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Abstract

Spatial variation in host plant availability may lead to specialization in host use and local host adaptation in herbivorous
insects, which may involve a cost in performance on other hosts. We studied two geographically separated populations of
the seed beetle Megacerus eulophus (Coleoptera: Bruchidae) in central Chile: a population from the host Convolvulus
chilensis (in Aucó) and a population from C. bonariensis (in Algarrobo). In Aucó C. chilensis is the only host plant, while in
Algarrobo both C. bonariensis and C. chilensis are available. We tested local adaptation to these native host plants and its
influence on the use of another, exotic host plant. We hypothesized that local adaptation would be verified, particularly for
the one-host population (Aucó), and that the Aucó population would be less able to use an alternative, high-quality host.
We found evidence of local adaptation in the population from C. chilensis. Thus, when reared on C. chilensis, adults from the
C. chilensis population were larger and lived longer than individuals from the C. bonariensis population, while bruchids from
the two populations had the same body size and longevity when reared on C. bonariensis. Overall, bruchids from the C.
chilensis population showed greater performance traits than those from the C. bonariensis population. There were no
differences between the bruchid populations in their ability to use the alternative, exotic host Calystegia sepium, as shown
by body size and longevity patterns. Results suggest that differences in local adaptation might be explained by differential
host availability in the study populations.
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Introduction

Plants are heterogeneous environments for herbivorous insects

[1]. Spatial and temporal variation in availability and quality of

resources may result in differential use of host plants, which can

lead to specialization in host use. In fact, most phytophagous

insects are rather specialized in terms of host range [2–4]. The

degree of specialization often changes along the distribution range

of herbivorous insects [5,6], partly because their geographic

distribution differs from that of their host plants. This results in

localities where there are only few hosts available [7,8]. Thus,

insect species considered generalists may behave as specialists at

a population level [5].

Specialization in host use by phytophagous insects may lead to

local adaptation to the host plant; thus, local individuals exhibit

greater fitness components such as performance, survival or

reproduction in their home environment (plant) compared to

foreign individuals [9]. Local adaptation is thought to evolve by

natural selection [10], being generated when populations in

different environments respond to distinct selective pressures. Such

divergent selection would promote the evolution of traits that

provide fitness benefits for local populations under the prevailing

conditions, regardless of the fitness consequences of these

phenotypes in other habitats [9]. Variation in host plant

availability may drive divergent selection [11], as has been shown

for the leaf beetle Oreina elongata [12]. For insects that are seed

predators, such as bruchid beetles (Coleoptera: Bruchidae),

previous studies have shown that host plant chemistry [13], seed

size [14], seed hardness [15], and competition [16] can be agents

of selection.

Individuals from a locally adapted population should exhibit

greater use efficiency on their host plant as compared to

alternative hosts [17]; conversely, a generalist genotype is expected

to show a similar degree of adaptation to available host plants [9].

Because of the complexity of patterns of host use in phytophagous

insects, it cannot be assumed that, for a given host, specialists will

have greater efficiencies in resource use than generalists [5,18,19].

It is often found that insect adaptation to a particular host comes at

a cost of reduced performance on other hosts [18,19,20,21]. For

instance, in the seed beetle Stator limbatus, specialization on a lower

quality host decreases its performance on other hosts [7].

However, there are also studies showing that locally adapted

genotypes are able to maintain, and even improve, their fitness on

other hosts or environments [12,22–24].

Bruchid beetles (Coleoptera: Bruchidae) represent a good model

system to test hypotheses on local adaptation and contrasting

performance between generalist and specialist species or popula-

tions. Bruchids oviposit on seeds and their entire development

occurs inside a single seed, being thus easy to manipulate

experimentally [25,26]. Seed characteristics have been shown to

influence the evolution of body size and life history traits in

bruchids [7,8,14,26], which often show specialization in host use

[27] and local adaptation [8]. In the present study, working with
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the native bruchid Megacerus eulophus, we tested local adaptation on

host-plants and its influence on the use of another, exotic host in

central Chile. Bruchids from Megacerus genus are restricted to seeds

of the Convolvulaceae plant family [28]. Specifically, the system

consists of two geographically separated populations of M. eulophus

from different host plants: Convolvulus chilensis (in Aucó, an interior

location) and C. bonariensis (in Algarrobo, a coastal location). The

localities have different host plant availability for these seed

beetles. In Aucó C. chilensis is the only host plant, while in

Algarrobo both C. bonariensis and C. chilensis are available. A

previous study showed significant differences in fecundity,

longevity and body size between these M. eulophus populations,

but not in seed size or nitrogen content between the two host plant

species [29]. We hypothesized that local adaptation would be

verified in this system, and that it would be of greater magnitude in

the one-host population (Aucó) than in the two-host population

(Algarrobo). We further expected that the Aucó population would

be less able to use an alternative host.

Materials and Methods

Megacerus eulophus Erichson (Bruchidae) is a bruchid beetle

distributed along South America. The entire Megacerus genus only

uses seeds from the Convolvulaceae plant family (morning glory

family), including plants from the genera Argyreia, Calystegia,

Convolvulus, Ipomoea and Merremia [28,30,31]. In Chile, where this

study was conducted, M. eulophus has been recorded in host plants

from the genera Convolvulus, Ipomoea and Calystegia (Convolvulaceae)

[32]. Female bruchids oviposit on the external wall of mature

fruits, sepals and dispersed seeds. Egg hatching starts 4–8 days

after oviposition (at 24–25 uC) and the first larval stage burrows

into the seed. The larva consumes almost the whole seed content.

Larval and pupal development occurs completely inside a single

seed. Adults emerge after 25–30 days [29].

Beetles were obtained from seeds gathered in two localities in

central Chile: Aucó (31u30’ S, 71u06’ W, 600 m a.s.l), an interior

location, and Algarrobo (33u21’ S, 71u39’ W, 1 m a.s.l), a coastal

location, and reared in the laboratory. The distance between

locations is 214 km. All necessary permits were obtained for the

described field studies. A permit to conduct fieldwork in Aucó,

which is located within Las Chinchillas National Reserve, was

obtained from CONAF (National Forestry Corporation; Auth.

Fondecyt 1030702). A permit to carry out research in Algarrobo

was granted by Algarrobo town council (Decree Nu2269). In Aucó

we collected seeds of Convolvulus chilensis, the only available host,

where M. eulophus may infest up to 50% of the seed crop [29]. In

Algarrobo we collected seeds of C. bonariensis, the more abundant

host plant, but C. chilensis was also available as host. We also

collected seeds of Calystegia sepium (Calystegia, hereafter) in

Concepción (36u469 S, 73u039 W, 12 m a.s.l). A permit to do

field work in this site, which is located within university property,

was obtained from the Universidad de Concepción. Seeds of C.

sepium (,30 mg) are much larger than those of C. chilensis and C.

bonariensis (,18 mg in both cases) [14,29]. Seeds were collected

from more than 20 mother plants of each species. C. chilensis is

a perennial herb endemic to northern-central Chile and typical of

coastal and arid zones, often occurring in small populations

[33,34]. C. bonariensis is a perennial herb native to southern South

America that is morphologically very similar to C. chilensis and

occurs in scattered populations along the coast of central Chile

([35],Gianoli and Suárez, personal observations). In both Convol-

vulus species fruits are ovoid, glabrous capsules that contain one to

four seeds [35]. Calystegia is a perennial plant from the northern

hemisphere that in Chile is common in humid microsites in central

and southern of Chile [36,37] and is used as host plant by M.

eulophus [32,34].

We checked daily for bruchid emergence from seeds of C.

chilensis and C. bonariensis. Virgin males and females were paired

randomly within each group. Each couple was confined separately

in a Petri dish (50 mm Ø) in the laboratory (24–25 uC, 12 h

daylength). Couples were reared in the seeds from their respective

host species of origin and the emerging insects represented the F1

generation, which was subjected to the experimental treatments.

Local Adaptation Experiment
F1 couples of M. eulophus from C. chilensis (Aucó) were randomly

assigned to two rearing treatments: (1) seeds of C. chilensis (original

host), and (2) seeds of C. bonariensis (alternative host, not present in

the original habitat). Likewise, F1 couples from C. bonariensis

(Algarrobo) were assigned to (1) seeds of C. bonariensis (original host)

and (2) seeds of C. chilensis (alternative host, present in the original

habitat). In all treatments, five seeds were initially provided and, as

the insects oviposited, clean seeds replaced those carrying eggs.

Thus, four groups were obtained in the F2 generation. In the F2,

we worked with 51 to 86 individuals per group, including males

and females. Bruchids were fed with a honey:pollen solution (9:1)

following earlier rearing procedures [29].

When F2 individuals died we recorded longevity (total adult

lifespan) and body size (pronotum area). The area of pronotum

(the dorsal aspect of the first thoracic segment) was used as body

size estimate, as done in earlier studies with M. eulophus [29]. Size

measures were made on digital pictures using image analysis

software (SigmaScan Pro 5.0, Systat Software Inc, Richmond, CA,

USA). Beetles were photographed under 20x magnification.

Alternative Host Experiment
Calystegia could be considered a high-quality host because its

seeds are significantly larger than those of C. chilensis and C.

bonariensis [14,29], and greater seed mass in Calystegia has been

associated with higher fecundity and greater offspring size in M.

eulophus [14]. However, we have no specific data about the relative

performance of M. eulophus in native hosts vs. Calystegia. For this

experiment we worked with F1 individuals of M. eulophus, which

had been grown in their respective hosts of origin: C. chilensis and

C. bonariensis. Half of the bruchid couples from C. chilensis and C.

bonariensis were offered with seeds of Calystegia to oviposit, and the

other half of the couples from each population received seeds from

their respective hosts, from which we obtained an F2 generation.

Five seeds were initially given and, as the insects oviposited, seeds

were replaced by clean ones. The F2 generation was fed with

honey:pollen solution (9:1). We obtained 55 individuals from the

C. chilensis population and 76 individuals from the C. bonariensis

population, both reared on Calystegia seeds. When these individuals

died, we recorded longevity (total adult lifespan) and body size

(pronotum area).

Data Analysis
In both experiments variation in body size and longevity was

analyzed using GLMs. To analyze longevity, body size was

entered as a covariate. The main factors in the experiment of local

adaptation were population of origin (Population) and rearing host

(Environment). Longevity was log-transformed before the analysis

to meet the normal distribution assumption. Local adaptation is

detected in significant Population x Environment interactions for

the bruchid performance variables. In the alternative host

experiment the main factor was the population of origin.

Local Host Adaptation in a Seed Beetle
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Results

We found evidence of local adaptation in the population from

C. chilensis for both variables measured: body size and longevity

(Table 1, Fig. 1). Thus, when reared on C. chilensis, individuals

from the C. chilensis population were larger than individuals from

the C. bonariensis population, while bruchids from the two

populations had very similar body size when reared on C.

bonariensis (Fig. 1A). Likewise, when reared on C. chilensis,

individuals from the C. chilensis population lived longer than those

from the C. bonariensis population, and there was little difference in

longevity between populations when bruchids were reared on C.

bonariensis (Table 1, Fig. 1B). Overall, bruchids from the C. chilensis

population showed greater performance traits than those from the

C. bonariensis population (Fig. 1).

There were no differences between the bruchid populations in

their ability to use the alternative, exotic host Calystegia. The C.

chilensis and C. bonariensis populations of M. eulophus showed the

same body size (Chi-square = 0.7494, p-value = 0.3867, df = 1) and

longevity (Chi-square = 0.9297, p-value = 0.3349, df = 1) when

reared on Calystegia seeds (Fig. 2). This pattern resulted from the

maintenance and increase of performance traits for the C. chilensis

and C. bonariensis populations, respectively (inspection of Figs. 1

and 2).

Discussion

Following the ‘‘local vs. foreign’’ approach to the study of local

adaptation suggested by [9], we found –as expected– evidence

consistent with local adaptation only for the population of M.

eulophus originally from C. chilensis. In particular, bruchids from this

population had larger body size and lived longer when reared on

Figure 1. Local adaptation of two populations of Megacerus
eulophus. Performance of the bruchid beetle Megacerus eulophus on
the host plants Convolvulus chilensis and C. bonariensis (Environment).
Bruchids were collected in field populations of C. chilensis (closed
circles) and C. bonariensis (open circles) and reared in the experimental
hosts for two generations. Performance traits were Body size (Pronotum
area) (A) and Longevity (B). Means 6 SE are shown.
doi:10.1371/journal.pone.0053892.g001

Table 1. Local adaptation: GLM analysis on performance
traits of Megacerus eulophus.

Pronotum area Longevity

Population (P) 10.337 ** 2.941 ns

Environment (E) 2.721 ns 1.091 ns

P x E 9.531 ** 4.895 *

ns P.0.05;
*P,0.05;
**P,0.01;
***P,0.001.
Chi-square values are shown (df = 1 for all variables) after a General Lineal
Model (GLM) analysis. Effect of host plant of origin (Population) and host plant
of rearing (Environment) on performance traits of the seed beetle Megacerus
eulophus from the host plants Convolvulus chilensis and C. bonariensis.
Pronotum area, the variable of body size, was entered as covariate in the
Longevity analysis.
doi:10.1371/journal.pone.0053892.t001

Figure 2. Performance of two populations of Megacerus
eulophus in an alternative host. Performance of the bruchid beetle
Megacerus eulophus from populations of the host plants Convolvulus
chilensis and C. bonariensis when reared on a novel host, Calystegia
sepium. Performance traits were Body size (Pronotum area) (A) and
Longevity (B). Means 6 SE are shown.
doi:10.1371/journal.pone.0053892.g002

Local Host Adaptation in a Seed Beetle

PLOS ONE | www.plosone.org 3 January 2013 | Volume 8 | Issue 1 | e53892



C. chilensis seeds as compared to those reared on C. bonariensis.

Differential host performance between different populations may

be a first step towards reproductive isolation [38–41], as shown

recently for the bruchid Callosobruchus maculatus [42]. It is therein

discussed that host-preference and assortative mating can coevolve

in the absence of local adaptation, but in order to maintain

assortative mating after secondary contact, fitness differences and

local adaptation appear to be necessary [42]. Interestingly, the two

host plant species (C. chilensis and C. bonariensis) do not differ in seed

size or seed nitrogen content [29], which are general indicators of

host quality for seed beetles [14,43–45]. Thus, it is likely that the

observed pattern of local host adaptation in bruchid performance

results from the specific exploitation of a particular nutritional

factor [46] or to differences in seed coat properties [47]. These

hypotheses deserve further investigation.

Maternal effects could be considered to play a role in the

observed patterns, because local adaptation may be facilitated if

female’s host experience influences offspring performance in these

hosts [48]. However, inspection of results indicates that in this case

maternal effects are unlikely to be involved: no consistent effect of

maternal host on bruchid performance was observed. A previous

study on M. eulophus showed that it was seed size, and not the

maternal environment, what mainly affected offspring size [14],

and in the present case host seed did not differ in size.

Nevertheless, we cannot rule out the occurrence of maternal

effects during the adaptation of M. eulophus to one of its host plants

(C. chilensis), as has been reported for other bruchid beetles [49,50].

Differential host availability in the study locations might explain

–at least in part– the contrasting results regarding local adaptation.

In Aucó, C. chilensis is the only host plant available for M. eulophus.

Consequently, C. chilensis probably exerts a directional selective

pressure towards adaptation to this specific host plant. In

Algarrobo, where both host plants are available, a pressure for

divergent selection should be weaker. Despite it is often recognized

that geographic differences in host availability may be important

for the occurrence of local (host) adaptation [6,39,41,51], there is

scant empirical evidence supporting this hypothesis. The influence

of host plant availability on local host adaptation has been

demonstrated in the leaf beetle Oreina elongata, but only for one of

the traits measured (insect growth rate) [12]. We report here two

traits, body size and longevity, supporting this hypothesis in the

case of the seed beetle Megacerus eulophus. Other studies have not

found evidence of host availability influencing local host adapta-

tion in the seed beetle Stator limbatus [7,8] and in the stem borer

Apagomerella versicolor [52].

The fact of being locally adapted to their host plant seemingly

did not limit bruchids from the C. chilensis population in the use of

an alternative, exotic host (Calystegia). These bruchids and those

from the C. bonariensis population showed similar performance in

the new host plant. Thus, in the present study system insect

adaptation to a particular host did not come at a significant cost in

performance on other hosts, as it is generally hypothesized [7,19–

21,23,24]. However, considering that i) for the population from C.

chilensis none of the performance traits where we found evidence of

local adaptation (body size and longevity) increased when the

population was reared on the alternative host Calystegia, and ii) in

the local adaptation experiment the performance of bruchids from

the C. chilensis population was shown to be, overall, greater than

that of their conspecifics, these results may also be interpreted

otherwise. Thus, it could be suggested that the processes un-

derlying local adaptation in the C. chilensis population of M. eulophus

bruchids prevented them from taking full advantage of Calystegia,

a putative high-quality host. In contrast insects from the C.

bonariensis population did increase their performance when reared

on Calystegia seeds. These results may be partially explained by the

hosts’ distribution, because the distribution of Calystegia spans the

location of the C. bonariensis population but not that of the C.

chilensis population [37]. Bruchids from the C. bonariensis

population had a higher chance of encountering a population of

Calystegia in the past and this it is less likely to be a novel host plant

for them. Results may not be explained by phylogenetic

relatedness among host plants, because C. chilensis and C. bonariensis

are closely related species, and the alternative host plant (Calystegia)

belongs to another genus. Further experiments including other

Convolvulaceae host plants used by M. eulophus in Chile, and of

varying relatedness with C. chilensis, would shed light on this issue.

Bruchids from both populations were able to use Calystegia,

although with differential success. Calystegia is an exotic plant that

arrived to central Chile about 150 years ago [36]. Considering that

Calystegia is much more abundant than the native Convolvulus

species, it would be interesting to study the long term adaptation of

M. eulophus (particularly for the bruchid from the C. bonariensis

population) to this exotic host and another equally abundanct host,

C. arvensis ( [32,36], Gianoli, personal observation). It would be of

interest to determine whether this adaptation process brings about

changes in life history and/or morphological traits, as has been

reported for the soapberry bug Jadera haemolotoma after colonizing

an introduced host plant from the same family [53].

Together with host quality experienced by bruchids during the

larval stages [54,55], the maternal environment may also

significantly influence bruchid life history and fitness

[49,50,56,57]. In particular, it has been shown for M. eulophus

that maternal diet quality affected egg size plasticity [14]. As

discussed above, it is unlikely that the results observed are

consequences of carry-over effects from the maternal hosts, which

did not differ in seed attributes and are closely related species. In

conclusion, this study has found evidence of local host adaptation

in the population of M. eulophus where C. chilensis is the only host,

and no such a pattern was found for the population from C.

bonariensis, where C. chilensis is also available as host. Thus, these

differences might be explained by local host availability in the

study populations. We further found preliminary evidence that

local adaptation did not significantly prevent the use of an

alternative host by the C. chilensis population of the bruchid M.

eulophus. Further research should address whether host preference

patterns match the performance patterns reported here.
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