propagation characteristics of trials with significant planar propagation on the medial array 
for monkey Bx

Reach target (deg)
Propagating direction (deg) 

(mean ± SEM) (r)
Propagating speed (m/s) 
(mean ± SEM) (median) Sample size

0 57.6 ± 8.5 (r = 0.58) 0.229 ± 0.021 (0.205) 56

45 58.1 ± 17.2 (r = 0.35) 0.199 ± 0.022 (0.167) 44

90 29.6 ± 31.7 (r = 0.18) 0.170 ± 0.018 (0.157) 54

135 27.3 ± 17.3 (r = 0.30) 0.187 ± 0.015 (0.167) 61

180 43.4 ± 9.7 (r = 0.57) 0.223 + 0.017 (0.238) 45

225 60.3 ± 7.6 (r = 0.66) 0.210 ± 0.017 (0.200) 52

270 89.1 ± 16.8 (r = 0.33) 0.186 ± 0.018 (0.145) 51

315 64.4 ± 12.0 (r = 0.48) 0.198 ± 0.020 (0.160) 45
SEM is standard error of mean. r is length of the mean resultant vector of angles, which is a measure of concentration.
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of the spatiotemporal propagation patterns contain additional non-
redundant kinematic information beyond the high-gamma ampli-
tude envelopes themselves. For this purpose, we compared the 
performance of three types of models: a) an instantaneous enve-
lope-amplitude-only model; b) a propagation-parameter-only model 
(including both first-order parameters and second-order interac-
tions); and c) instantaneous amplitude envelope + propagation 
parameter model. With these models, we then decoded hand veloc-
ity continuously throughout the trial. Thus, we had to determine 
the optimal lag between the continuous amplitude envelope and 

continuous hand velocity which occurred at −180 ms and −120 ms 
for Bx and Ls, respectively, indicating that envelope led the hand 
velocity as expected in M1 (Fig. 7 A and B, Top). At those optimal 
lags, the performances of the amplitude envelope + propagation 
parameter model were significantly better than the envelope-ampli-
tude-only model (P = 0.001 for single-tailed Wilcoxon test, w = 0.0 
for both monkeys). A trial-shuffling procedure also demonstrated a 
significant increase in decoding performance when including the 
propagation parameters to the amplitude envelopes (Fig. 7  A and 
B, Bottom). These results demonstrate that the spatiotemporal 

Table 4. 200 to 400 Hz propagation characteristics of trials with significant planar propagation on the medial array 
for monkey Ls

Reach target (deg)
Propagating direction (deg) 

(mean ± SEM) (r)
Propagating speed (m/s) 
(mean ± SEM) (median) Sample size

0 62.5 ± 5.4 (r = 0.68) 0.133 ± 0.006 (0.129) 92

45 85.7 ± 7.4 (r = 0.65) 0.156 ± 0.008 (0.155) 57

90 145.3 ± 26.2 (r = 0.31) 0.148 ± 0.012 (0.160) 25

135 311.6 ± 11.6 (r = 0.63) 0.167 ± 0.013 (0.174) 25

180 36.7 ± 8.3 (r = 0.64) 0.182 ± 0.010 (0.175) 47

225 76.0 ± 5.1 (r = 0.84) 0.133 ± 0.008 (0.120) 60

270 56.9 ± 5.9 (r = 0.65) 0.111 ± 0.007 (0.097) 89

315 43.1 ± 5.7 (r = 0.68) 0.099 ± 0.006 (0.104) 87
SEM is standard error of mean. r is length of the mean resultant vector of angles, which is a measure of concentration.

Fig. 6. Propagation parameters can be used to decode hand velocities. (A and B) are for Monkey Bx and Ls, respectively. Top: Prediction performance (composite 
R2) for hand velocities at different time points w.r.t. movement onset using all propagation parameters (i.e., propagation direction, speed and planar fitness from 
both arrays), where a different model was built for each time point. Red traces represent actual performance, and gray line represents performance from the trial-
shuffled control. Error shade represents SEM from 10 folds. Optimal time where velocity prediction achieves best results is marked with the dotted vertical line 
(100 ms in Bx and 40 ms in Ls). Star denotes that propagation parameters can predict kinematics significantly better than chance at the optimal time point from 
single-tailed Wilcoxon test. Bottom: breakdown of contributions from individual propagation parameters on hand velocity prediction. Red trace—all parameters as 
above; orange trace—propagation direction only; green trace—planar fitness only; blue—propagation speed only. For both monkeys, propagation direction and 
planar fitness were more useful than propagation speed when used alone to predict movement velocities. For Bx, the red and orange traces largely overlapped.
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organization of these high-gamma envelopes provide additional, 
nonredundant kinematic information beyond the envelope magni-
tudes alone.

Movement-Specific Propagating Patterns in MUA Encode Kinematics. 
Our choice of using the high-gamma LFP to analyze spatiotemporal 
patterning was motivated by the fact that it served as a useful proxy for 
MUA activity, and it was present on all electrodes to allow for adequate 
spatial coverage. In contrast, MUA activity was not consistently present 
on all electrodes. Moreover, some electrodes had sparse MUA activity 
(defined as average firing rate below 1 Hz throughout movement even 
for the most modulated direction). This was particularly true for Bx 
where a quarter of electrodes had sparse MUA activity. Here, we aimed 
to replicate our findings using MUA activity from Ls where only ~4% 
of electrodes had sparse MUA activity. For Ls, the mean (SD) median 
MUA amplification time was −55.3 ms (31.6 ms) for the lateral array 
and −15.4 ms (43.3 ms) for the medial array. These amplification times 
were later than the amplification times of the 200 to 400 Hz high-gamma 
signal (−81.1 ms (60.0 ms) for the lateral array and −81.5 ms (67.9 ms) 
for the medial array), consistent with the cross-correlation lag between the 
two signals discussed above.

Next, we computed propagation patterns based on MUA for Ls. 
For the lateral array, 572 out of 1,167 trials (53%) exhibited signif-
icant planar propagation patterns. For the medial array, 205 out of 
1,167 trials (18%) exhibited significant planar propagation patterns. 
These proportions of significant propagations were substantially 
smaller compared to the corresponding proportions from 200 to 
400 Hz signal (86% and 46%). Propagation directions were signif-
icantly different across target directions (P < 0.001 for both arrays 
in Ls, non-parametric test for common median for multiple groups 
of angles). Although propagation directions were similar to those 
using the high-gamma signal only for certain directions, the global 
distribution of propagation directions was largely similar when con-
sidering all trials. The speed of MUA propagation was in general 
lower than high-gamma propagation (especially for the medial array). 

For those trials exceeding the R2 threshold, planar propagation fits 
were generally worse than those for the high-gamma signal, which 
might have led to lower propagation speed (SI Appendix, Fig. S7 and 
Tables S1 and S2 for more details on the propagation patterns).

Kinematic decoding using MUA propagation parameters was 
also evident (SI Appendix, Fig. S8) and, in fact, was moderately 
better than when using their high-gamma counterparts. The high-
est kinematic prediction performance using first-order spatial 
parameters of MUA was a composite R2 of 0.332 instead of 0.268 
from the high-gamma signal (a 24% increase in performance). 
Decoding performance using both MUA firing rates and associ-
ated spatial variables (first and second order) was slightly better 
than when using the high-gamma envelopes and their associated 
spatial variables, with a ~0.06 increase in composite R2 (a 9% 
increase in performance).

Discussion

Despite extensive evidence of traveling waves and, more generally, 
propagating spatiotemporal patterns in cortex (3, 10–19), exper-
imental evidence for their role in carrying behaviorally relevant 
information is rare, and, when present, often reflects general 
behavioral state. At the macroscopic scale, forward-directed waves 
in the 8 to 13 Hz band of human EEG have been documented 
to propagate from occipital to frontal lobes during visual process-
ing while backward-directed waves from frontal to occipital lobes 
occur in the absence of sensory input (20). Forward- and back-
ward-directed waves measured in the 2 to 13 Hz band of human 
ECoG recordings tend to correspond to the encoding and retrieval 
stages of episodic memory tasks, respectively (21). However, in 
these cases, wave direction does not provide detailed information 
about the visual stimulus identity or memory content.

At the mesoscopic scale, traveling phase waves mediated by beta 
oscillations in M1 propagate in a stereotyped fashion along a ros-
tro-caudal axis in nonhuman primates (22, 23). While it was 

Fig. 7. Propagation parameters provided additional 
decoding performance on top of amplitude envelopes. 
(A and B) are for Monkey Bx and Ls, respectively. 
Propagation parameters here include not only first-
order parameters but also second-order interactions 
terms. Top: prediction performance (composite R2) for 
hand velocities at different lags from the instantaneous 
amplitude envelope (negative lags mean neural signals 
precede hand velocity), where brown trace denotes 
using instantaneous envelopes only as predictors; 
red trace denotes using propagation parameters only 
(first and second orders) as predictors (performance 
was lag-independent as there was only one set 
of spatial variables for the whole trial); pink trace 
denotes using both instantaneous envelopes and 
propagation parameters as predictors. Error shade 
denotes SEM from 10 folds. The time lag where the 
best mean envelope-amplitude-only performance 
was achieved was marked by the dotted vertical line 
(−180 ms for Bx and −120 ms for Ls). Star denotes that 
amplitude + propagation (pink) achieves significantly 
better prediction than amplitude-only (brown) at the 
best lag using a single-tailed Wilcoxon test. Lower: 
the improved performance from including the 
propagation parameters together with the amplitude 
envelopes could not be obtained by merely adding 
propagation parameters from a random trial. The 
gray distribution shows the decoding performances 
of random additions of propagation parameters 
from other trials together with the correct envelopes, 
with the top 5% threshold marked in dotted vertical 
black line. The solid pink vertical line denotes the 
real performance (i.e., addition of corresponding 
propagation parameters), which exceeds the dotted 
black line for both monkeys.

http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
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found that information about reach target was larger in sequential 
activity of pairs of neurons whose spatial orientation on the cor-
tical sheet matched the traveling wave axis, characteristics of the 
waves including their direction and speed did not vary with behav-
ior (23). Moreover, traveling waves mediated by beta oscillations 
in area V4 have been shown to be triggered by saccadic eye move-
ments (12). While the wave amplitude correlated with the saccade 
direction, the propagation direction remained invariant propagat-
ing from foveal to peripheral locations. Spontaneous traveling 
waves in the middle temporal area (commonly known as area MT) 
of marmosets have been shown to improve target detection by 
temporally aligning a highly excitable state in the receptive field 
of the target but again wave propagation direction did not carry 
information about perceptual sensitivity (24).

In this study, we demonstrate, for the first time to our knowl-
edge, a link between neural propagation direction and specifics of 
movement behavior. We showed that the propagation direction 
of high-gamma band recruitment timing carries kinematic infor-
mation by demonstrating that hand launch velocity (and poten-
tially later movement kinematics, see supplementary material 
including SI Appendix, Fig. S6) can be decoded on a trial-by-trial 
basis. Moreover, the fact that spatially organized propagation pat-
terns provided additional predictive power in decoding kinematics 
beyond the high-gamma LFP amplitudes (or MUA firing rate) 
themselves may have implications for improving brain–machine 
interfaces. Previous offline decoding studies have used high-fre-
quency LFP amplitudes to decode movements and have found 
that the decoding performance of kinematics and muscle activity 
was nearly equal to that of spikes (5–7). However, these studies 
did not consider the spatiotemporal organization of high-fre-
quency LFP amplitude modulation.

More importantly, these findings have fundamental scientific 
implications as they suggest that there is a dynamic spatial organ-
ization of activity on the motor cortical sheet that may serve a 
functional role in executing movements that goes beyond the static 
view of somatotopy (1, 2). Given that high-gamma LFP amplitude 
serves as a close proxy to MUA, these results imply that there is an 
orderly recruitment sequence of activity across the motor cortical 
sheet that informs details of the upcoming movement. In fact, we 
were able to replicate the same analyses with MUA in monkey Ls 
and found that MUA propagation patterns contained move-
ment-specific spatiotemporal organization that was useful for kin-
ematic decoding. In contrast, propagation direction of beta 
frequency amplitude attenuation provides no information about 
upcoming movement kinematics (SI Appendix, Fig. S4) and only 
signals movement initiation in a condition-independent manner 
(3, 4, 25); we also examined an alternative definition of high-
gamma using a lower 100 to 200 Hz frequency band, where we 
also found propagation patterns, but they provided only limited 
kinematic information (SI Appendix).

In order to extract and characterize single-trial propagation pat-
terns, a number of preprocessing steps were required. First of all, 
despite the obvious amplitude envelope amplification on trial-aver-
aged data, high-gamma amplitude was too noisy to reliably extract 
amplification signatures on a single-trial basis. To robustly denoise 
single trials given the constraint of limited trial counts, we used a 
combination of principal components analysis (PCA) followed by an 
autoencoder. A pure autoencoder denoising method was prone to 
getting stuck at local minima resulting in poor reconstruction, while 
a pure-PCA denoising method was poor at rejecting severe noise due 
to lack of a nonlinearity transformation. In the whole denoising pro-
cess, no spatial information was provided, thus eliminating the pos-
sibility of introducing any spatial smoothness. Second, to identify the 
amplification time on each channel, we chose the time point where 

the first derivative of the cleaned envelope reached its maximum thus 
avoiding the use of an arbitrary threshold on the envelope. Third, 
after excluding outlier channels (see Materials and Methods), we fit a 
plane to the amplification times in order to compute its propagation 
properties. The use of a planar fit served as a local approximation to 
make propagations more tractable, but we acknowledge the possibility 
that this local pattern could be part of a larger pattern that might be 
more complex (e.g., rotary or spiral). In fact, when looking at both 
the lateral and medial arrays simultaneously, the speeds of the two 
propagating patterns were significantly correlated in both monkeys 
with the propagation speed of the medial array being approximately 
twice of that of the lateral array (SI Appendix, Fig. S5). Moreover, the 
amplification times across both arrays were significantly correlated in 
both monkeys. Although beyond the scope of the current study, this 
suggests the potential of more complex propagation patterns at a 
larger spatial scale.

The exact propagation directions differed across the two monkeys 
particularly on the lateral arrays. This is likely due to the differences 
in the exact placement of the arrays and individual cerebral organ-
ization. Intracortical microstimulation of sites on the lateral array 
for Bx evoked either hand or wrist movements, while the majority 
of sites on the lateral array for Ls evoked hand movements 
(SI Appendix, Fig. S1). As explained above, the patterns we observed 
from single arrays were most likely part of larger spatiotemporal 
patterns; thus, propagating directions would naturally be different 
if the spatial windows were slightly shifted, even if the larger patterns 
were generally similar. Another possible reason for the difference 
across the two monkeys is the fact that electrode lengths in Bx were 
1.5 mm whereas in Ls they were 1.0 mm. The longer electrodes 
may have reached the upper portion of layer 5, whereas the shorter 
electrodes were likely in layers 2/3. Nevertheless, despite the indi-
vidual differences in propagation patterns, these patterns both pro-
vided meaningful kinematic decoding in our two monkeys.

In future studies, we plan on extending this investigation to 
more complex movements with multiple submovements such as 
sequential movements that are either planned or unplanned. We 
hypothesize that there should be multiple distinct propagation 
patterns in the high-gamma band associated with each submove-
ment, especially in the unplanned case.

Materials and Methods

Electrophysiology. Neural recordings were collected from two male rhesus 
macaques (Macaca Mulatta), Bx and Ls. They were each implanted with a set of 
dual 64-electrode Utah multielectrode arrays (Blackrock Microsystems) in the left 
primary motor cortex (SI Appendix, Fig. S1). The electrode lengths were 1.5 mm 
for Bx and 1 mm for Ls, with a uniform interelectrode distance of 400 µm in the 
8-by-8 grid. The arrays corresponded to the arm/hand areas of the limb trained 
for the task, as confirmed by electrically stimulating the cortex during surgery 
with surface electrodes and observing corresponding twitches prior to array 
implantation. All procedures regarding surgery, animal training, and data col-
lection were approved by the University of Chicago Institutional Animal Care and 
Use Committee and obey the Guide for the Care and Use of Laboratory Animals.

Behavioral Task. The animals were trained to perform a reach task in differ-
ent directions with their right upper limb constrained by a 2D exoskeletal robot 
(BKIN Technologies). All the reach directions were on a horizontal plane roughly 
at the height of their elbows when their upper limbs were naturally hanging. 
They performed the task by moving the joystick at the tip of the robot, while 
receiving simultaneous visual feedback of the cursor position on the screen in 
front of them. The task involves a hold period (600 ms for Ls and 1,000 ms for 
Bx) during which the animal held the joystick steadily keeping the cursor within 
a central target. The peripheral target then appeared indicating the desired reach 
location. The animal moved the joystick to direct the cursor to the peripheral 
target. Each target had a radius of 1 cm for Ls and 0.75 cm for Bx; the distance 

http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2212227120#supplementary-materials
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from the central target to the peripheral target was 6 cm For Ls and 5.5 cm for 
Bx. The peripheral target could appear in one of 8 possible locations on a circle 
(in 45° intervals counterclockwise from 0° to 315°, where rightward movement 
was 0° and forward movement was 90°). A trial was considered successful once 
the cursor reached the peripheral target and remained in the target for a period 
of time (100 ms for Ls, 400 to 600 ms for Bx), upon which the animal received 
juice reward. In total, there were 3 sessions for each monkey.

Data Collection and Preprocessing. Neural signals were collected with 
Blackrock Microsystems, bandpass filtered from 0.3  Hz to 7.5  kHz with a 
Butterworth filter and then digitized at 30 kHz. For LFPs, the 30 kHz signal was 
further low-pass filtered below 500 Hz with a Butterworth filter and downsam-
pled to 2 kHz. For MUA, the 30 kHz signal was high-passed above 250 Hz with 
a Butterworth filter and threshold crossing events were found when the voltage 
crossed negative 5.5 times of the RMS.

Extracting Signals from High-Gamma Band and Beta Band. From the 
2 kHz LFPs, the high-gamma band signals were extracted by bandpass filter-
ing within 200 Hz to 400 Hz with a Butterworth filter; the beta band signals 
were extracted by bandpass filtering within a monkey-specific range that 
corresponded to individual peak frequencies in the beta band power spec-
trum (18 to 24 Hz for Ls and 28 to 34 Hz for Bx). All band-pass filters had 
zero-phase distortion. From those band-pass-filtered signals, we computed 
the Hilbert transformation to obtain the amplitude envelopes. Individual 
trials were aligned on movement onset defined as the time point where 15% 
of the peak speed was reached for that trial.

Comparison of High-Gamma Band versus MUA. The MUAs from different 
trials were aligned on movement onset and binned in 1 ms windows, after which 
moving averages were computed in sliding windows of 150 ms (in steps of 1 ms). 
The high-gamma signal used for comparison with MUA was low-passed below 
10 Hz to match the smoothing of the MUA. Then, we compared the similarity of 
the two signal types based on the correlation of tuning curves and cross-correlation 
of single-trial activity.

Presence of modulation: for each signal type, the mean time-resolved activity was 
computed for each peripheral target for each electrode. For each electrode and each 
target direction, the baseline mean and SD was computed over a time window of 
−700 to −250 ms with respect to movement onset. If the average activity deviated 
from the baseline mean by at least three SDs at any time point between −200 ms to 
500 ms (with respect to movement onset) for any target direction, then we considered 
this electrode to be modulated.

Robust firing: for MUA, the mean time-resolved activity was computed for 
each peripheral target for each electrode. If the maximal instantaneous average 
firing rate exceeded 1 Hz at any time point between −200 ms to 500 ms (with 
respect to movement onset) for any target direction, then we considered this 
electrode to have robust firing.

Correlation of tuning curves of MUA and high-gamma activity: for each signal type, 
the mean time-resolved activity was computed for each peripheral target for each 
electrode, and the modulation strength for each target direction was determined by 
the integral of activity between −200 ms to 500 ms with respect to movement onset. 
The tuning curve was composed of eight modulation strengths, one for each target 
direction. The Pearson correlation between tuning curves of high-gamma and MUA 
was computed for each electrode that was modulated and had robust firing.

Cross-correlation of single-trial MUA and high-gamma activity: for each elec-
trode that was modulated and had robust firing, the Pearson correlation between 
the two signal types was computed within a wide range of lags from −600 ms 
to 600 ms in steps of 5ms.

Computation of Circular Statistics. Descriptions of propagation directions 
and movement directions require proper treatments of angular variables. We 
computed angular means, medians and SEM based on (26–28), implemented 
in the pycircstat package in python (https://github.com/circstat/pycircstat/tree/
master/pycircstat). Briefly, the angular mean is the direction of the mean of the 
vectors (cos(�i ), sin(�i )), where �i represents each angle in the distribution. The 
angular median is the angle which has the minimum total distance to all other 
angles in the distribution (in the case of even number of samples, it’s the mean 
of the two angles with the minimal distance). The circular SEM is computed by 
halving the 68.27% CI of the mean estimation—it only exists when data have 
enough concentration around the mean (in ref. 28, Equations 26.23-26).

As for statistical tests for multisample analysis of circular data (e.g., different 
groups of propagation directions), we tested whether different groups of angles 
shared a common median, using a test suggested by Fisher (26). This is a non-
parametric test, serving as a circular analog of the Kruskal–Wallis test (29). It was 
implemented with the same pycircstat package mentioned above.

Processing Steps for Denoising Single-Trial Activities. Given the tempo-
ral variability of high-gamma band and beta band amplitudes on individual 
trials, a series of steps were performed to denoise single-trial amplitudes. 
First, trials from multiple daily sessions of the same task of the same monkey 
were pooled together. For each pooled dataset, only trials with a reaction time 
within a canonical range were kept (200 to 600 ms for Bx and 0 to 400 ms 
for Ls), to ensure relative homogeneity of the behaviors. Next, we randomly 
divided the trials into a training set (90%) and a test set (10%). Then, we 
z-scored the activities for each electrode with signal mean and SD from the 
baseline period of the training set (baseline period was defined as −700 ms 
to −400 ms relative to movement onset for high-gamma and −900 ms to 
−600 ms for the beta band, during which signals were relatively steady on 
average). Then, we rearranged the training data to form a 2D matrix (where all 
timepoints of all electrodes of one trial were flattened into one long column 
vector and different columns represented different trials) and reduced the 
dimensionality from 307,328 (128 electrodes × 2,401 time points) to 200 
with PCA (accounting for 30.7 to 39.4% of total variance). We applied the same 
transformations to the test set (accounting for 13.0 to 15.5% of total variance). 
This PCA step was used to reduce the number of parameters for later training 
of neural networks. We experimented with more principal components with 
this PCA step (400 and 800 components) — while they accounted for more total 
variance in the training set (40.6 to 59.1% with 400 components and 58.2 to 
91.5% with 800 components), the total variance accounted for in the test set 
only increased minimally (13.8 to 16.3% with 400 components and 15.1 to 
17.8% with 800 components), and the final denoising performance remained 
similar. We decided to go with 200 components primarily due to the limited 
trial count we had for training the later neural network.

To denoise the signal, we used a variant of autoencoders called the contractive 
autoencoder (8) (implemented in Tensorflow with adaptions from https://github.
com/zaouk/contractive_autoencoders). Briefly, the contractive autoencoder aims to 
reconstruct each 200-dimensional trial vector Envreduced faithfully through oper-
ations of three hidden layers while reducing the sensitivities of the hidden layer 
representations with respect to the inputs (the latter is termed “Jacobian loss”) (see 
Eqs. 1 and 2: Eq. 1 describes the total loss as a weighted sum of the reconstruction 
loss and Jacobian loss, while Eq. 2 spells out the Jacobian loss to be the squared 
partial derivatives of the hidden layer activities with respect to the inputs). The auto-
encoder was fitted with a 2:1 cross-validation scheme for early stopping using the 
90% training set and then evaluated on the 10% test set. Results reported here were 
obtained with the following hyperparameters: tradeoff between Jacobian loss and 
reconstruction loss � = 0.1, learning rate = 0.0001, and batch size = 8; hidden lay-
ers sizes were 100, 50, and 100, with sigmoid transfer functions used in the encoder 
( f , for contraction) part and linear functions used in the decoder (g , for expansion) 
part of the autoencoder. This set of parameters was chosen to achieve a relatively 
proper level of compression and stable denoising, and the denoising performance 
and downstream results were quite stable across a wide range of hyperparameters 
we experimented. All bolded variables in this manuscript denote vectors (for exam-
ple, input vector Envreduced here).
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After denoising with an autoencoder, we transformed the reconstructed 
200-dimensional trial vectors back to the original space with the inverse PCA 
transformation. Notably, neither PCA nor the autoencoder had any information 
regarding the spatial locations of the electrodes. Finally, we low-passed each 
temporal trace with a cutoff frequency of 5 Hz for smoothing purposes.
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Characterizing Spatiotemporal Patterns of Single-Trial Activities. The 
high-gamma amplitude envelopes from different electrode locations tended to 
amplify around movement initiation but at slightly different times. To quantify the 
exact time of amplification for a particular electrode, we took the first derivative 
of the smoothed denoised envelopes described above and took the time point 
of maximum within the canonical amplification window (−300 ms to 100ms) as 
the amplification time, as long as that maximum exceeded the baseline mean by 
at least two baseline SDs (baseline was defined as [−700 ms, −400ms] relative 
to movement onset). Once we computed those amplification times for different 
electrodes in a trial, we excluded outlier amplification times (outlier times is 
defined as times that deviated from the median time by more than six times of the 
median of the deviations). If there were more than 33% of electrodes left, we fit 
the amplification times for all electrodes (tamp) with their x, y physical coordinates 
using linear regression (i.e., 2D planar fit). In Eq. 3, �0 denotes the offset and 
�1 and �2 denote the coefficients for x, y axes. The direction of the propagation 
�propagation is determined by the angle formed by the two coefficients (Eq. 4). The 
speed of the propagation vpropagation is computed with Eq. 5 with the interelectrode 
distance dinterelec = 0.4 mm.
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The fit for each trial was evaluated based on the fraction of variance explained 
(i.e., R2) of the linear regression (R2

propagation
). To determine whether the fit was sta-

tistically significant, we randomly shuffled electrode locations 500 times for each 
trial, pooled together the shuffled R2

propagation
 values from all trials and determined 

an overall R2
propagation

 threshold based on the top 5% cutoff of shuffled R2
propagation

 
values. A trial with less than 33% of electrodes left for planar regression was 
automatically considered an insignificant trial.

Decoding Velocities with Spatiotemporal Patterns. This section explains 
the processes of evaluating whether the spatiotemporal propagating patterns 
could predict velocities.

For the spatiotemporal model, we used all parameters characterizing the spati-
otemporal patterns (vpropagation, sin (�propagation), cos(�propagation),

R
2
propagation

), here bolded as they are now vectors from all trials) to predict the x and 
y components of the hand velocities (vx , vy), respectively, using a GLM with linear 
link and Gaussian family distribution. The formulation is identical to linear regressions, 
except that the solution is found with iteratively reweighted least squares method. 
In Eqs. 6 and 7, the m and l  denote the medial and lateral arrays, respectively, while 
the x and y denote the x and y components of the velocity, respectively. A different 
model is computed for different timepoints with respect to movement onset from all 
trials, which is noted by ti in the equations (ti ∈ [−200, 200] ms), so that we could 
determine when those spatiotemporal variables attained the best predictive power.

spatiotemporal model:
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 To obtain the shuffle control model, we randomly shuffled the hand velocities 
across trials and refitted the velocity prediction models.

All models were fit and evaluated with a 10-fold cross-validation scheme. We 
adapted the definition of R2 and arrived at a composite fit measure R2

v_pred_composite
 

for each pair of models, taking into account performances of vx and vy predictions 
simultaneously. In Eq. 8, v̂x denotes the estimated vx, while vx  denotes the aver-
age vx (here suffix ti is ignored from all variables for simplicity).

 
[8]R2

�_pred_composite
=1−

∑

((vx − v̂x )
2+ (vy − v̂y )

2)
∑

((vx −v
x
)2+ (vy −v

y
)2)

.

To compare the time-resolved performance of the spatiotemporal model versus 
the shuffle control model, we performed a single-tailed Wilcoxon test for the 
R2
v_pred_composite

 at the optimal time point for the spatiotemporal model.
Finally, to evaluate the relative importance of those spatiotemporal variables, we 

also computed reduced models that contained only a subset of the spatiotemporal 
propagating characteristics. For example, the direction-only spatiotemporal model 
only contained direction variables; the speed-only spatiotemporal model only con-
tained speed variables; and the fit-only spatiotemporal model only contained R2 
variables. The rest is the same as described above with the spatiotemporal model.

direction-only spatiotemporal model (here, we wrote down only the formula-
tions for the x component of the velocity for brevity; same below):
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sin
(

�propagation_l

)

+�cos_x_l_ti
cos

(

�propagation_l

)

+�sin_x_m_ti
sin

(

�propagation_m

)

+�cos_x_m_ti
cos

(

�propagation_m

)

,

speed-only spatiotemporal model:

 
[10]vx_ti =�c_x_ti

+�v_x_l_ti
vpropagation_l +�v_x_m_ti

vpropagation_m,

fit-only spatiotemporal model:

 
[11]vx_ti =�c_x_ti

+� fit_x_l_ti
R2

propagation_l
+� fit_x_m_ti

R2

propagation_m
.

Decoding Velocities with Envelopes and Spatiotemporal Patterns. To 
evaluate whether the spatiotemporal patterns contained additional informa-
tion regarding kinematics that was nonredundant with what was contained 
in the high-gamma amplitude envelopes themselves, we built GLM models 
containing a) only the instantaneous amplitude envelopes (“envelope-only 
model”); b) only the spatiotemporal variables — including both first-order 
variables and second-order interactions (“spatiotemporal-1stAnd2nd-only 
model”); and c) both instantaneous amplitude envelopes and first- and sec-
ond-order spatiotemporal variables (“envelope+spatiotemporal1stAnd2nd 
model”).

The envelope-only model was lag-specific, meaning that we used instantane-
ous envelopes at a particular fixed lag to the hand velocities, to predict the hand 
velocities at all time points (0 ms to 200 ms w.r.t. movement onset) of all trials; 
the envelope + spatiotemporal 1st And 2nd models was also lag-specific given 
that it contained the instantaneous envelopes. The lags are denoted with Δti in 
the equations below (Δti ∈ [−300, 100] ms).

In contrast, the spatiotemporal-1stAnd2nd-only model was not lag-specific, as 
only one set of spatiotemporal variables was computed for any given trial. The 
second-order interactions terms were constructed from the product of each pair 
of z-scored first-order spatiotemporal variables. The same model was also used to 
predict hand velocities of all time points (0 ms to 200 ms w.r.t. movement onset) 
of all trials, instead of only at a particular time point as was done in the previous 
section (“Decoding velocities with spatiotemporal patterns”).

envelope-only model (where p denotes electrode number and Env denotes 
instantaneous amplitude envelope):

 
[12]vx_�ti =�c_x_Δti

+

128
∑

p=1

�env_x_Δti_p
⋅Envp,



12 of 12   https://doi.org/10.1073/pnas.2212227120 pnas.org

 

 

[13]vy_�ti =�c_y_Δti
+

128
∑

p=1

�env_y_Δti_p
⋅Envp.

spatiotemporal-1stAnd2nd-only model (where Sptm denotes the m -th first-order 
spatiotemporal variable among a total of eight variables from both arrays, ⊙ 
denotes element-wise product):

 

[14]vx =𝛽c_x+

8
∑

m=1

𝛽spt_x_m ⋅Sptm+
∑

m≠n

𝛽spt_x_m_n ⋅Sptm⊙Sptn,

 

 

[15]vy =𝛽c_y +

8
∑

m=1

𝛽spt_y_m ⋅Sptm+
∑

m≠n

𝛽spt_x_m_n ⋅Sptm⊙Sptn,

envelope+spatiotemporal1stAnd2nd model:

 
[16]

vx_�ti =𝛽c_x_Δti
+

128
∑

p=1

𝛽env_x_Δti_p
⋅Envp

+

8
∑

m=1

𝛽spt_x_m ⋅Sptm+
∑

m≠n

𝛽spt_x_m_n ⋅Sptm⊙Sptn,

 

 

[17]

vy_�ti =𝛽c_y_Δti
+

128
∑

p=1

𝛽env_y_Δti_p
⋅Envp

+

8
∑

m=1

𝛽spt_y_m ⋅Sptm+
∑

m≠n

𝛽spt_x_m_n ⋅Sptm⊙Sptn.

Except for the exact variables used in the model, all model specifications, 
numerical computations, cross-validation scheme, and composite performance 
measure were the same as the previous section “Decoding velocities with spa-
tiotemporal patterns.”

Afterward, we statistically tested whether the spatiotemporal variables 
added to the amplitude envelopes improved kinematic prediction. We first 
picked the best lag for the envelope-only model (i.e., the envelope-only 
model with the best mean R2

v_pred_composite
 across folds), then used the same 

lag for the envelope+spatiotemporal1stAnd2nd model. We compared 
the R2

v_pred_composite
 values obtained for both models with a single-tailed 

Wilcoxon test.
Last, we tested whether it was crucial to have the correct spatiotemporal 

variables corresponding to each trial to improve hand velocity prediction over 
the amplitude envelopes. For that, we randomly shuffled the spatiotemporal 
variables among trials 1,000 times, supplementing the correct instantaneous 
amplitude envelopes to predict hand velocities. Each shuffled prediction was 
fit and evaluated with a fourfold scheme; upon averaging across folds, it 
forms a R2

v_pred_composite
 distribution consisting of 1,000 samples. A top 5% 

threshold was determined from the distribution of shuffled R2
v_pred_composite

 val-
ues. We compared that threshold with the real R2

v_pred_composite
 from unshuffled 

spatiotemporal variables and amplitude envelopes after averaging across 
its 10 folds.

Code Availability. The code used for analyses in this study is available at https://
github.com/hatsopoulos-lab/macaque-spatio_temporal_pattern.

Data, Materials, and Software Availability. Mat files data have been deposited 
in DRYAD (https://doi.org/10.5061/dryad.j6q573nj1) (30).
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