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Abstract

The increase in reports of novel diseases in a wide range of ecosystems, both terrestrial and marine, has been linked to
many factors including exposure to novel pathogens and changes in the global climate. Prevalence of skin cancer in
particular has been found to be increasing in humans, but has not been reported in wild fish before. Here we report
extensive melanosis and melanoma (skin cancer) in wild populations of an iconic, commercially-important marine fish, the
coral trout Plectropomus leopardus. The syndrome reported here has strong similarities to previous studies associated with
UV induced melanomas in the well-established laboratory fish model Xiphophorus. Relatively high prevalence rates of this
syndrome (15%) were recorded at two offshore sites in the Great Barrier Reef Marine Park (GBRMP). In the absence of
microbial pathogens and given the strong similarities to the UV-induced melanomas, we conclude that the likely cause was
environmental exposure to UV radiation. Further studies are needed to establish the large scale distribution of the
syndrome and confirm that the lesions reported here are the same as the melanoma in Xiphophorus, by assessing mutation
of the EGFR gene, Xmrk. Furthermore, research on the potential links of this syndrome to increases in UV radiation from
stratospheric ozone depletion needs to be completed.
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Introduction

Prevalence and occurrence of novel diseases are reported to be

increasing in many organisms worldwide. Understanding the

etiology of these diseases, the host organisms they affect and

potential causes and consequences are a vital first step in the

development of control and management strategies. Many diseases

are caused by microbial pathogens, and fish diseases in particular

have been shown to be caused by a diversity of such pathogens

including bacteria, parasitic copepods, viruses and fungi [1,2,3].

Historically, diseases in fish have been recorded more commonly

in species of commercial value, usually farmed fish. This may be

due to the higher than normal stocking densities which in turn can

lead to higher levels of infections and/or the ease of sampling large

numbers and continuous monitoring capabilities. Furthermore,

there is also significant economic benefit to identifying pathogens

of these commercially reared fish with the aim of ultimately curing

them. In aquaculture systems, diseases cause a significant

economic loss, with bacteria, viruses and fungi being the dominant

pathogens involved [1,3]. In contrast, diseases of wild fish have

received considerably less attention and their economic impact on

commercial and recreational fisheries is unknown. In addition to

microbial diseases common in fish, other diseases such as

carcinomas have been extensively studied in the laboratory using

fish model systems, including the Xiphophorus (swordtail) [4,5] and,

more recently, the Danio (zebrafish) models [5,6]. To date,

however, there are no reports of cancers occurring in wild fish

populations. This study aimed to describe a previously unknown

disease lesion, which was observed affecting large numbers of a

commercially important reef fish, the coral trout Plectropomus

leopardus.

Methods

Sampling
Individual coral trout, Plectropomus leopardus, were line caught

with barbless 8/0 hooks using pilchard bait, following methods

employed by commercial fishers. Four fishing trips were complet-

ed between Aug 2010 and Feb 2012 off the east coast of Australia,

at Heron Island (23.4uS, 151.9uE) and One Tree Island (23.5uS,

152.0uE). In total 136 fish were sampled and photographed, 20 of

which showed signs of skin abnormalities. From healthy individ-

uals and those with the syndrome, two sets of samples were taken;

one for microbial analysis and the other for histological

examination. Additional affected individuals were observed during

snorkel and dive activities, but only those individuals captured via

fishing were included in this analysis.

To test for differences in bacterial, fungal and ciliate molecular

diversity between healthy and lesion samples, we analyzed tissue

sections collected from individuals captured in August 2011. Three

replicate tissue sections (,10l63 w63 d cm), separated by ,5 cm

were cut using a sterile scalpel blade from n = 5 non-diseased (ND)

fish, n = 5 diseased (D) fish (Fig. 1a) at the lesion interface and

n = 5 apparently healthy (AH) tissues adjacent to the lesion on a
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disease fish. Samples were placed directly into 100% EtOH and

stored at 220uC until extraction and further analysis. A further set

of samples, aimed at sampling the surface associated microbes,

utilised sterile swabs. The surface of the fish scales were swabbed

and these were placed directly into sterile micro-centrifuge tubes

with 100% EtOH, stored at 220uC until extraction and further

analysis. Further samples, aimed at sampling the surface associated

microbes used sterile swabs. These were placed in sterile micro-

centrifuge tubes and stored in 100% EtOH at 220uC until

extraction. Samples for histology were collected as for microbial

analysis (see above), with the same sample number of samples

however, they were preserved in 5% paraformaldehyde made up

with Phosphate Buffer Saline (PBS). Samples were fixed for 24 hr,

dehydrated in a dilution series of EtOH from 50 to 100% and

stored at 4uC until embedding and sectioning. DNA was extracted

using the QIAGEN DNeasy Blood and tissue extraction kit.

Fungal PCR amplification and denaturing gradient gel
electrophoresis (DGGE) of tissue samples/swabs

For DGGE analysis a portion of the fungal ITS rRNA gene was

amplified using universal fungal primers; a nested PCR approach

was utilised to yield the most complete diversity [7]. 1st round;

fungal primers ITS1F (59CTTGGTCATTTAGAGGAAGTAA-

39) and ITS4 (59-TCCTCCGCTTATTGATATGC-39) [8] were

used following the protocol described by [9] (94uC for 5 min; 35

cycles at; 94uC for 30 sec, 55uC for 30 sec, 72uC for 30 sec then

elongation at 72uC for 5 min). 20 ml PCR reactions were routinely

used (final PCR buffer contained: 1 mM MgCl2, and 1 U Taq

DNA polymerase (QBiogene); 100 mM dNTPs; 0.2 mM of each of

the forward and reverse primers; and 0.4% BSA, with 20 ng of

template DNA). A 1:100 dilution of the PCR product was then

used in a further PCR with the primers ITS3 (59-GCATCGAT-

GAAGAACGCAGC-39) and ITS4-GC (59-CGCCCGCCGCG-

CCCCGCGCCCGGCCCGC CGCCCCCGCCCC-TCCTCC-

GCTTATTGATATGC -39) [10]. All reactions were performed

using a Hybaid PCR Express thermal cycler. PCR products were

verified by agarose gel electrophoresis [1.6% (w/v) agarose] with

ethidium bromide staining and visualized using a UV transillumi-

nator. DGGE was performed using the D-Code universal

mutation detection system (Bio-Rad). PCR products were resolved

on 10% (w/v) polyacrylamide gels that contained a 30–60%

formamide (denaturant) gradient for 13 h at 60uC and a constant

voltage of 50 V. Gels were stained with SYBER gold as described

by [11]. Bands of interest (those which explained the greatest

differences/similarities between samples) were excised from

DGGE gels, left overnight in Sigma molecular grade water,

vacuum centrifuged, re-amplified with the specific primers,

labelled using Big Dye (Applied biosystems) transformation

sequence kit and sent to Genevision (Newcastle University, UK)

for sequencing. Fungal operational taxonomic units (OTUs) were

defined from DGGE band-matching analysis using BioNumerics

3.5 (Applied Maths BVBA).

Bacterial PCR amplification and denaturing gradient gel
electrophoresis (DGGE) of tissue samples/swabs

Extraction was the same as above. For DGGE analysis a portion

of the bacterial 16S rRNA gene was amplified using universal

eubacterial primers [12]; (357F-GC) (59-CCTACGGGAGGCAG-

CAG-39) and (518R) (59- CGCCCGCCGCGCGCGGCGG-

GCGGGGCGGGGGCAGCACGGGGGG-ATTACCGCGGC-

TGCTGG-39). PCR reaction mixtures and program were as

described by [11]. PCR products were resolved on 10% (w/v)

polyacrylamide gels that contained a 30–60% formamide (dena-

turant) gradient for 13 h at 60uC and a constant voltage of 50 V.

Gels were stained as above and bands of interest were excised from

DGGE gels, labelled and sent to Genevision (Newcastle Univer-

sity, UK) for sequencing. Bacterial OTUs were defined from

DGGE band-matching analysis using Bionumerics 3.5 (Applied

Maths BVBA).

Ciliate PCR amplification and denaturing gradient gel
electrophoresis (DGGE) of tissue samples/swabs

Ciliates 18S rRNA genes were amplified with an un-nested

PCR approach. PCR mixture was as above with the forward

primer CilF (59-TGGTAGTGTATTGGACWACCA-39) with a

36-bp GC clamp [13] attached to the 59 end and CilDGGE-r

(59TGAAAACATCCTTGGCAACTG-39). Initial denaturation

was at 94uC for 5 min, followed by 26 cycles of 94uC for 1 min,

52uC for 1 min, and 72uC for 1 min and a final elongation step of

10 min at 72uC to reduce double bands in the DGGE patterns.

The DGGE was carried out using a D-code system (Bio-Rad) with

0.75 mm thick 6% polyacrylamide gels in 16 TAE buffer.

Electrophoresis was carried out for 16 h at 60uC and 50 V in a

linear 32 to 42% denaturant (formamide) gradient. Gels were

stained as above.

Statistic analysis of microbial communities
In order to assess variation in microbial assemblages (bacterial,

fungal and ciliate), matrices consisting of OTU’s and samples were

generated using both presence/absence and band intensity data,

using marker lanes for between-gel comparisons. Changes in

microbial assemblages were evaluated with a one-way analysis of

similarity (Primer, ANOSIM) and multi dimensional scaling

(MDS), based on Bray-Curtis similarities, which was performed

on all samples sets, healthy, apparently healthy and diseased.

Histology
Samples were collected as for microbial analysis; however tissue

samples were preserved with 5% paraformaldehyde for 24 hrs

Figure 1. Lesions were present on approximately 15% of the
sampled population of Plectropomus leopardus; a) affected
individual showing ,10% coverage of body surface; b) P.
leopardus with almost complete coverage .90%; c) healthy
tissue under light microscope and d) the lesion. Scale
bars = 20 mm.
doi:10.1371/journal.pone.0041989.g001

Melanoma in Wild Fish

PLoS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e41989



then stored in 100% EtOH until resin embedding in LR white (r).

For each tissue type, the location of bacteria was recorded using

fluorescent in situ hybridisation (FISH) and the general fluorescent

stain, 496-diamidino-2-phenylindole (DAPI). For FISH, samples

were stained and sectioned following the protocols in [14], with

the addition of an equimolar mix (EUBMIX). Oligonucleotide

probes were purchased from Interactiva (http://www.interactiva.

de) with an aminolink C6/MMT at the 59 end. Four probes were

used: the ‘universal’ eubacterial probes EUB338 (59-GCT GCC

TCC CGT AGG AGT-39), EUB338-II (59-GCA GCC ACC

CGT AGG TGT-39), EUB338-III (59-GCT GCC ACC CGT

AGG TGT-39) and the ‘non-sense probe’ NONEUB (59-ACT

CCT ACG GGA GGC AGC-39), which has the complementary

sequence to EUB338, used to determine non-specific binding of

EUB338. The three eubacterial probes were used in an equimolar

mix (EUBMIX) and the NONEUB probe was used singly. DAPI

staining followed the protocol by [11], whereby each section was

stained with 100 ml of 4% PBS buffered paraformaldehyde

solution containing 496-diamidino-2-phenylindole (final concen-

tration 5 mg ml21) for 10 minutes, rinsed with filtered 16 PBS

pH 7.4. All sections were viewed under epiflourescence microsco-

py with an FITC-specific filter block (Nikon UK Ltd, Surrey, UK)

and images recorded using an integrating camera (Model JVC

KY-SSSB: Foster Findlay and Associates, Newcastle upon Tyne,

UK). Samples of pure cultured E.coli were run alongside each

section and for each staining protocol as a positive stain.

Further histological samples were stained with the melanin

specific stain, Fontana-Mason, melanin granules reduce silver

nitrate to metallic silver, which results in a histochemical reaction

that participates black material wherever melanin is located [15].

Samples for Scanning Electron Microscopy (SEM) were

dehydrated using EtOH and PBS; 25% EtOH, 50% EtOH,

75% EtOH (30 mins each), then a further (261 hr) in 100%

EtOH, with final dehydration using carbon dioxide in a Baltec

Critical Point Dryer. Specimens were then mounted on an

aluminium stub with Achesons Silver Dag (dried overnight) and

coated with gold (standard 15 nm) using a Polaron SEM Coating

Unit. Specimens were examined using a Stereoscan 240 Scanning

Electron Microscope, and digital images collected by Orion6.60.6

software.

Samples for Transmission Electron Microscopy (TEM) were

dehydrated using 25% acetone, 50% acetone, 75% acetone,

(30 min each) and 100% acetone (261 h). Then impregnated with

25% LR White resin in acetone, 50% resin/acetone, 75% resin/

acetone (1 h each), then 100% resin for minimum of 3 changes

over 24 h, with final embedding in 100% resin at 60uC for 24 hrs.

Survey sections of 1 m were cut and stained with 1% Toluidine

Blue in 1% Borax. Ultrathin sections (80 nm approx) were then

cut using a diamond knife on a RMC MT-XL ultramicrotome.

These were then stretched with chloroform to eliminate compres-

sion and mounted on Pioloform filmed copper grids. Staining was

with 2% aqueous Uranyl Acetate and Lead Citrate (Leica). The

grids were then examined using a Philips CM 100 Compustage

(FEI) Transmission Electron Microscope and digital images were

collected using an AMT CCD camera (Deben) at the Electron

Microscopy Research Services Laboratory, Newcastle University.

Results and Discussion

Approximately 15% of samples from a population of Plectropomus

leopardus line caught at two locations in the southern Great Barrier

Reef Marine Park - Heron Island and One Tree Island - showed

evidence of a dark growth lesion (Fig. 1a,b), similar in appearance

to those reported from laboratory induced melanomas seen in the

fish Xiphophorus [16]. Prevalence of skin lesions was not significantly

different (Chi Square = 0.063, df = 1, p = 0.803) between reef

platforms with 14.1% of individuals at Heron Island and 15.7% of

individuals at One Tree Island affected. In this study, the fish

displaying these skin lesions struck fishing hooks as strongly as

healthy individuals, appeared to have good muscle tone and were

assessed by external examination as healthy aside from the skin

discolouration. Coverage of the lesion on individual fish varied

from ,10% of body surface (Fig. 1a) to almost complete coverage

(Fig. 1b). Although the size range of individuals sampled was

limited (344–639 mm fork length), there was no relationship

between percent cover and fish size (r2 = 0.02). Small individuals

(468 mm) could show up to 98% lesion cover and larger

individuals (639 mm) showed as little as 30% cover, indicating

that prevalence can occur at varying sizes and ages. Lesions

affected the surface of the fish caught, with a change from the

characteristic blue-spotted patterning (Fig. 1c) in healthy individ-

uals to raised lesions which were darker black/brown in coloration

(Fig. 1d). Location of the lesions on the body varied between

individuals.

Associated microbial (rRNA gene) communities
Analysis of microbial communities associated with healthy (non-

diseased) and diseased fish, which would highlight potential

pathogenic agents (those present in lesions and absent in healthy

samples [17,18]), was conducted using culture-independent (rRNA

gene) molecular screening techniques. Swabs of the mucus and

tissue samples from healthy fish, apparently healthy tissues on

affected fish, and the lesion itself were sampled. Microbial (rRNA

gene) diversity assessed using bacterial-, fungal- and ciliate-specific

PCR primers showed no significant difference (p.0.45) between

the sample types. No known microbial pathogen sequences were

found in lesion samples that were absent or in lower numbers

within healthy and/or apparently healthy samples (Fig. 2a). The

technique utilised in this study has routinely been used successfully

in other studies to highlight potential microbial pathogens

[19,20,21]. Furthermore, no significant differences (p = 0.12) was

found between tissue sections and non-invasive surface mucus

swabs, suggesting that the microbial communities detected were

mainly present on the surface of the fish and not in the dermis or

muscle tissues, where the lesion recorded. Histological sections

visualised with either Fluorescence In Situ Hybridisation (FISH)

using eubacterial probes [14] or the general nucleic acid stain

DAPI (Fig. 2b,c), showed no microbial populations within the

dermis, which supports the conclusion that the microbes detected

using culture-independent screening were associated with the

surface mucus layer of the fish. No evidence of these or other

microbes such as virus like particles (VLPs) were detected using

either Scanning Electron Microscopy (SEM) for surface microbes

(Fig. 3a,b), or Transmission Electron Microscopy (TEM) (Fig. 4e,

f, g, h) for those within the tissues. Processing for SEM and TEM

would have removed the surface mucus layer; again supporting the

conclusion that few, if any, microbes were present within the

dermis at the sites of pathogenesis.

Histopathological analyses
Melanin-containing cells (melanosomes) were found to be in

higher density, more widespread and with a deeper distribution

within the lesions than compared to healthy tissue sections (Fig. 1c,

d and Fig. 3c, d). In normal fish skin these cells are restricted to the

immediate subepithelial dermis and are responsible for the

pigment patterns in the integument [22]. Melanosomes are

normally found to be well organised and clustered in tight groups

throughout the dermis beneath the epidermal basement mem-
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brane (Fig. 4a, c, e, g). Sections from apparently healthy areas of

skin from affected fish showed this normal pattern, whilst samples

from lesional plaques, which often occurred in areas that are not

normally pigmented, showed a tumourous appearance of disor-

ganised pleomorphic cells containing melanosomes (Fig. 4b, d, f,

h). Melanosomes in the lesions contained more pigment and were

thought to be mature, older cells [5]. The number of melano-

somes, and hence pigmentation, in the cells varied from

completely absent (Cell B) to cells with plentiful melanosomes

(Cell A). Melanin-specific Masson-Fontana-stained sections

(Fig. 4c, d) were used to visualise these melanin-producing

pigmented cells. A thickening of the integument (Fig. 4a,b double

headed arrows) and extensive melanosis (development of mela-

notic overgrowths, which in turn is a consequence of extreme

pigment cell proliferation), can clearly be seen in the cases of all

lesion samples in this study and are characteristic of laboratory

induced-melanomas in the Xiphophorus model [16]. Usually there is

little distinction between premalignant melanosis and melanomas,

whereby in the former the number of pigmented cells (melano-

phores) is increased but restricted to the dermis (as was the case for

most of the lesions in this study), and in the latter the

melanophores invade the underlying tissues. However, 5 promi-

nent types of melanomas have previously been distinguished [16],

one of which Melanophorous-Macromelanophorous Polymorphic

Melanoma (MMPM) is known to be heterogeneous, with heavily

and lightly pigmented areas, as observed here. Lesions contained

different cell types, including melanocytes, epitheliod-like cells,

melanophores and macromelanophore cells (Fig. 4f,h and Fig. 5b),

consistent with MMPM. Interestingly, the majority of P. leopardus

examined, exhibited lower density and coverage of skin lesions

(Fig. 1a). However, this may be due to the sampling regime utilised

in this paper. This was further reflective histopathologically, with

stage I or stage II melanomas as described by [23], where the

macromelanophores were restricted to the dermis, the meninges,

the peritoneum, and the perivascular connective tissue of the

blood vessels (Fig. 5b). No fish analysed in this study showed a

more advanced stage of melanoma development, stage III, IV and

V, where the macromelanophores penetrate the stratum compactum

of the dermis and invade the underlying muscles. Fishes exhibiting

this more advanced stage may show behavioural differences in the

wild and may therefore have not been caught using the techniques

utilised in this study. Further work to follow disease progression on

captive held individuals would highlight the spread of the lesion,

show the different stages of cancer, and show whether this type of

melanoma is benign or malignant.

Given the strong histopathological similarities between the

lesions described here in P. leopardus and the UV radiation-induced

melanomas in the laboratory model Xiphophorus [5,22], along with

a lack of any evidence for a pathogenic cause, we conclude that

this represents the first case of melanoma in a wild fish population.

As the sampled fish were collected offshore in a marine protected

area with no reports of pollution, the likelihood of potential

carcinogenic pollutants being the causal factor is low, at least in

this reported case. UV radiation, in comparison, is known to be a

causal factor in skin damage in many animals and therefore is a

likely driving factor of prevalence of melanoma in P. leopardus.

There is a significant correlation between average solar radiation

(i.e. latitude) and melanoma mortality in humans [5,24]. UV-B

(l= 280–320 nm) appears to be the most damaging radiation [25]

and has previously been shown to increase in intensity as

stratospheric ozone levels have decreased [26]. UV radiation in

aquatic systems has previously been reported to have detrimental

effects on marine and freshwater organisms, with UV penetrating

as deep as 60 m in the sea [27,28,29]. Therefore P. leopardus

inhabiting the clear waters of the Great Barrier Reef would be

Figure 2. Microbial analysis of Plectropomus leopardus samples;
a) Bacterial 16S rRNA gene fingerprints (represented on
Denaturing Gradient Gel Electrophoresis) of fish mucus
(SWB) and tissue samples (TSU), standardised for gel-to-gel
comparison using BioNumerics; b) resin embed histological
section of a healthy fish, stained with the general DNA stain
496-diamidino-2-phenylindole (DAPI); c) histological section of
the lesion on a diseased fish stained with DAPI, both showing
no bacteria within the dermis suggesting the bacteria present
in (a) are localised within the mucus layer not within the
tissues. Scale bars = 10 mm.
doi:10.1371/journal.pone.0041989.g002

Figure 3. Microscopic images of Plectropomus leopardus tissues;
a) Scanning Electron Micrograph (SEM) of the healthy tissue; b)
SEM of the lesion. MGC = mucus goblet cells, M = mucus. c) Light
microscope image of a healthy scale and d) light microscope image of a
diseased scale, showing disorganisation of natural melanin patterns
seen in (c). Scales bars = 10 mm.
doi:10.1371/journal.pone.0041989.g003
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exposed to UV radiation over a wide depth range. Individuals in

this study were all captured in less than 20 m depth, well within

the UV-B exposure range of 30 m [27]. Interestingly, juvenile

hammerhead sharks have been shown to have the ability to ‘sun

tan’ [30], whereby integumental pigments such as melanin

increased in direct response to increases in solar radiation. The

juvenile shark’s skin responded similarly to that observed in

humans and other vertebrates in response to direct sunlight,

turning from brown to black. Although a similar melanin response

was seen in this study (i.e. increased melanin concentration), the

sharks in this previous study showed no visible lesions or growths

and were therefore not shown to contract melanomas or dermal

carcinomas.

With regard to the Xiphophorus induced melanoma model, it had

long been assumed that only hybrid crosses of Xiphophorus (those

bred in captivity), could be induced to contract melanomas or

experience extensive melanosis. The wild (parental) types of these

species in comparison, were non-susceptible to neoplasia, even

after exposure to high doses of physical and chemical carcinogens

[4,31]. However, in addition to this study illustrating melanosis/

melanoma induction in wild type Plectropomus, one further study on

Xiphophorus also showed non-hybrid melanoma formation in a wild

caught fish, however this was accredited to a build up of androgen

metabolites within the holding tank [22]. Hybrid strains of

Xiphophorus have been noted to have differing susceptibility to

carcinogens suggesting a genetic basis for susceptibility to

melanoma formation [32]. Furthermore, it has been shown that

melanoma in Xiphophorus is caused by a mutated EGFR gene,

Xmrk, with constitutive expression of growth factors. When Xmrk, is

transplanted into another fish Oryzias latipes, they subsequently

contract melanomas themselves [33,34]. Therefore, this suggests

an underlying genetic predisposition to the disease that is

expressed with the loss of tumour suppressor genes caused by

the onset of hybridisation. The occurrence of melanoma in a wild

population, particularly, at the levels observed in this study is

unusual. The relatively high (15%) prevalence of this syndrome

within the sampled P. leopardus population may be indicative of a

similar genetic defect as that experienced during hybridisation in

the laboratory, or alternatively it may be due to potential

inbreeding in this portion of the P. leopardus population resulting

in recessive susceptibility genes becoming homozygous. In the

latter instance, inbreeding may be potentially proliferated in the

local area due to recruitment of genetically related individuals to

the same reef system [35]. However, hybridisation has frequently

been shown to occur in wild populations of many fish species

[36,37], including populations of P. leopardus which have been

shown to hybridise with other Plectropomus species, such as the Bar-

cheeked coral trout, P. maculatus [38]. Frisch and van Herwerden

(2006) concluded that despite behavioural barriers to reproduction

(such as assortative mating), there was considerable opportunity

for hybridisation between different species of coral trout. Indeed,

the same macroscopic signs of this disease have been noticed on P.

maculates and one further species, the blue spotted coral trout, P.

laevis, suggesting hybridisation between these species may be the

most likely cause of predisposition of Plectropomus to melanomas.

Current information suggests this syndrome is present throughout

the Great Barrier Reef (MRH unpublished data), but prevalence

appears to be highest in the southern Great Barrier Reef. This

high prevalence recorded in this study further supports the

presence of a genetic component to this syndrome, yet detailed,

broader sampling is required to confirm the extent of prevalence in

other Great Barrier Reef regions.

Coral trout, P. leopardus, is an iconic and highly valued species

and the Great Barrier Reef is one of the world’s most pristine and

carefully managed reef habitats. Successful management of these

resources is a crucial and challenging task [39]. The implications

of extensive melanosis/melanoma in wild coral trout will depend

on the prevalence of the syndrome outside the study region, the

causal factors and the proportion which develop into fatal

melanomas. However, this syndrome will no doubt have

implications for the management of fish populations and the

GBR marine park. Beyond health implications for individual fish,

this syndrome may have implications for the population as a whole

and the commercial and recreational fisheries that exploit this

species. In Xiphophorus, fish with tumours usually survive around 6

months, compared to an average of 4 years in healthy fish, but any

change in their environment, such as a drop in temperature can

rapidly lead to death [5]. It is unclear whether future changes in

the ocean environment or climate will similarly exacerbate the

Figure 4. Histological section of LR white resin embedded
samples of healthy and diseased Plectropomus leopardus; a)
Healthy section stained with toluidine blue; b) lesion stained
with toluidine blue; c) healthy section stained with melanin
specific stain Masson-Fontana; d) lesion stained with Masson-
Fontana; e) Transmission Electron Micorgraph (TEM) of healthy
section; f) TEM of lesion; g) higher magnification of TEM in (e);
h) higher magnification of TEM in (f). Scale bars for (a–f) = 10 mm;
scale bars for (g) and (h) = 2 mm. D = dermis (cologne of stroma),
E = epithelium, M = melanosome, N = cell nucleus, CBM = caliginous
basal membrane. Double headed arrows shows thickening of the
integument, characteristic of laboratory induced-melanomas in the
Xiphophorus model.
doi:10.1371/journal.pone.0041989.g004
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effect of melanomas in wild P. leopardus populations, but clearly

further research is urgently needed to understand the distribution,

prevalence, ecological and fisheries significance of this syndrome.

In particular, further studies should focus on UV exposure as a risk

factor and confirm whether there is a genetic effect to susceptibility

of the syndrome. Utilising molecular markers used to study

melanomas in humans and laboratory fish models e.g. those that

target the B-Raf protein [40], the EGFR gene, Xmrk, or other

mitochondrial DNA status markers [41] would highlight this

genetic aspect.
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