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Abstract
Emotion-regulation strategies are understood to influence food intake. This study examined

the neurophysiological underpinnings of negative emotion processing and emotion regula-

tion in individuals with excess weight compared to normal-weight controls. Fifteen partici-

pants with excess-weight (body mass index >25) and sixteen normal-weight controls (body

mass index 18–25) performed an emotion-regulation task during functional magnetic reso-

nance imaging. Participants were exposed to 24 negative affective or neutral pictures that

they were instructed to Observe (neutral pictures), Maintain (sustain the emotion elicited by

negative pictures) or Regulate (down-regulate the emotion provoked by negative pictures

through previously trained reappraisal techniques). When instructed to regulate negative

emotions by means of cognitive reappraisal, participants with excess weight displayed per-

sistently heightened activation in the right anterior insula. Decreased responsivity was also

found in right anterior insula, the orbitofrontal cortex and cerebellum during negative emo-

tion experience in participants with excess weight. Psycho-physiological interaction analy-

ses showed that excess-weight participants had decreased negative functional coupling

between the right anterior insula and the right dlPFC, and the bilateral dmPFC during cogni-

tive reappraisal. Our findings support contentions that excess weight is linked to an abnor-

mal pattern of neural activation and connectivity during the experience and regulation of

negative emotions, with the insula playing a key role in these alterations. We posit that inef-

fective regulation of emotional states contributes to the acquisition and preservation of

excess weight.
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Introduction
Worldwide, the number of people with excess weight has increased from 857 million in 1980,
to 2.1 billion in 2013 [1]. The increase in incidence of overweight and obesity is particularly
high during young adulthood [2] and is of concern given that earlier onset of obesity is associ-
ated with poorer recovery and outcomes [3]. Interventions that solely focus on correcting the
imbalance between caloric intake and energy expenditure have proved to be ineffective and are
frequently characterized by momentary weight loss followed by weight gain once treatment has
ended [4], indicating the presence of underlying maintenance factors. To this end, a growing
body of evidence has established a robust link between negative affect, coping styles and
increased weight [5].

It has been suggested that chronic negative affective states result in the acquisition of mal-
adaptive coping strategies such as the excess intake of appetizing and unhealthy foods to sup-
press negative emotions [6]. An indirect causality model is supported by evidence showing that
individuals with high body mass index (BMI) show a stronger association between chronic
stress and weight gain compared to low-BMI individuals who experience stress to a similar
extent [7]. In addition, negative moods have been found to potentiate brain response to food
[8] by influencing mesolimbic circuitry and reward-seeking behavior [9]. More specifically,
imaging studies have linked obesity to a reduction of dopamine striatal D2 receptors [10], and
to decreased prefrontal metabolism in the ortbitofrontal cortex (OFC) and anterior cingulate
cortex (ACC) [11]. Other research, in a wide range of different populations, has found that dys-
function in these two aforementioned regions results in alterations in salience attribution and
inhibitory control, respectively [12,13]. Overall, this suggests that an inability to properly value
and manage negative affective states could be a key aspect in the acquisition and maintenance
of excess weight as those who are unable to manage negative states might be more vulnerable
to becoming stressed and consequently seeking relief in the rewarding properties of highly pal-
atable foods [14]. Furthermore, weight-based discrimination is highly prevalent in society [15]
and has been positively associated with negative attitudes towards weight problems and low
self-esteem, thus further aggravating negative mood states and encouraging harmful food
intake in these populations [16].

To date there is a paucity of studies exploring emotion processing and regulation networks
in people with excess weight. However, researchers have found that the neural systems
involved in managing emotions and in regulating appetitive responses to palatable foods highly
overlap [17,18]. As the presence of stressors and negative emotions are inevitable facets of
everyday life, the way one regulates negative affect can shape eating behavior [19]. Emotion
regulation refers to the set of distinct, goal-based strategies by which individuals attempt to
control how they experience (i.e., the nature, timing and reactivity to) these emotions [20].
Typically, the most studied emotion regulation strategy in brain-imaging studies has been cog-
nitive reappraisal, which involves reinterpreting the meaning of affective stimuli in order to
modify their emotional intensity [21]. During reappraisal, prefrontal control systems are
understood to modulate activity in affect systems as a function of one’s regulatory goals and
the nature of emotions being regulated [22]. Specifically, the dorsolateral prefrontal cortex
(dlPFC) is known to support the manipulations and cognitive demands of appraisals via work-
ing memory whereas the ventrolateral prefrontal cortex (vlPFC) involves the selection and/or
inhibition of appraisal resources [23–25]. Furthermore, the dorsomedial prefrontal cortex
(dmPFC) assists in monitoring and providing the meaning of changing emotional states while
the ventromedial prefrontal cortex (vmPFC) modulates activity in regions linked to emotional
responses, such as the amygdala and the insula [26–28].
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Reappraisal has been so widely studied due to the fact that its cognitive and physiological
costs are lower than other emotion-regulation strategies (e.g. expressive suppression and dis-
traction) and that it is highly effective at regulating affect and physiological arousal [29,30].
Indeed, the use of ineffective or maladaptive emotion-regulation strategies, such as expressive
suppression [31], over adaptive strategies like reappraisal has been found to lead to increased
food intake [32]. However, no studies to date have explored the neural substrates of emotion
regulation by means of cognitive reappraisal in people with excess weight.

In this study, we used functional magnetic resonance imaging (fMRI) to compare the brain
substrates of emotion regulation in excess-weight individuals versus normal-weight controls. A
modified version of the original cognitive reappraisal task designed by Phan et al. [33] was
used to assess emotion regulation. This task [34] has been shown to activate the brain networks
involved in the generation of a negative emotional state [21,35–37] (i.e., insula and amygdala),
as well as in the employment of cognitive emotion-regulation strategies (i.e., prefrontal cortex)
[22,23,38,39]. To further explore the interaction between emotion generation and emotion reg-
ulation systems, we also performed a psycho-physiological interaction (PPI) analysis and
assessed changes in the connectivity between these two systems across emotion regulation and
generation blocks.

On the basis of previous literature [9,22] we hypothesized that excess-weight participants
would exhibit heightened reactivity indicated by altered activation in emotion-generation and
interoception-related regions when viewing negative stimuli compared to normal-weight con-
trols. Additionally, we expected excess-weight participants to display inefficient down-regula-
tion of negative emotional responses during reappraisal, and that this would coincide with
persistently heightened activation in emotion-generation areas and reduced activity in emo-
tion-regulation areas. Moreover, since emotion regulation [40], impulsivity [41], approach/
avoidance motivation [42] and food addiction [43] are key trait and state characteristics that
contribute to the acquisition and maintenance of excess weight and related affective alterations,
and in agreement with theoretical accounts about the associations between these factors [44],
we expected to find a complex interaction between behavioral measure results assessing these
traits and areas of dysfunctional activation in the excess-weight group. These complex associa-
tions were subsequently explored by means of path analysis.

Methods

Participants
Participants were recruited through community notice boards at Monash University, Mel-
bourne, Australia. Potential participants were invited to complete an online survey that
assessed their eligibility to participate in a neuroimaging study on emotions and weight. Writ-
ten and signed informed consent was obtained from all subjects after they were provided with
a complete description of the study, which was reviewed and approved by the Monash Univer-
sity Human Research Ethics Committee (approval number CF13/2459–2013001307).

Young adults from both sexes were eligible for the study if they met the following inclusion
criteria: (i) aged between 18 and 24; (ii) BMI ranges between 18 and 40 (people with a BMI
higher than 40 were excluded from the study due to potential confounding metabolic vari-
ables). BMI was calculated from measurements of height and weight obtained using standard-
ized procedures and equipment (Seca 700 Mechanical Column Scale) at the Monash
Biomedical Imaging Centre (MBI), and calculated using the following formula: weight (kg)/
height (m2). Participants with a BMI between 18 and 25 were placed in the normal-weight
group and participants with a BMI greater than 25 were placed in the excess-weight group. The
exclusion criteria were: (i) current comorbid medical conditions associated with excess weight
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(e.g., type II diabetes, hypertension); (ii) history of a psychiatric disorder or current psychiatric
symptoms (e.g., depression); (iii) history of head trauma or neurological illness involving the
central nervous system; and (iv) MRI contraindications (e.g. piercings, etc.).

Fifteen excess-weight participants and sixteen normal-weight controls participated in the
study. Results from two participants (one normal-weight control and one excess-weight partici-
pant) were excluded due to excessive movement during image acquisition, as were the results
from an additional normal-weight participant for failure to carry out the reappraisal task. The
final sample thus consisted of 14 excess-weight subjects and 14 normal-weight controls (6 males
and 8 females for both groups). Demographic and behavioral data from the study participants
are summarized in Table 1.

Procedures
Eligible participants were scheduled for image acquisition after a light meal (breakfast or
lunch), between 8 a.m. and 2 p.m., at the Monash Biomedical Imaging facility (MBI). Partici-
pants were weighed and measured and briefly interviewed about their medical history to con-
firm they met inclusion criteria. Participants were given task instructions ahead of the scanner
session and trained to decrease the intensity of their emotions through cognitive reappraisal
techniques such as distancing and reinterpretation [34]. After the general training on reap-
praisal techniques, all participants performed a brief rehearsal of maintenance and reappraisal

Table 1. Sample characteristics and behavioral measure results.

Excess weight Normal weight Statistic

(n = 14) (n = 14) (p-value)

Age 21.71 ± 1.81 21.21 ± 1.42 -0.811 (.425)

Male/female 6/8 6/8 χ² = 0.00 (1)

Weight (kg) 90.03 ± 15.44 60.79 ± 9.36 -6.059 (0.000)

BMI 31.85 ± 4.70 20.94 ± 1.64 -8.194 (0.000)

Height (m) 1.68 ± 0.09 1.70 ± 0.09 0.517 (0.610)

Education Level* 5.43 ± 0.85 5.07 ± 0.28 χ² = 4.16 (0.125)

Emotion Regulation Questionnaire (ERQ)**

Cognitive reappraisal score 22.54 ± 7.49 23.71 ± 5.62 0.464 (0.188)

Expressive suppression score 18.77 ± 4.97 21.07 ± 4.25 1.297 (0.194)

Barratt Impulsiveness Scale (BIS-11)

Total score 47.29 ± 11.23 37.79 ± 5.25 -2.868 (0.008)

Attentional 16.79 ± 3.64 12.50 ± 2.65 -3.559 (0.001)

Motor 20.64 ± 5.108 19.57 ± 3.005 -0.676 (0.505)

Non-planning 9.86 ± 4.294 5.71± 3.197 -2.896 (0.008)

Yale Food Addiction Scale (YFAS)

YFAS symptom count 2.71 ± 1.94 1.93 ± 0.99 -1.349 (0.189)

The Behavioral Inhibition System and Behavioral Activation System

Behavioral Inhibition System score 39.14 ± 5.947 38.93 ± 4.938 -0.104 (0.918)

Behavioral Activation System score 17.71 ± 2.585 16.71 ± 2.091 -1.125 (0.271)

Data are means ±SD;

* 1: No formal education 2: Did not complete high school 3: Completed high school 4: Diploma 5: Undergraduate degree/currently completing 6:

Undergraduate degree/completed 7: Postgraduate degree/currently completing 8: Postgraduate completed

** Excess weight n = 13 statistic = t-values unless otherwise indicated.

doi:10.1371/journal.pone.0152150.t001
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strategies using trial images. Only after successful rehearsal were the participants entered into
the scanner.

fMRI task: cognitive reappraisal task
We used a modified version of the original cognitive reappraisal task designed by Phan et al.
[33]. This task has been used to study emotion regulation in different psychiatric populations
as well as in healthy controls [21,34]. The task consisted of presenting a series of blocks display-
ing neutral or negative picture stimuli that participants were instructed to (1) Observe (to pas-
sively observe neutral pictures); (2) Maintain (to actively pay attention to the emotions elicited
by negative emotional pictures, sustaining them over time); or (3) Regulate (to reappraise the
emotions induced by the negative emotional pictures by means of previously trained cognitive
reappraisal techniques). Task instructions and visual stimuli were presented through an MRI-
compatible angled mirror system and using Presentation1 software (Version 0.70, www.
neurobs.com) (see Fig 1).

We used 24 stimuli that were extracted from the International Affective Picture System [45]:
eight neutral pictures (e.g. household objects), which were presented in the Observe condition
and 16 highly unpleasant, arousing pictures (e.g. mutilations) in the Maintain and Regulate
conditions. Specifically, it consisted of 12 blocks: four blocks for each condition. Instructions
(Observe, Maintain or Regulate) were pseudo-randomized throughout the task to avoid the
induction of sustained mood states. Each block began with the instructive prompt (Observe,
Maintain or Regulate) presented in the middle of the screen for 4 seconds. After the prompt,
participants viewed two different pictures of equal valence for 10 seconds each. After the pre-
sentation of the second picture of each block, the intensity of the negative emotion experienced
was self-rated by participants on a 1–5 number scale (1 being ‘neutral’ and 5 being ‘extremely
negative’). These in-scanner ratings were recorded through an fMRI-compatible response pad
(Lumina–Cedrus Corporation).

Each block was followed by 10 seconds of baseline during which a cross fixation was pre-
sented on the screen to minimize carryover effects. Further descriptions of our task procedures
have been reported elsewhere [34].

Stimuli. The images were selected according to International Affective Picture System
normative values for valence and arousal [45]; mean valence values were 5.79 (0.71), 2.53
(0.69), 2.66 (0.68) and mean arousal values were 4.28 (0.73), 6.44 (0.46) and, 6.40 (0.60) for
images included in the Observe, Maintain, and Regulate conditions, respectively. Pairwise

Fig 1. fMRI task. Example images for Observe, Maintain and Regulate conditions.

doi:10.1371/journal.pone.0152150.g001
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comparisons showed that Maintain and Regulate did not differ between them in valence or
arousal (P> 0.7), whereas both differed from the Observe values in valence and arousal
(P< 0.001).

Outside-scanner behavioral measures
Further behavioral measures were obtained through the use of different scales in order to char-
acterize emotion regulation ability, food addiction severity, impulsiveness, and inhibition/
approach behavior (Table 1). Specifically, participants were administered the Emotion Regula-
tion Questionnaire (ERQ), the Barratt Impulsiveness Scale (BIS-11), the Yale Food Addiction
Scale (YFAS) and the Behavioral Inhibition System and Behavioral Activation System scales.
Further details about these tasks and their psychometric properties can be found in S1 File.

Image acquisition and preprocessing
We used a 3.0 Tesla Siemens Skyra MRI scanner, equipped with a 32-channel head coil. During
acquisition, a T2�-weighted echo-planar imaging (EPI) was obtained [repetition time (TR) =
2000 ms, echo time (TE) = 37 ms, field of view (FOV) = 228 x 228 mm, 76 x 76 matrix, flip
angle = 90°, 34 axial slices of 3-mm thickness, 234 scans]. A sagittal three-dimensional
T1-weighted turbo-gradient-echo sequence (192 slices, TR = 2300 ms, TE = 2.07 ms, flip
angle = 9°, FOV = 240 x 225, 1 mm³ voxels) was also obtained for anatomical reference.

Imaging data were transferred and processed using MATLAB version R2009a (The Math-
Works Inc, Natick, MA, USA). Pre-processing was performed using statistical parametric map-
ping software (SPM8) (http://www.fil.ion.ucl.ac.uk/spm/). Motion correction was performed
by aligning (within participant) each time series to the mean image volume using a least-
squares minimization and a 6-parameter (rigid body) spatial transformation. Translation and
rotation estimates (x, y, z) were required to be less than 2 mm or 2° for each participant respec-
tively. The realigned functional sequences were subsequently coregistered to each participant’s
anatomical scan, which had been previously coregistered and normalized to the SPM-T1 tem-
plate. Normalization parameters were then applied to the coregistered functional images,
which were then resliced to a 2mm isotropic resolution. Finally, spatial smoothing was carried
out by convolution with a 3D Gaussian kernel (full width at half maximum = 8 mm).

Statistical Analyses
Behavioral data analyses. We conducted independent-sample t-tests to compare the two

groups on relevant variables (Table 1). Interactions between in-scanner ratings for each condi-
tion (Observe, Maintain and Regulate) and subject groups were evaluated using a 2x3
repeated-measures ANOVA analysis. Participants’ self-reported success in lowering their in-
scanner negative emotion intensity was calculated by subtracting the means of participants’
Regulate ratings from the means of participants’Maintain ratings. This value is referred to as
Success and was compared between groups using an independent-sample t-test. Behavioral
data were analyzed with the Statistical Package for the Social Sciences version 19 (SPSS; Chi-
cago, IL, USA).

fMRI, main task effects: first-level analyses. Two contrasts of interest were defined at
first-level (single-subject) analysis: (1) Maintain/Observe and (2) Regulate/Maintain. The first
contrast was carried out to index brain activations associated with negative emotion genera-
tion, whereas the second contrast indexed brain activations associated with cognitive reap-
praisal [21,23,37,39]. Conditions were modeled for the 20 seconds that the images were on the
screen and did not include instruction and rating periods. The BOLD response at each voxel
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was convolved with the SPM8 canonical hemodynamic response function using a 128-s high-
pass filter.

fMRI, main task effects: second-level analyses. Between-group comparisons were con-
ducted with two-sample t-tests using group (normal-weight vs. excess-weight) as the main fac-
tor. Keeping in mind our previously stated hypothesis regarding specific regions involved in
the generation and processing of negative emotions, analyses were conducted utilizing a bilat-
eral amygdala and insula mask for the Maintain/Observe comparison. This restriction of search
regions was designed with the WFU_PICKAtlas [46].

A bilateral prefrontal region mask was created for the Regulate/Maintain contrast as this
region has been implicated in the employment of reappraisal strategies [22,38]. Analyses were
also conducted for this contrast using the emotion-generation mask in order to compare to
what degree participants were able to shift from one task (Maintain) to another (Regulate).
Additional analyses were carried out using masks generated by extracting and conjoining areas
from one-sample (excess-weight and normal-weight) activations for each contrast.

Peak activations derived from the two main fMRI contrasts were extracted and entered into
an SPSS data matrix to assess their relationship with behavioral measures and perform path
analyses.

Psychophysiological interactions analysis. In order to explore the task-induced connec-
tivity between the brain regions activated during the fMRI task, we conducted a psychophysio-
logical interactions (PPI) analysis using SPM8 [47]. Here, we explored the impact of the two
contrasts of interest (the ‘psychological’ factor) on the strength of time-course correlations
between our empirically obtained ROI with all the other regions of the brain (the ‘physiologi-
cal’ factor). To perform the first-level analysis (subject-level), the ROI was drawn from the set
of regions showing group differences in the two contrasts from task activation analyses (Main-
tain/Observe and Regulate/Maintain). Since there was only one region showing group differ-
ences in both contrasts (the right anterior insula), we chose this area as our ROI. Each seed was
defined as 5-mm radial spheres using MarsBaR region-of-interest toolbox [48] in MNI stereo-
taxic space with the coordinates derived from the peak maxima in each contrast: x = 42, y = 10,
z = -12 in the case of Maintain/Observe, and x = 38, y = 18, z = -16 in the case of Regulate/
Maintain.

Functional connectivity maps were estimated for the selected seed of each contrast by
including our signal of interest (seed) together with the nuisance signals (CSF, white matter
and global brain signal) as predictors of interest or no interest, respectively, in whole-brain lin-
ear regression analyses. A high-pass filter set at 128 seconds was used to remove low-frequency
drifts of less than approximately 0.008 Hz. Contrast images were generated for each subject by
estimating the regression coefficient between the seed time series and each brain voxel signal.
Resulting images were then included in a two-sample t-test model for each of the contrasts
(second-level) to assess for between-group effects.

Significance thresholding. In SPSS analyses significance threshold was set at p<0.05. In
all SPM analyses (including PPI) statistical significance was determined by a combination of
voxel-level and cluster-extent thresholds, using the AlphaSim algorithm as implemented in the
SPM REST toolbox (http://resting-fmri.sourceforge.net/) [49]. The minimum spatial cluster
extent (KE) to satisfy a family-wise error (FWE) rate correction of pFWE< .05 varied over the
different contrasts. Input parameters to AlphaSim included a voxel-level probability of p<0.01,
a rmm of 5, a FWHM corresponding to the actual smoothing of the data after model estima-
tion, and a mask volume that depended on the mask being applied (ranging from 6417 to
20225 voxels for task activation analyses, and consisting on a whole-brain mask of 140825 vox-
els for the PPI analysis). As a result, for task activation analyses we obtained cluster-extent
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thresholds ranging from 44 to 158 voxels, while for the PPI analysis the thresholds were of 361
(Maintain/Observe) and 545 (Regulate/Maintain) voxels in order to satisfy a pFWE< .05.

Emotion processing and reappraisal model
We used Pearson correlations to check whether complex relationships existed between BMI,
fMRI task activation results and behavioral variables, as a preliminary step before conducting
path analysis. Path analysis was carried out with maximum likelihood estimation to test both
the direct and indirect predictive effect of participant BMI on these variables. This method is
further explained in S1 File.

Results

Behavioral results
In-scanner behavioral measures. Interactions between in-scanner negative emotion

intensity ratings for each condition (Observe, Maintain and Regulate) and subject groups were
evaluated using a 2x3 repeated-measures ANOVA analysis. A main effect of condition was
found (F(2,52) = 165.65, p<0.001) and planned comparisons showed that Maintain differed
from Observe, indicating successful negative emotion induction during this condition for both
groups (Maintain>Observe: F(1,26) = 319.68, p<0.001). Moreover, planned comparisons con-
trasting Regulate and Maintain also showed differences between the two conditions (Main-
tain>Regulate F(1,26) = 56.97, p<0.001) indicating successful emotion regulation. No main
effect of group was found (F(1,26) = 0.234, p>0.05). Finally, there was an interaction effect
between condition and group (F(2,52) = 4.599, p = 0.014). We performed independent-sample
t-tests to further interpret this interaction, and these showed no differences between the groups
in Observe or Regulate ratings (p>0.05 in all cases). Interestingly, ratings for normal-weight
subjects during Maintain were significantly higher than for excess-weight subjects (p = 0.043)
(Table 2, Fig 2).

Using Success values, independent-sample t-tests showed that normal-weight subjects more
effectively lowered their reported negative emotion intensity rating during Regulate compared
to their excess-weight counterparts (p = 0.012).

Outside-scanner behavioral measures. Total Barratt Impulsiveness Scale (BIS-11) scores
were higher for excess-weight subjects compared to normal-weight controls (p = 0.008), indi-
cating higher levels of impulsive behavior in the former. Additional examination found that
excess-weight scores in BIS-11 Attentional and Non-planning 2nd order factors were greater
than those of normal-weight (Table 1).

Table 2. In-scanner Negative Emotion Ratings.

In-scanner Negative Excess weight Normal weight t

Emotion Ratings (n = 14) (n = 14) (p-value)

Observe 1.17 ± 0.32 1.07 ± 0.18 -1.098 (0.115)

Maintain 3.09 ± 0.67 3.57 ± 0.52 2.124 (0.043)

Regulate 2.48 ± 0.71 2.29 ± 0.49 -0.942 (0.355)

Success 0.60 ± 0.64 1.29 ± 0.69 2.70 (0.012)

Data are means ±SD, 1–5 number scale (1 being “neutral” and 5 being “extremely negative”).

doi:10.1371/journal.pone.0152150.t002
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fMRI task activations
Results regarding the common activations from both groups for the two main contrasts are
provided in S1 File.

Maintain/Observe. A direct between-groups comparison utilizing an emotion-generation
mask showed that normal-weight subjects had increased activation in the right insula com-
pared to excess-weight subjects. Comparisons using a mask generated by extracting and com-
bining areas from one-sample activations also found greater activation in the left OFC and the
bilateral cerebellar vermis in normal-weight subjects than in excess-weight subjects (Table 3,
Fig 3a and 3b).

Regulate/Maintain. No between-group differences using the emotion-regulation mask
passed significance threshold. However, a direct between-groups comparison using the emo-
tion-generation mask showed that excess-weight subjects had greater activation in the right
anterior insula compared to normal-weight controls (Table 3, Fig 3c).

Fig 2. In-Scanner Negative Emotion Intensity Ratings.Mean (95%Confidence Interval) in-scanner
negative emotion ratings elicited during each condition (Observe, Maintain and Regulate) (n = 28) *p<0.05.

doi:10.1371/journal.pone.0152150.g002

Table 3. Neuroimaging Results.

MNI

Region Side (x) (y) (z) k* t

Maintain>Observe

(Normal weight>Excess weight)

With Emotion-Generation Mask Anterior Insula R 42 10 -14 242 3.95

With One-Sample Mask Cerebellar Vermis L/R -2 -42 -8 1084 3.66

4 -48 -8 3.50

Orbitofrontal Cortex L -34 34 -10 174 3.58

Regulate>Maintain

(Excess weight>Normal weight)

With Emotion- Generation Mask Anterior Insula R 38 18 -16 50 4.34

Regions showing significant activations during Maintain/Observe for the normal-weight group more than the excess-weight group; and regions showing

significant activations during Regulate/Maintain in excess-weight>normal-weight. An emotion-generation mask including the amygdala and the insula and

a mask created including one-sample activated areas from both groups were used

* Cluster extent in voxels.

doi:10.1371/journal.pone.0152150.t003
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PPI Analyses
Seed selection. Task-induced functional connectivity analyses were performed to explore

whether specific regions showing significant between-group differences in the main task con-
trasts were abnormally connected with other regions of the brain. Among the clusters showing
significant between-group differences, we selected the right insula, which showed greater acti-
vation in normal-weight versus excess-weight participants during Maintain/Observe, and
greater activation in excess-weight versus normal-weight subjects during Regulate/Maintain
(see Table 3 and Fig 3).

Group differences in Maintain/Observe. No significant between-group differences were
found for this contrast.

Group differences in Regulate/Maintain. In normal-weight participants, as compared to
those with excess-weight, the right insula seed showed significantly increased negative func-
tional coupling with the right dlPFC, and the bilateral dmPFC (Table 4, Fig 4).

Emotion processing and reappraisal model
Significant correlations between BMI, right insula activations during Maintain/Observe and
Regulate/Maintain, BIS-11 2nd Order Attentional scores, and in-scanner Maintain and Success
ratings suggested the existence of complex pathways between them and were further tested with
path analysis. The whole set of correlations used for the path analysis can be found in S1 File.

Fig 3. Neuroimaging Results. Between-group differences during negative emotion maintenance (Maintain/
Observe) in normal-weight versus excess-weight participants. An emotion generation mask (a) and a mask
consisting of combined one-sample results (b) were used. Between-group differences during negative
emotion reappraisal (Regulate/Maintain) in excess-weight versus normal-weight participants (c). An emotion
generation mask consisting of the amygdala and insula was used.

doi:10.1371/journal.pone.0152150.g003
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Different models were tested (see S1 File) and the final model obtained is summarized in Fig
5, and was considered to best represent the observed relationships between the variables. This
model provided good fit and all direct effects were highly significant. Specifically, increased
BMI was directly associated with decreased right insula activity during Maintain/Observe and
with heightened right insula activity during Regulate/Maintain. Accordingly, increased right
insula activity during Maintain/Observe was found to directly predict lower BIS-11 2nd Order
Attentional scores, and these in turn predicted higher in-scanner negative emotion ratings dur-
ing Maintain. Subsequently, higher in-scanner Maintain ratings directly predicted greater Suc-
cess scores. Finally, increased Regulate/Maintain insula activity was associated with lower
Success ratings.

The exploration of the squared multiple correlations showed that Model 3 accounted for
26% of the variance of right insula activation during Maintain/Observe, 47% of right insula
activation during Regulate/Maintain, 21% of BIS-11 2nd Order Attentional scores and 19%
and 57% of in-scanner Maintain negative emotion ratings and Success, respectively.

Table 4. PPI Results.

MNI

Region Side (x) (y) (z) k* t

Regulate>Maintain

(Normal weight<Excess weight)

dlPFC R 36 44 34 882 5.18

dmPFC L -20 -12 42 1416 4.73

dmPFC R 28 -6 46 1031 3.82

Regions showing a significant anticorrelation with the right insula seed during Regulate/Maintain in the normal-weight group compared to the excess-

weight group at the whole-brain level

* Cluster extent in voxels.

doi:10.1371/journal.pone.0152150.t004

Fig 4. PPI Results.Regions showing different patterns of connectivity with the right insula seed between normal-weight individuals compared to excess-
weight participants during reappraisal (Regulate>Maintain), with normal-weight subjects presenting a significant anticorrelation between the right insula and
the PFC regions shown.

doi:10.1371/journal.pone.0152150.g004
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Further information regarding model fitting of path analysis and the indirect associations of
the final model can be found in S1 File.

Discussion
In this study, we aimed to compare the neural substrates of negative emotion processing and
emotion regulation in people with excess weight using fMRI. Our main finding showed that
excess-weight subjects displayed decreased insula activation when experiencing negative emo-
tions and increased activation when instructed to regulate these emotions using cognitive reap-
praisal. This is in keeping with our hypothesis that participants with excess weight would
display persistently heightened activation in emotion-generation brain regions during reap-
praisal. Contrary to our original hypothesis, participants with excess weight did not show
hyperactivation in the insula and amygdala during negative emotion experience nor did we
find hypoactivation in prefrontal regions during reappraisal. Notwithstanding, PPI connectiv-
ity analyses found that excess-weight participants had reduced negative connectivity between
the right anterior insula and prefrontal regions during cognitive reappraisal compared to nor-
mal-weight controls. Decreased activation in the OFC and cerebellum during negative emotion
experience was also found in excess-weight subjects.

The somatic marker hypothesis (SMH) argues for a mechanism by which emotional pro-
cesses can steer (or bias) behavior via physiological markers [50]. The key idea of this hypothe-
sis is that somatic marker signals influence the higher-order processing of affective stimuli and
choices, at multiple levels of operation, some of which occur overtly (consciously) and some of
which occur covertly (non-consciously). This theory uploads that “cognitive operations,
regardless of their content, depend on support processes such as attention, working memory
and emotion” and that body states serve as a form of dispositional knowledge to guide reason-
ing and decision making [51]. Our results suggest that excess weight may be linked to a
decreased ability to allocate attentional resources to engage physiological “feedback/warning”
markers when facing negative-emotion-inducing stimuli [52]. This conclusion is supported by
the findings of our path analysis, which found that increased BMI was directly associated with
decreased right insula activity during the Maintain-Observe contrast and that this decrease in
right insula activation predicted poor attentional impulsiveness performance on the BIS-11

Fig 5. Final Path Analysis Model.Model 3 was the best representation of the observed relationship between variables and examined the complex
associations between Body Mass Index (BMI), neuroimaging results and behavioral data. BIS-11 = Barratt Impulsiveness Scale; Standardized regression
weights for direct effects are shown *p<0.05 **p<0.001.

doi:10.1371/journal.pone.0152150.g005
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and lower in-scanner negative emotion ratings. The insula is ascribed to a vast number of func-
tional properties, including gustatory processing [53], and serves as a crossroads for integrating
homeostatic feedback with expected outcomes [54]. By acting as a “preferential clearinghouse”
for such interoceptive markers, disrupted insula activation in excess-weight participants could
lead to an adverse physiological state that adjusts the tendency to direct focal attentional
resources in one direction over another. This is in line with the findings of our previous studies
showing that excess weight is associated with insula dysfunctions relevant to the perception of
interoceptive signals [55] and the anticipation of risky choices [56].

When instructed to use emotion regulation, our study found that excess weight subjects did
not lower right anterior insula activity to the same extent as normal-weight control subjects.
The anterior insula is known to be involved in the secondary processing of emotional experi-
ence through the integration of interoceptive signals with external context [28,54], a key aspect
of successful cognitive reappraisal [38]. This is suggestive of the notion that excess-weight par-
ticipants may be less able to engage the optimal brain circuitry needed to exert effective down-
regulation of emotion-generation regions as high BMI correlated with increased activity in the
right anterior insula during emotion regulation and consequently predicted poorer reappraisal
performance. This correlation dovetails with another study using real-time fMRI (rtfMRI)
which found that participants with an increased BOLD signal in the insula rated aversive pic-
tures more negatively compared to those having a decreased signal [57]. Moreover, our PPI
analyses found reduced negative connectivity between the right anterior insula and the dlPFC
and the dmPFC in participants with excess weight during Regulate/Maintain. The dmPFC and
the dlPFC are ascribed to the monitoring of emotional states and the use of working memory
to model appraisals, respectively [23,24]. This finding indicates that excess-weight participants
may be unable to exert effective regulation of emotional responses via prefrontal regions when
facing negative stimuli.

We also found that excess-weight subjects had decreased activation in the OFC when
experiencing negative emotions compared to normal-weight subjects. The OFC is critically
involved in the evaluation of affective feedback and related cognitive control functions, such as
value-based decision-making [58]. Decreased OFC activation in this group when experiencing
emotions could be indicative of abnormal evaluation of negative stimuli and hence could ham-
per efforts to restrain unhealthy food choices [9]. Likewise, excess-weight participants dis-
played lower bilateral cerebellar vermis activation during the Maintain-Observe contrast
compared to normal-weight controls. fMRI evidence suggests that the cerebellar vermis serves
as a node in the corticolimbic network and is involved in detecting, integrating and filtering
emotional information [59]. As patients with lesions to this specific area of the cerebellum
exhibit a flattening of affect, excess-weight participants’ deceased activation of this region
when exposed to negative images could be responsible for their diminished in-scanner behav-
ioral response during Maintain.

There are several limitations to the present study. Firstly our sample size was rather modest
and all data were collected from young, college-educated individuals. Future studies should
aim to include participants from a wider range of different ages and social backgrounds. Sec-
ondly, our study failed to find differences in neural activation in prefrontal regions either
within or between groups, at difference with previous studies [22,38], though we did find dif-
ferences regarding task-induced prefronto-limbic connectivity. We propose that this discrep-
ancy is related to the fact that prefrontal regions continue to undergo development far into
young adulthood [60], and thus it is possible that this sample of young adults did not utilize
frontal control over subcortical regions in the same way a more heterogeneous, older sample
would have [61]. Gaining a better understanding of prefrontal development is of importance as
other studies have found that adolescents display hypo-responsivity of inhibitory regions while
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anticipating intake of sugary drinks [62]. Finally, possible differentiating activation patterns
among subjects with binge eating disorder (BED) were not examined. This distinction warrants
further research since emotion-regulation deficits are a widely used explanation for the devel-
opment and maintenance of BED [63].

Taken together, these results demonstrate for the first time the differential patterns of brain
activation during emotion generation and regulation in individuals with excess weight: these
patterns are suggestive of poorer perception of interoceptive signals when experiencing emo-
tions and less effective down-regulation of the emotion-generation network during reappraisal.
This study adds neurobiological support to the abundance of evidence demonstrating that dif-
ficulties in emotion regulation influence eating and lead to increased food intake [32,63]. Our
results reinforce the pertinence of developing novel treatment interventions aimed at improv-
ing emotion regulation strategies, impulsiveness and focal attention in individuals with excess
weight or at risk of becoming overweight [64,65].

Supporting Information
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