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Cryptococcal meningitis (CM) is the leading cause of central nervous system (CNS) fungal
infections in humans, with the majority of cases reported from the African continent. This is
partly due to the high burden of HIV infection in the region and reduced access to
standard-of-care including optimal sterilising antifungal drug treatments. As such, CM is
responsible for 10-15% of all HIV-related mortality, with a large proportion being
preventable. Immunity to the causative agent of CM, Cryptococcus neoformans, is only
partially understood. IFNg producing CD4+ T-cells are required for the activation of
myeloid cells, especially macrophages, to enable fungal killing and clearance. However,
macrophages may also act as a reservoir of the fungal yeast cells, shielding them from
host immune detection thus promoting latent infection or persistent chronic inflammation.
In this chapter, we review the epidemiology and pathogenesis of CNS fungal infections in
Africa, with a major focus on CM, and the antifungal immune pathways operating to
protect against C. neoformans infection. We also highlight the areas of research and policy
that require prioritisation to help reduce the burden of CNS fungal diseases in Africa.
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INTRODUCTION

Cryptococcal meningitis (CM) is the leading cause of fungal meningitis in humans worldwide, with
the largest disease burden reported in Africa (1). The majority of CM cases are caused by members
of the Cryptococcus neoformans and C. gattii species complex (2), encapsulated basidiomycetous
yeasts that are prevalent in the environment, growing in soil, some plants (e.g. eucalyptus trees) and
pigeon guano (3–5). CM is an AIDS defining illness, responsible for 10-15% of all HIV-related
mortality globally, resulting in ~80,000 deaths annually of which nearly three-quarters (73%) occur
in Africa, particularly sub-Saharan Africa where up to 60% of people with HIV reside (1).
C. neoformans produces airborne spores that are acquired by inhalation. In healthy people, host
defence mechanisms clear these spores from the alveoli in the lungs preventing symptomatic
infection (6), although there is evidence to suggest that these spores may instead become dormant
and reactivate during periods of immunosuppression (7). In immunocompromised hosts, these
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mechanisms fail allowing proliferation of C. neoformans in the
lungs and subsequent dissemination to the CNS, causing
meningitis/meningoencephalitis (6, 8). In particular, defects in
T-cell immunity are highly associated with the development of
CNS infection, demonstrating the important role of T-cell-
mediated immunity against C. neoformans.

Fungal CNS infections, including CM, disproportionally
affect patients in low-middle income countries, although their
precise prevalence throughout the world is not well established.
Global Action Fund for Fungal Infections (GAFFI) has estimated
47 million Africans suffer from fungal diseases each year (9).
Across the continent, there is reduced access to gold-standard
diagnostic tools and antifungal drugs for the treatment of CM
(9). Moreover, it is clear that we currently have limited effective
treatments for CM, since approximately one third of HIV-
infected patients given antifungal prophylaxis will still go on to
develop serious CNS infection (10). These worrying statistics
have led to the development of a global initiative to end deaths
from CM by 2030 (11), by implementing improved screening
and education programs, tackling HIV management and further
research into the pathogenesis of CM.

In this chapter, we discuss the epidemiology, clinical features
and immunology of fungal CNS infections in Africa (focusing
predominantly on CM), highlighting the areas of research that
require prioritisation to help reduce the burden of these life-
threatening fungal infections in Africa.
EPIDEMIOLOGY OF CNS FUNGAL
INFECTIONS IN AFRICA

Human fungal infections of the CNS are an underrepresented
group of invasive infections within the African population,
occurring as opportunistic infections particularly in individuals
living with HIV. The most common CNS infections reported in
Africa are CM and histoplasmosis (12, 13). It was estimated in
2017 that ~160,000 people were diagnosed with CM in Africa,
with 98% of these cases localised to the sub-Saharan region (1).
In particular, most CM cases were reported from South Africa,
Nigeria and Mozambique, which averaged 20,000 cases/year/
country while North Africa accounted for the least number of
CM cases within the continent (1). Although recent years have
seen a decrease in the yearly incidence of CM (due to improved
access to antifungal and antiretroviral therapy), the mortality
rates in Africa still remain high reaching 44% in short-term
outcomes in routine care (14, 15) and 73% in long-term follow
up studies (16–18). CM cases have been reported infrequently in
children (<2% cases) with most cases found in adults living with
HIV (19–22). The molecular epidemiology of Cryptococcus
species causing CM in Africa is still not well understood,
despite recent advances in technologies. C. neoformans (VNI/
AFLP1) has been the major genotype causing CM in Africa,
identified in >80% of isolates collected (23–30). Other C.
neoformans genotypes including AFLP1B/VNII and AFLP1A/
VNB have also been isolated from clinical samples and found to
cause 5-10% of total CM infections (3, 25, 31–33). Increasing
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cases of CM as a result of C. gattii species complex such as C.
gattii (VGI/AFLP4), C. tetragattii (VGIV/AFLP7) and C.
deuterogattii (VGII/AFLP6) have been isolated in countries
such as Botswana, Ivory Coast, Kenya and Zimbabwe over the
past few years (25, 27, 29, 31, 33). Of note, C. neoformans
(AFLP1A/VNB) and C. tetragattii (VGIV/AFLP7) are more
common in Southern Africa (3, 31, 34, 35), whilst C.
deuterogattii (VGII/AFLP6) has so far been only isolated in
Ivory Coast (24, 29, 33).

Besides Cryptococcus, other human fungal pathogens are
capable of invading the brain and causing CNS disease in the
setting of immunodeficiency and/or traumatic or inadvertent
iatrogenic inoculation into the CNS during neurosurgical
procedures. The susceptibility of patients to fungal CNS
infection with species other than C. neoformans is heavily
dependent on specific risk factors, geographic location and
environmental exposure. For example, CNS infection with
Candida species is associated with CARD9 deficiency, a
primary immunodeficiency caused by inherited deleterious
mutations in CARD9. Neutrophil influx into the Candida-
infected CNS is protective and requires CARD9 expressed by
microglia (discussed below) (36, 37). CARD9 deficiency is rare,
although several cases have now been reported from Africa,
predominantly in Algeria (38). Interestingly, the majority of
these CARD9-deficient patients shared the same mutation
whereas there was greater diversity in the type of CARD9
mutations in Asian patients (38), but whether genetic variation
at the population level contributes towards the geographical
distribution of invasive CNS fungal infections is unknown.

Another fungal CNS infection that has been emerging in
Africa is histoplasmosis, caused by the dimorphic fungus
Histoplasma capsulatum with the var. duboisii being
characteristically prevalent in Africa (39, 40). This fungus is
the most common pathogenic dimorphic fungus causing
endemic infections in Central and West Africa and in the
island of Madagascar (41). Indeed, the World Health
Organisation (WHO) recently recognised histoplasmosis as a
neglected tropical disease requiring further attention (9).
Common risk factors for histoplasmosis include advanced HIV
infection and iatrogenic immune suppression (41). CNS
involvement occurs in 5-20% of patients, usually in patients
with advanced infection and poor response to therapy (41, 42).
Like CM, diagnosis and treatment of histoplasmosis in the
African continent in hampered by availability to gold-standard
diagnostic testing and antifungal drugs. Therefore, a global effort
to reduce drug costs and improve accessibility will not only
improve clinical outcomes in CM, but also for other life-
threatening invasive fungal infections such as histoplasmosis.
CRYPTOCOCCAL MENINGITIS:
DIAGNOSIS, CLINICAL FEATURES
AND TREATMENT

CM can be diagnosed by the identification of encapsulated yeast
cells in the cerebrospinal fluid (CSF) using India Ink staining (43).
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However, this method can often return false negative results and is
generally insensitive. Newer tests based on the detection of
Cryptococcal antigen (CrAg) are much more sensitive and can
allow for a rapid and low cost diagnosis (44), which is critical since
many cases of CM are localised to countries with limited resources.
The CrAg test works by detecting the Cryptococcus polysaccharide
capsule antigen in the CSF; the latest versions of which are based
on a lateral flow assay using an immunochromatographic dipstick.
This technique is much faster and simpler than culture and/or
microscopy based diagnostic assays, and can be performed at the
patients’ bedside (45), and is also superior to other CrAg-based
detection assays (e.g. latex agglutination assay) that require
specialised laboratory equipment and skilled personnel (46). The
World Health Organisation (WHO) recommends CrAg screening
is performed in HIV-infected patients with a CD4 count of less
than 100-200 cells/mL. A study on the effectiveness of CrAg
screening in sub-Saharan Africa showed that mortality was
significantly decreased when a CrAg screening program was
introduced (47). Moreover, plasma CrAg titters are correlated
with mortality and can lead to early identification of patients at
risk of developing severe CM and death, even when symptoms are
absent (10). However, several countries in Africa have limited
access to the CrAg test meaning that these effective screening
programs are not fully implemented in areas where they would
have the greatest benefit. Therefore, improving access to these
diagnostic tests is a critical step to help introduce prophylactic
antifungal therapy and reduce mortality.

CM can present in the CNS as meningitis, encephalitis, or
meningoencephalitis and can also result in cerebral mass lesions
called “cryptococcomas” which are typically found along the
perivascular spaces. CM is hard to distinguish from other types
of meningitis, as there is a lack of specific clinical symptoms. In
general, patients present with headache, fever, confusion and/or
neck stiffness (13). Several areas of the brain can be affected by
CM, including the basal ganglia, the white matter of the cerebral
hemispheres, and the cerebellum (48). Computed tomography
scans of CM patients usually reveal non-specific features, with
~40% of patients returning normal scans. In contrast, MRI
imaging seems to perform better at assessing dilated
perivascular spaces and leptomeningeal enhancement,
particularly in immunocompromised patients (48), which are
among the most common imaging features observed in CM
patients (49).

Treatment of CM remains challenging due to the limited
selection of antifungal drugs available. Even with treatment, over
70% of patients surviving CM suffer from neurological and
sensory impairment, leading to disability and reduced quality
of life (50). The gold standard drug for CM treatment is the
combination of Amphotericin B (AMB) with flucytosine (5-FC),
however a typical course of AMB and 5-FC treatment costs
approximately (US)$800 per patient (50), and is usually only
available in countries with well-funded healthcare systems. In
Africa, only a small number of countries are registered to provide
5-FC, and even when registered there is little evidence it has been
prescribed to patients in some areas. Therefore, improving the
affordability of 5-FC and enhancing awareness of the drug’s
Frontiers in Immunology | www.frontiersin.org 3
effectiveness is a crucial step towards ending CM deaths (51). In
addition, the use of liposomal formulations of AMB is hindered
by cost. Thus, because the use of AMB-deoxycholate (AMB-d)
requires prolonged hospitalization for parenteral administration
and is associated with renal and metabolic adverse effects, many
resource-limited settings in Africa do not use AMB for the
treatment of CM. Currently, the most commonly prescribed
antifungal drug for CM in Africa is fluconazole, which has been
shown to be inferior to AMB (52–55). There are now several
reports of fluconazole resistance developing in C. neoformans,
associated with chromosomal changes in the fungus (56),
making management of CM especially difficult in settings
where alternative options are not available. Thus, novel
therapeutic approaches are needed. Adjunctive immune-based
therapy with interferon gamma (IFNg) has showed promising
results in recent clinical trials (57, 58). Treatment with
recombinant IFNg combined with antifungal drugs showed
that the addition of recombinant IFNg resulted in improved
clearance of fungi from the CSF compared to patients treated
with antifungal drugs alone, although these studies were not
large enough to determine if this correlated with improved
survival (57, 59). Another experimental treatment that has
been suggested is the use of corticosteroids to reduce
immunopathology-associated neuroinflammation (see next
section), such as dexamethasone, which has been shown to
reduce mortality in patients with bacterial meningitis (60).
However, dexamethasone treatment for CM in HIV-infected
patients actually resulted in a higher mortality rate and disability
than in the placebo group, and thus these trials were suspended
for safety reasons (61). We therefore still require better
antifungal treatments to improve clinical outcomes in patients
with CM, which will depend on a better understanding of the
immunology of CM (discussed below).
CRYPTOCOCCAL MENINGITIS-
ASSOCIATED IMMUNE RECONSTITUTION
INFLAMMATORY RESPONSE SYNDROME

HIV-associated CM management is often complicated by
immune reconstitution inflammatory syndrome (IRIS) (62). In
sub-Saharan Africa, where most CM infections and deaths occur,
most individuals with CM have HIV infection with a profound
decline in their CD4+ T cell counts. When antiretroviral therapy
is initiated in individuals with this kind of severe
immunosuppression, they undergo immune restoration albeit
at varying rates (63, 64). This immune restoration occurring
prior to pathogen clearance rescues pathogen specific immunity
(65). These individuals then mount a pro-inflammatory
response, a phenomenon termed IRIS. A similar pro-
inflammatory response termed post infectious inflammatory
response syndrome (PIIRS) occurs in non-HIV-associated
cryptococcal meningitis (66, 67).

There are two kinds of HIV-associated CM-IRIS. First,
unmasking CM-IRIS, which occurs following initiation of
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highly active antiretroviral therapy (HAART) in persons without
any prior signs and symptoms of CM. Increased availability of
HAART has not been matched by expanded CrAg screening for
all individuals with advanced HIV disease, which has meant that
unmasking CM-IRIS is on the increase (68). Second, paradoxical
CM-IRIS, which occurs following initiation of HAART in
persons previously treated for CM with documented
microbiological recovery, and clinical resolution continues to
decline from 20% - 30% to 3% - 6% as antifungal treatment
regimens become more efficacious (69, 70). The median duration
from HAART initiation to paradoxical IRIS diagnosis is 110 days
(IQR, 73-227 days) (71). The main risk factors for paradoxical
CM-IRIS is a high baseline CSF fungal load and a delay in CSF
fungal clearance with poorly fungicidal drugs, low CD4 count, a
rapid decline in HIV viral load following HAART, and early
initiation of antiretroviral therapy following CM diagnosis (54,
62–69, 72, 73).

Diagnosis of CM-IRIS depends on demonstration of a rise in
CSF white cell counts and protein levels, as well as evidence of
inflammation on brain imaging in the setting of negative CSF
fungal cultures. There is currently no definitive treatment for
CM-IRIS. The recent IDSA guidelines recommend no specific
treatment for minor IRIS presentation. However, for major IRIS
complications manifesting with profound CSF pleocytosis and
raised intracranial pressure, IDSA guidelines recommend 0.5–1.0
mg/kg per day of prednisone equivalent or higher doses of
dexamethasone for severe manifestations tapered over 2 to 6
weeks (74). Although steroids have no role in treatment of active
(culture positive) CM infection (see above), their use in HIV-
associated IRIS is associated with improved outcomes (61, 75).
Frontiers in Immunology | www.frontiersin.org 4
The immunopathogenesis of paradoxical CM-IRIS is better
understood than unmasking CM-IRIS as summarized here.
Type 1 immune responses are driven by Th1 CD4+ T cells
secreting IFNg, which polarizes macrophages to an M1
phenotype associated with production of pro-inflammatory
cytokines (TNFa, IL-1b, IL-12, IL-6) and enhanced synthesis of
nitric oxide (Figure 1). As a result, M1 macrophages are highly
fungicidal to phagocytosed Cryptococcus. In contrast, type 2
responses are driven by IL-4/13-secreting Th2 CD4+ T cells
which polarize macrophages to an M2 phenotype, characterized
by secretion of anti-inflammatory cytokines (IL-10 and TGFb)
and arginase expression, which counters nitric oxide synthesis
and thus impairs clearance of Cryptococcus (76). The protective
and non-protective roles for Th1 and Th2, respectively, may be
organ-specific however, since enhanced expression of Th1 and
Th2-associated cytokines are both correlated with better survival
in the CSF of patients with cryptococcal meningitis (72),
indicating that while Th2 is strongly associated with promoting
fungal infection in the lung (72), this may not be true for the CNS.

Much as the Th1 response is appropriate for enhanced fungal
clearance in both humans and murine models (see next section)
(72, 77), the timing of this response and the balance with type 2
immunity is critical since dysregulated type 1 immune responses
are thought to underlie the pathogenesis of IRIS (78). Current
evidence shows that at paradoxical CM-IRIS diagnosis, there is a
marked change in the number and phenotype of immune cells in
CSF compared to when CM was diagnosed (71). For example,
there is a significant increase in the number of T-cells within the
CSF at the time of IRIS diagnosis, which exhibit a pro-
inflammatory phenotype. Suppressive HAART rescues adaptive
FIGURE 1 | Pathogenesis of cryptococcal meningitis immune reconstitution inflammatory response syndrome (CM-IRIS). Th1 immune responses are required for
better clearance of Cryptococcus. This reduces the risk of CM-IRIS and results in improved survival. However, there is an imbalance as the far as the Th1-Th2
paradigm is concerned with extreme HIV-associated CD4 depletion. A predominantly Th2 response is associated with M2 macrophages and poor pathogen
clearance. Initiation of HAART restores CD4+ T cell counts. In a setting of poor pathogen clearance, the residual cryptococcal antigen induces an expansion of
predominantly Th1 CD4+ T cells with secretion of IFNg. This polarizes macrophages to an M1 phenotype which secretes pro-inflammatory cytokines and chemokines
that recruit more innate immune cells. This predominantly Th1 immune response generates a dysregulated and exaggerated CNS inflammation that presents as
paradoxical CM-IRIS. CNS, central nervous system; CM-IRIS, Cryptococcal meningitis immune reconstitution inflammatory response syndrome; HAART, highly active
antiretroviral therapy.
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immune responses from the destructive effects of uncontrolled
HIV replication, which had led to a decline in helper T cells. It is
therefore conceivable that during paradoxical CM-IRIS, there is
an increase in cryptococcal-specific peripheral blood and CSF
activated (HLA-DR+) CD4+ and CD8+ T cells compared to when
the initial CM diagnosis was made. Moreover, there is enhanced
CXCR3/CXCL10 mediated signaling and trafficking of activated
T cells into the CNS (79). Once within the CNS, recruited
activated T cells secrete cytokines/chemokines (CCL2/MCP-1,
MIP-1a/CCL3, GM-CSF) that enhance monocyte trafficking into
the CNS and differentiation into inflammatory macrophages (80,
81). The recruited monocyte/macrophages are activated by
Cryptococcus-specific Th1 cells (82). Indeed, the phenotype of
CSF monocytes at the time of IRIS diagnosis has been found to
have changed from a highly phagocytic classic (CD14++ CD16-)
phenotype (observed at the time CM diagnosis), to more pro-
inflammatory predominantly intermediate (CD14++ CD16+) and
non-classical (CD14+ CD16++) phenotypes (71, 82). This shift is
accompanied by an aberrant pro-inflammatory state
characterized by enhanced production of TNFa, IL-1b, IL-6,
and IFNg (Figure 1). This exaggerated pro-inflammatory
response results in damage to neurons with a rise in CSF
neurofilament light chains during IRIS (83). A murine model
for CM-IRIS shows that enhanced Th1 T cell infiltration in the
CNS results in upregulation of astrocyte Aqp4 mRNA, which
upregulates aquaporin-4 postulated to enhance brain edema and
thus neuronal injury (84).

In the context of ‘Test and Treat’, where HAART is initiated as
soon as individuals have a new HIV diagnosis and in the absence
of CrAg screening for those with advanced HIV disease, one area
that requires more data is whether persons recently initiated on
HAART (<14 days) who present with unmasking cryptococcal
IRIS have a higher risk of mortality compared with persons who
develop CM after more than six months of HAART (85).
Understanding the mechanisms for the immunopathogenesis of
unmasking IRIS should be prioritized as well as determining
whether interrupting HAART in persons who develop unmasking
cryptococcal IRIS could have a survival benefit.
CRYPTOCOCCAL MENINGITIS:
NEUROIMMUNOLOGY

Like most invasive fungal infections, CM is largely a disease of
immune-compromised patients. By studying the immune defects
that promote susceptibility to CM, we are better able to understand
how the mammalian immune system fights these fungal infections.
This information is critical for understanding patient responses to
adjunctive immune-based therapy and developing criteria to assess
patient prognosis and clinical outcomes. The predominant risk
factor for CM is loss of CD4 T-cells from advanced HIV infection
(majority of CM cases) however there are increasing numbers of
non-HIV CM being reported (66, 86). Several of these also associate
with T cell dysfunction caused by various factors including
lymphoma, autoimmune diseases (e.g. lupus, psoriasis,
sarcoidosis), immunosuppressive therapy and idiopathic CD4+
Frontiers in Immunology | www.frontiersin.org 5
lymphocytopenia (66, 87). As introduced above, T cells are
essential for the activation of macrophages to kill C. neoformans
and thus promote fungal clearance. In this section, we outline the
mechanisms of fungal entry into the CNS, followed by the
immunology of CM focusing on CNS-resident macrophages,
astrocytes and brain-infiltrating lymphocytes, and how these
different cell types contribute to protection and pathogenesis
specifically within the Cryptococcus-infected CNS.
C. NEOFORMANS ENTRY TO THE CNS

The mechanisms governing C. neoformans entry into the CNS
are thought to be largely mediated by two main pathways, the
Trojan Horse method and transcellular migration. In this
section, we will outline the evidence for each of these invasion
mechanisms, although it should be noted that the relative
dependence on each in vivo for different pathologic conditions
(e.g. host immunosuppression, C. neoformans vs C. gattii), is not
well understood.

The Trojan horse approach involves Cryptococcus yeast
getting access to the CNS by transporting inside phagocytic
cells, such as macrophages, monocytes, and neutrophils. In
support of this hypothesis, a few research studies have shown
that depletion of alveolar macrophages in mice decreased the
dissemination of C. neoformans to CNS (88, 89). Another study
compared dissemination to the CNS when mice were infected
with bone marrow-derived monocytes previously infected with
C. neoformans in vitro, or with free yeast. They found that the
fungal burden was higher in the brain with infected bone
marrow-derived monocytes compared to free yeast cells,
suggesting that infected monocytes were more efficient at
disseminating infection to the CNS than free yeast (90).
Indeed, depleting circulating monocytes at a later stage of
infection in mice reduced infection severity and reduced fungal
burden by 40% in spleen, lungs, and brain (90), thus supporting
the role of phagocytes in neuroinvasion. Moreover, depleting
99% of circulating monocytes in mice before infection abolished
the development of CM and cerebral cryptococcomas and
reduced fungal burden in the brain by ~90% (91). Neutrophils
have also been shown to potentially promote transmission to the
during Cryptococcus infection (92). Using intravital imaging, it
was shown that neutrophils can expel C. neoformans within the
brain vasculature, contributing towards brain infection (92), and
depleting circulating neutrophils resulted in a reduced number of
yeast cells in the perivascular space and reduced brain fungal
burden by ~ 64% (91). Finally, the Trojan horse model has been
modeled in vitro, where cultured brain microendothelial cells
were challenged with yeast-containing macrophages. This in
vitro model showed that C. neoformans bound CD44 on brain
endothelium via hyaluronic acid. Mutant strains that were
unable to make hyaluronic acid (cps1D) had a profound defect
in cellular transmigration (discussed below), but could be
transported within macrophages indicating that Trojan Horse
mediated entry can enable transport of yeast that would
otherwise be restricted from the CNS (93).
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Transcellular migration across brain endothelium has also
been observed to promote C. neoformans entry into the CNS
(94–96). Intra-vital microscopy experiments in mice showed that
free yeast cells were able to cross capillary walls, a process that
was dependent on fungal-expressed urease since blocking urease
reduced transmigration into the brain (96), although it should be
noted that urease also promotes intracellular survival within
phagocytes (97) indicating that urease blockade might prevent
fungal CNS entry by Trojan Horse as well. Other C. neoformans
virulence factors that promote CNS entry include the
metalloprotease MPR1, hyaluronic acid synthase CPS1 (as
mentioned above) and transcription factor HOB1. Mutants
deficient in these factors are unable to invade a model blood-
brain-barrier (BBB) in vitro, and are avirulent in mouse infection
models with a reduced capacity to establish brain infection (98)
(99). In order for transcellular migration to occur, C. neoformans
yeast must first be internalised by endothelial cells. Interactions
between CD44 and hyaluronic acid form part of this process, but
it was recently demonstrated that endothelial-expressed EphA2-
tyrosine kinase receptors also play a key role (100). Inhibiting
EphA2 prevented transmigration of C. neoformans (100), and a
similar dependence on EphA2 has been observed for CNS entry
by several other pathogens including Chlamydia trachomatis,
Epstein-Barr virus, and malaria parasites (101–103), indicating
that ephA2may generally be involved with BBB permeability and
pathogen entry (104).
MICROGLIA

The CNS is populated by tissue-resident macrophages that exist
in distinct functional subsets and localise within specific
Frontiers in Immunology | www.frontiersin.org 6
anatomical compartments. The most numerous of these CNS-
resident macrophages are called microglia, which are found
throughout the brain parenchyma and are involved in immune
surveillance and brain development (105). Microglia are equipped
with an immune arsenal to protect against brain-invading
pathogens, including the expression of multiple PRRs such as
the C-type lectin recptors (CLRs) and toll-like recptors (TLRs),
nitric oxide synthesising enzymes and components needed to
process and present antigens to CD4+ T cells (Figure 2). In vitro
studies showed that stimulating microglia using TLR agonists (e.g.
Pam3 CSK4, LPS, and CpG) during C. neoformans infection drove
the production of proinflammatory cytokines such as TNFa, IL-6,
and IL-1b, which resulted in enhanced C. neoformans
phagocytosis and prevented fungal intracellular replication
within microglial phagosomes (106). Immortalised microglia
have been shown to phagocytose C. neoformans leading to
increased iNOS expression which is important for limiting
fungal growth (107, 108). These antifungal actions are regulated
by IFNg, produced by infiltrating Th1-polarized CD4+ T cells.
IFNg has also been shown to induce the expression of MHC Class
II by microglia in vitro, potentially allowing their interaction with
infiltrating CD4+ T cells (Figure 2) (109–111). A study showed
that immunomodulation with CD40 (a T-cell co-stimulatory
molecule) and the cytokine IL-2 in C. neoformans-infected mice
reduced the fungal burden in various organs including the brain,
which correlated with an IFNg-dependent increase of MHCII
expression on microglia (112). Moreover, IFNg knockout mice
showed the critical role of IFNg in activating microglia and
inducing anti-cryptococcal activity (113, 114). Furthermore,
patients with CM who feature neutralising IFNg autoantibodies
tend to have a persistent infection and lower survival rate (115).
Despite these clear protective roles for microglia in controlling
FIGURE 2 | Neuroimmunology of C. neoformans infection. (Left panel) In the brain parenchyma, C. neoformans mostly interacts with brain-resident microglia and
astrocytes, which differentiate into distinct functional states depending on the inflammatory context and infiltrating immune cells (e.g. T-cells). For example, astrocytes
can develop into pro-inflammatory A1 or tissue-healing A2 subsets, but whether this occurs during CM is unknown. (Right panel) In the meninges, C. neoformans
mostly localises to the sub-arachnoid space where it will encounter meningeal macrophages (MMWs) and a variety of resident lymphocytes including B-cells (deriving
from skull bone marrow and connecting channels) and T-cells. Image created with Biorender.com.
April 2022 | Volume 13 | Article 804674

https://Biorender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mohamed et al. Fungal CNS Infections in Africa
C. neoformans infections, some studies have shown that microglia
are prone to latent intracellular infection, where C. neoformans
survives and replicates inside microglial phagosomes (Figure 2)
(116, 117). Indeed, post-mortem examinations of human brain
tissue showed C. neoformans polysaccharide capsule is engulfed
and localised inside microglia (116). Therefore, although
microglia can engulf Cryptococcus yeast cells, the killing of yeast
cells may not always occur in humanmicroglia even when IFNg is
present (118).

Although we can gain insights into anti-cryptococcal immunity
using microglia cell lines and in vitro models, in vivo studies are
needed to analyse the behaviour of microglia in their natural
environment since microglia rapidly lose their tissue-resident
identity when removed from their microenvironment. In vivo
studies analysing antifungal activity of microglia are so far
limited. In a murine model of CM-PIIRIS, full activation of
microglia did not occur until 21 days post-infection, which
coincided with a significant influx of infiltrating inflammatory
myeloid cells and lymphocytes and a decrease in brain fungal
burdens (77). A similar observation was made following acute
infection with C. neoformans in mice, where microglia numbers
expanded >1 week post-infection which coincided with an influx of
monocytes and T-cells (91). Interestingly, these effects do not occur
with C. gattii, which demonstrates a reduced capacity for entry into
the CNS compared with C. neoformans, with C. gattii-infected
animals typically succumbing to significant lung disease (91). In
contrast, recent in vivo studies showed that C. albicans CNS
infection results in a rapid activation of microglia (within 24h),
which quickly initiate protective immunity upon C. albicans
infection. Microglia highly express CARD9 (caspase recruitment
domain-containing protein 9), a signaling adaptor protein
downstream of the CLRs (37). Human CARD9 deficiency results
in a profound susceptibility to CNS candidiasis, aspergillosis and
phaeohyphomycosis but not cryptococcal meningitis (119–121). It
was recently shown that CARD9 expression by microglia is
required to sense the fungal toxin Candidalysin which is secreted
by C. albicans (36). This toxin activated the production of IL-1b
and CXCL1 from microglia, which in turn recruited CXCR2-
expressing neutrophils to the brain to clear the fungus (36).
CARD9 deficiency does not appear to promote susceptibility to
CM in humans, and deficiency in CARD9-coupled CLRs do not
promote susceptibility to CM in experimental mouse models (122,
123). Thus, microglia have an important role in antifungal
immunity that is context-dependent. Future studies should focus
on howmicroglia function during CMusing the latest technologies,
murine models and human samples in a bid to widen our
understanding of immune regulation within the Cryptococcus-
infected CNS and how this promotes fungal clearance, as well as
associated inflammatory syndromes (see IRIS section above).
NON-PARENCHYMAL CNS-RESIDENT
MACROPHAGES

In addition to microglia, there are other CNS-resident
macrophages found in the perivascular spaces (perivascular
Frontiers in Immunology | www.frontiersin.org 7
macrophages, PVMs), within the meninges (meningeal
macrophages) and associated with the choroid plexus (choroid
plexus macrophages) (Figure 2). Each of these populations are
poorly studied in the context of CM, with many insights into the
biology of these populations only gained in recent years with the
advent of new technologies (e.g. single-cell RNA sequencing)
that have allowed us to better define the markers and possible
functions for these cells (124–126).

Analysis of human brain autopsy tissue showed that PVMs
appear to harbour intracellular C. neoformans, indicating that
these cells interact with and phagocytose C. neoformans (109).
Indeed, the location of PVMs would ideally position them next to
the main site of infection in CM (Figure 2). However, an
extensive analysis of cryptococcal brain infection in mice
showed that the main myeloid effector cells in the brain
following C. neoformans infection were monocytes and
neutrophils recruited from the blood, and that infection and
inflammation were largely confined to the perivascular spaces
where CNS-resident macrophages, including perivascular
macrophages and microglia, were rare (91). Meningeal
macrophages are also situated in the tissues most commonly
involved in human CM. Yet, there is little research done to
understand the specific contributions of these cells to fungal
clearance and pathogenesis. Lastly, PVMs are the primary site for
simian immunodeficiency virus (SIV) infection in the CNS,
which affects the function of PVMs (127). This is important in
the context of CM since it is not yet known how HIV infection
(the predominant risk factor for CM in humans) affects the
behaviour and function of CNS-resident macrophages such as
PVMs and microglia, and the downstream consequences of this
for susceptibility to cryptococcal infection. We therefore require
a greater understanding of the interplay between HIV and fungal
infection in these macrophage subsets and the impact of this
on pathogenesis.
ASTROCYTES

Astrocytes are the most numerous glial cells within the CNS and
the majority of studies on astrocyte function to date have focused
on their roles in maintaining neuronal health and forming a
major component of the blood-brain-barrier (BBB). In recent
years, new studies have revealed that astrocytes perform
important immune functions and contribute towards CNS
pathologies (128). During infection, astrocytes undergo a
poorly understood complex process known as ‘astrogliosis’,
where structural and functional changes occur. These changes
are controlled by the CNS microenvironment which give rise to
functionally-differentiated phenotypes that are optimised for
tissue repair or resistance to infection (Figure 2) (129–131).
Whether fungal CNS infections affect astrocyte phenotype and/
or function remains an open question. One study showed that
murine astrocytes undergo astrogliosis following intravenous
infection with C. neoformans (Figure 2) (130), confirming that
astrocytes could play roles in the pathogenesis of CM.
Furthermore, in vitro experiments using astrocyte cell lines
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found that C. neoformans can interact with and infect human
astrocytes driving an increase in MHCII expression (132, 133),
providing evidence that these cells might be involved in
immunity during CM. It will be worth further investigating
astrocyte behaviour in CM in future studies particularly as (1)
astrocytes appear to become activated during human CM and
this is blunted in HIV-infected patients (134–136), and (2)
astrocytes regulate traffic through the BBB thus they might
have significant role in prevention of C. neoformans invasion
of the CNS.
T-CELLS

There is growing evidence that T cells are present in the healthy
CNS, which have a unique CNS-resident phenotype and are
important for CNS homeostasis and animal behaviour (137–
140). Mice deficient in adaptive immunity (e.g. Rag1-/-) have
behavioural abnormalities, which was recently linked to their
role in promoting microglial maturation in the developing brain
(141–145). Moreover, T cells have been shown to promote
pathology in several neurodegenerative diseases (146–148), as
well as supress astrogliosis during ischaemic stroke (147). These
lymphocytes are therefore integral to the outcome of CNS
inflammation and important regulators of pathology in
this tissue.

The specific functions of CD4+ T cells in the Cryptococcus-
infected CNS remain poorly defined. As outlined above, these
lymphocytes are thought to be required to activate antifungal
killing pathways in myeloid cells but may also promote tissue
pathology (149–151). CD4+ T cell recruitment to the
cryptococcal-infected brain was recently shown to require
CXCR3. Both human and murine T cells significantly
upregulated CXCR3 in response to C. neoformans infection,
and this chemokine receptor was required for Th1
polarization. Interestingly, Cxcr3-/- mice were protected from
infection-associated CNS inflammation and thus had improved
survival, but this did not correlate with reduced fungal burden.
These studies therefore show that CXCR3+ Th1 T cells are not
needed to help control fungal infection in the brain, at least in the
context of an IRIS-like syndrome (152). Similarly, knockdown of
CCR2 in mice was also shown to improve survival independently
of fungal control in the CNS, although CCR2 was not involved in
the direct recruitment of Th1 T cells to the CNS but acted
indirectly by promoting the initial recruitment of inflammatory
monocytes (153). Collectively, these studies indicate that T-cells
have a complex role in CM, both for fungal clearance and
mediating immunopathology, which is likely context- and
time-dependent.
B-CELLS

B-cells produce anti-cryptococcal antibodies that are required for
effective opsonisation of the fungus (particularly the capsule)
Frontiers in Immunology | www.frontiersin.org 8
and uptake by phagocytes, including macrophages (154).
Patients with X-linked agammaglobulinemia (XLA), an
inherited immune-deficiency caused by mutations in the BTK
gene and characterised by an absence of B cells, have been
reported to develop CM (155). Furthermore, reduced
production of IgM in HIV+ patients has been correlated with a
greater risk for developing CM (156). Treatment with the BTK
inhibitor Ibrutinib, a drug used in the treatment of B-cell
lymphomas, has been reported to promote CM in a small
number of patients, although the exact underlying mechanism
(s) and relative incidence of CM in Ibrutinib-treated patients
remain unclear (157). Mice with B-cell and/or antibody
deficiencies also have increased susceptibility to C. neoformans
infection, characterized by higher brain fungal burden (158).
Thus, B-cells provide critical support to phagocytes in the fight
against CM and clearance of yeast cells from infected
tissues (Figure 2).

CNS border tissues, such as the meninges, were recently
shown to be populated by CNS-resident B cells which
infiltrated the CNS from the skull bone marrow via a series of
bone channels (Figure 2). These channels provide the meninges
with a constant supply of CNS-resident B cells, which were
shown to have an immunoregulatory phenotype and were
optimised at recognising CNS-derived antigens (159–162).
Furthermore, meningeal IgA-secreting plasma cells have been
shown to curtail Candida invasion in the CNS (163), but whether
these CNS-resident B-cells proliferate in response to C.
neoformans infection and/or provide local protection against
cryptococcal infection has not yet been determined.
CONCLUDING REMARKS

The majority of deaths from invasive fungal infections in
humans occur in Africa, and many of these are preventable.
Improving access and reducing cost of ‘gold-standard’
diagnostics and treatments is urgently needed to reduce the
impact of fungal CNS infections on global human health.
However, even with access to antifungal drugs, mortality and
morbidity from fungal CNS infection remains high. Worryingly,
we are also seeing more cases of fungal CNS infections reported
particularly amongst non-HIV immunosuppressed populations.
It is therefore clear that we require more insights into the
pathogenesis of these diseases and adjunctive immune-based
therapies that boost the effectiveness of antifungal drugs. Recent
advances in neuroimmunology have led to the development of
models and technologies leading to novel insights into how
immune responses are initiated and regulated within the CNS.
Many of these models and approaches have yet to be utilised by
the fungal immunology field, but their application holds
significant potential in terms of discovery and future
therapeutic benefit. In summary, we hope that future studies
focusing on CNS antifungal immunity will shed light on how
these infections may be better managed and treated, which
alongside enhancing public awareness and education on the
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impact of fungal CNS infections, may lead to reduced mortality
and improved health across Africa.
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