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An R307H substitution in GATA1 that prevents Ser310 phosphorylation
causes severe fetal anemia
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GATA1 is a gene at position Xp11.23 that encodes one of the most important factors needed for hema-
topoiesis in both vertebrates and invertebrates.1,2 At present, several inherited mutations in exons 2 and
4 have been reported to be associated with dysregulated transcription activity, causing different patho-
genic alterations and phenotypic presentations in humans.3-7 As a result of these mutations, a spectrum
of diseases including hematological disorders (eg, erythroid hypoplasia with mild neutropenia and mild
defects in megakaryocytopoiesis,5 severe fetal anemia with postnatal abnormalities in erythroid and plate-
let lineages6,8) and malignant hematological disorders (eg, acute megakaryocytic leukemia in children
with Down syndrome9,10) have been described. Analysis of disease-causing GATA1 mutations clearly
reflects that the location of the mutations in GATA1 determines the phenotype. In particular, for the
GATA1 V205M, G208S, D218Y, and G208R mutations, studies have shown reduced affinity of GATA1
for its critical transcriptional cofactor friend of GATA1 (FOG1)6,11-14 and reduced TAL1 complex binding
of GATA1 in mutations R216Q and D218G.7,15-17 Discrepancies in the consequences on in vivo DNA
binding of distinct GATA1 mutants have been noted.14 In this report, we describe a case of a patient
with severe fetal anemia and the subsequent identification of a novel GATA1 mutation at p.R307H in
exon 6, leading to impaired DNA binding and Ser310 phosphorylation, and offer a new link between
GATA1 dysregulation and human pathology.

A 5-year-old boy with macrocytosis (mean corpuscular volume: 105 fL), elevated hemoglobin F
levels (6.3%), and mild macrothrombocytopenia (thrombocytes: 121 3 103/mL) presented for further
evaluation (Figure 1A). Representative bone marrow smears showed distinct dyserythropoiesis
(Figure 1B-D). His medical history was remarkable for severe intrauterine anemia (minimum, 30 g/L
at 21 weeks’ 1 3 days’ gestation), necessitating 5 intrauterine transfusions of red cell concentrate
(RCC) at 3-week intervals to achieve stable hemoglobin levels (Figure 1E). Typical morphologic
anomalies associated with anemia, such as pericardial effusion, cardiomyopathy, and polyhydramnios
resolved after transfusion. In standard evaluations for fetal anemia (toxicity, nutritional deficiencies,
bone marrow disorders, and infectious causes) we detected no abnormalities. The birth of the
patient was preterm at 36 weeks’ 1 2 days’ gestation with good postnatal adaption. A single RCC
was transfused at a hemoglobin level of 63 g/L, and the patient subsequently showed normal physi-
cal and mental development.

Because of the unclear origin of severe fetal anemia with sustained macrothrombocytopenia and hyper-
chromic macrocytosis, further genetic testing was performed. Whole-exome sequencing from an EDTA
blood sample revealed hemizygosity for a novel GATA1 variant (NM_002049.4:c.920G.A, p.R307H).
Among the potential findings, this variant in GATA1 was the most interesting one, based on prediction
scores, allele frequency, and genotype-phenotype correlation (supplemental Table 1). The putative patho-
genicity of the variant was predicted by the in silico prediction programs SIFT, MutationTaster, and
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PolyPhen-2, and variant frequency was obtained from the Genome
Aggregation Database (gnomAD; https://gnomad.broadinstitute.org/,
accessed June 2021).18 The classification of detected variants fol-
lowed the consensus recommendations of the American College of
Medical Genetics and Genomics and the Association for Molecular
Pathology and revealed a combined annotation-dependent depletion

score of 27.3.19 Because the mutation was classified as pathogenic,
further genetic testing of the patient and both parents was performed
after receipt of informed consent, in accordance with the Declaration
of Helsinki and approval by the Ethics Committee of the Medical Uni-
versity of Vienna. Directed dye-terminator Sanger sequencing of the
59 part (c.875-30 to c.1100) of exon 6 of GATA1 (NM_002049.4)

A B

C D

0
–20 –15 –10 –5 0 5 10 15 20

100
200

300

50

100

150

200

10 �m 10 �m

E

Hb
 (g

/L
)

Time (weeks)

1

3 4 5 6
Arg307His

2

G

Index

A C C CA A A

A C C CG A A

A C C CG A A

Mother

Father

F

Figure 1. Identification of a GATA1 mutation causing severe fetal anemia. (A) The proband’s blood smear contains macrothrombocytes (black arrow).

(B-D) Representative bone marrow smears show Cabot rings (B; *), megaloblasts (C; #), and mitosis (D; 1), indicative of megaloblastic anemia. Smears were stained with

May-Gr€unwald and photographed with a Nikon Eclipse E600 microscope equipped with a 1003/0.30 numerical aperture oil-immersion lens and a ProgRes SpeedXT core 5

camera, using Gryphax software (version 2.0). (E) Hemoglobin levels over time; red arrows indicate the time points of red blood cell transfusions. (F) DNA from the affected

boy and the unaffected mother and father; the base mutation is indicated by the red arrow. (G) Pedigree of the family; the filled square represents the hemizygous male.
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confirmed an amino acid replacement at p.R307H (Figure 1F) in the
patient only, thus confirming a de novo mutation (Figure 1G).

To evaluate the functional consequence of this mutation, transfec-
tions of erythroid cell line K562 and Jurkat TAg cells were per-
formed. Detailed descriptions of all experiments are provided in the
supplemental Methods. We first analyzed DNA binding activity,
because the C-terminal zinc finger of GATA1 is known to be sub-
stantial for the predominant DNA binding activity, to enable GATA1
to associate with its (A/T)GATA(A/G) consensus sequence,8,20

such as in patients with macrothrombocytopenia, congenital por-
phyria, b-thalassemia, and gray platelet syndrome.7,15-17 Electropho-
retic mobility shift assay (EMSA) showed that DNA binding of
GATA1R307H was strongly reduced in hemin-stimulated K562
cells (Figure 2A) and comparable in Jurkat cells (supplemental Fig-
ure 1A), indicating that the R307H mutation inhibits DNA binding of
GATA1 in erythroid cells. Given that other mutations (eg, V205M,
G208S, and D218G)6,11-13 are known to reduce the affinity of
GATA1 for FOG1 and that preclinical data have demonstrated
murine Ser310 to be essential for erythroid differentiation,21 we
determined the phosphorylation status on Ser310. No phosphoryla-
tion of GATA1R307H on Ser310 in K562 and Jurkat cells
was observed in western blot analysis (Figure 2B; supplemental
Figure 1B). According to the manufacturer, the anti–phospho-
GATA1 (Ser 310) antibody was produced using as an immunogen,
a peptide sequence of human GATA1 around Ser310 (K-A-S(p)-G-
K) that does not include the mutation site R307H. To confirm the
functional impact of reduced Ser310 phosphorylation, coimmuno-
precipitation of FOG1 and GATA1 was performed. GATA1R307H

showed reduced affinity to FOG1 in hemin-stimulated K562 cells
(Figure 2C). The role of Ser310 phosphorylation for GATA1 affinity
to FOG1 is historically controversial, depending on the experimental
setup used.21-24 Nevertheless, the clinical presentation of our
patient with severe fetal anemia and thrombocytopenia and impaired
maturation of the erythrocytes, combined with reduced phosphoryla-
tion resulting in impaired GATA1/FOG1 binding in R307H mutation,
underlines the clinical relevance. Kadri et al showed that phosphory-
lation at Ser310 enhances the affinity of GATA1 for its cofactor,
FOG1. In turn, FOG1 displaces pRB/E2F-2 from GATA1, resulting
in release of proliferative E2F-2. Mice harboring a Gata1 S310A
mutation develop severe anemia when a compensatory pathway for
EF-2 production (IGF1 signaling) is abolished.21 Furthermore, our
patient developed severe fetal anemia and manifested with persis-
tent anisocytosis and elevated levels of HbF during childhood
(39.7% HbF at birth; 6.7% at 5 years of age). Previous studies
have shown that GATA1 plays a fundamental role in fetal globin
gene expression (eg, gene silencing of HBG1 and HBG2 and
hemoglobin switching to HBB is promoted by GATA1).14,25-27
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Figure 2. Biochemical characterization of mutant GATA1R307H. K562 cells

were transfected with wild-type and mutated (c.920G.A) GATA1 cDNA constructs

and stimulated for 3 days with 0.05 mM bovine hemin. (A) Nuclear extracts of

wild-type and GATA1R307H-transfected cells were incubated with a 32P-labeled,

double-stranded oligonucleotide probe (59-CAC TTG ATA ACA GAA AGT GAT

AAC TCT-39). EMSA shows reduced DNA binding of GATA1R307H. (B) Immunoblot

analysis of total and phosphorylated GATA1 was performed. Phosphorylation of

Ser310 was totally absent in GATAR307H. (C) Immunoprecipitation of lysates with

FOG1 antibody followed by western blot of GATA1. Input control of actin and

FOG1 is shown. GATA1R307H showed reduced FOG1 affinity.
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Finally, it is important to mention that the R307H change itself may
have an effect, even if Ser310 is no longer phosphorylated. This
part of GATA1 gets acetylated, and it is known to be important for
in vivo DNA binding, but not in vitro.28

In summary, we describe a de novo mutation in GATA1R307H with
the phenotypical expression of severe fetal anemia with sustained
impairment of hematopoietic cell proliferation of the megakaryocytic
and erythropoietic lineage. The mutated GATA1 showed impaired
DNA binding, absence of Ser310 phosphorylation and reduced
GATA1/FOG1 affinity, which is known to be crucial for erythroid dif-
ferentiation. We conclude that recognition of this novel mutation is
of critical importance in the interpretation of fetal anemia, as it can
predict the impact on the course of disease and influence manage-
ment in affected patients.
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