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METHODS PAPER

Joint Modeling of Longitudinal Markers and Time-
to-Event Outcomes: An Application and Tutorial in 
Patients After Surgical Repair of Transposition of 
the Great Arteries
Sara J. Baart , PhD; Roel L.F. van der Palen , MD, PhD; Hein Putter , PhD; Roula Tsonaka , PhD; Nico A. Blom , MD, PhD;  
Dimitris Rizopoulos, PhD; Nan van Geloven , PhD

BACKGROUND: Most patients with congenital heart disease survive into adulthood; however, residual abnormalities remain and 
management of the patients is life-long and personalized. Patients with surgical repair of transposition of the great arteries, 
for example, face the risk to develop neoaortic valve regurgitation. Cardiologists update the prognosis of the patient intuitively 
with updated information of the cardiovascular status of the patient, for instance from echocardiographic imaging.

METHODS: Usually a time-dependent version of the Cox model is used to analyze repeated measurements with a time-to-
event outcome. New statistical methods have been developed with multiple advantages, of which the most prominent one 
being the joint model for longitudinal and time-to-event outcome. In this tutorial, the joint modeling framework is introduced 
and applied to patients with transposition of the great arteries after surgery with a long-term follow-up, where repeated 
echocardiographic values of the neoaortic root are evaluated against the risk of neoaortic valve regurgitation.

RESULTS: The data are analyzed with the time-dependent Cox model as benchmark method, and the results are compared 
with a joint model, leading to different conclusions. The flexibility of the joint model is shown by adding the growth rate of 
the neoaortic root to the model and adding repeated values of body surface area to obtain a multimarker model. Lastly, it is 
demonstrated how the joint model can be used to obtain personalized dynamic predictions of the event.

CONCLUSIONS: The joint model for longitudinal and time-to-event data is an attractive method to analyze data in follow-up 
studies with repeated measurements. Benefits of the method include using the estimated natural trajectory of the longitudinal 
outcome, great flexibility through multiple extensions, and dynamic individualized predictions.
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The management of patients with congenital heart 
disease is a personalized life-long follow-up in which, 
during outpatient visits, the current cardiac status and 

the change in cardiac status are assessed. Survival into 
adulthood is expected for almost all congenital heart dis-
eases,1 but residual abnormalities are often present and 

may progress over time. Cardiologists intuitively adjust 
their assessment of prognosis based on the change in 
clinical status and additional imaging parameters.

Large datasets with risk factors and outcomes of 
patients make it possible to quantify who will and who 
will not likely experience adverse events or disease 
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progression. To evaluate the association between a 
longitudinal marker, that is, a measurement repeatedly 
monitored over time, such as cardiac dimension, and the 
occurrence of an event over time, such as valve leak-
age, several statistical methods can be used. A traditional 
approach is to use a Cox regression with a time-depen-
dent covariate. However, in recent years, new methods 
have been developed that offer several advantages over 
the time-dependent Cox model. The most prominent 
method is called joint modeling, referring to the simulta-
neous modeling of the longitudinal marker and the time-
to-event outcome.

Because this new technique is not well known to 
clinical researchers, the aim of this tutorial is to pro-
vide an introduction to the joint modeling framework. 
The basic concepts are explained, and advantages of 
the joint model (JM) are illustrated by applying the 
method to patients after surgical repair of transposi-
tion of the great arteries (TGA). These patients face 
the risk of developing neoaortic root (Root) dilatation 
and neoaortic valve regurgitation (AR) during follow-
up postsurgery. In the study used as an illustration, 
longitudinal echocardiographic follow-up data, such 
as Root dimensions, are evaluated against the risk of 
developing AR.

We exhibit the different analysis steps that are 
needed for an accurate analysis. A time-dependent 
Cox model will be used as a benchmark method. Then 
we introduce the JM for longitudinal and time-to-event 
data methods and illustrate differences between the 2 
methods. Several extensions of the JM are employed 
to demonstrate the flexibility of the framework. Lastly, 
the JM is used to obtain dynamic predictions of the risk 
of the event for individual patients. This is an important 
step to make the models available for use in clinical 
practice, so when a patient comes into the clinic for 
a new visit, their risk can be updated using the new 
measurements.

DATA
The data come from a study of retrospective assess-
ment of serial echocardiographic data from patients 
born with a TGA, who were treated by arterial switch 

operation (ASO) shortly after birth with a maximum 35 
years follow-up (1977–2015). Patients with TGA with 
the following morphological subtypes were included: 
TGA and intact ventricular septum, TGA with ventricu-
lar septal defect, and patients with double outlet right 
ventricle with subpulmonary ventricular septal defect 
(Taussig-Bing anomaly). Echocardiographic data from 
all patients were analyzed by 2 observers by grad-
ing AR and measuring Root dimensions as previously 
described.2 In short, neoaortic diameters were deter-
mined from 2-dimensional parasternal long-axis view 
at different neoaortic levels; neoaortic valve annu-
lus, Root, and neoaortic sinotubular junction. AR was 
graded semiquantitatively on a 4-point scale: grade 
1, nontrivial; grade 2, mild; grade 3, moderate; grade 
4, severe regurgitation. Only good quality image data 
were assessed at approximately the following intervals 
after ASO: at 3, 6, 9, and 12 months, at 2, 3, and 5 
years and thereafter with 5-year intervals including the 
last available follow-up or image data before reopera-
tion for Root pathology. Demographic data and data 
on morphological and surgical details were retrospec-
tively assessed from hospital and outpatient records. 
Surgical details included for this study consisted of 
anatomy of the pulmonary valve (bicuspid or tricuspid 
valve leaflet); pulmonary artery banding for left ventric-
ular training before ASO; ASO performed > 6 months 
of age. For this tutorial, data from the neoaortic valve 
status, Root diameter, the body surface area (BSA), 
surgical details, and sex were used for the analysis 
and illustration.

The data set consists of 345 patients with a total 
of 1223 repeated measurements. On average, patients 
had 3 to 4 repeated measurements. The median age 
at operation was 9 days after birth (interquartile range, 
5–17 days). The median age at first assessment was 
1.9 (interquartile range, 0.3–7.1) years and at the last 
follow-up 9.8 (interquartile range, 4.4–15.3) years. At 
follow-up visits, the neoaortic dimensions are measured 
as well as the neoaortic valve status. During follow-up, 

Nonstandard Abbreviations and Acronyms

AR neoaortic valve regurgitation
ASO arterial switch operation
JM joint model
Root neoaortic root
TD Cox model time-dependent Cox model
TGA transposition of the great arteries

Table 1. Baseline Characteristics

 n %

Morphological subtype

 TGA-IVS 230 67

 TGA-VSD 89 26

 TBA 26 8

Sex (male) 228 66

Pulmonary valve (bicuspid) 21 6

Previous PAB 18 5

Age ASO ≥6 mo 12 3

ASO indicates arterial switch operation; PAB, pulmonary artery banding; TBA, 
Double outlet right ventricle with subpulmonary VSD (Taussig-Bing anomaly); 
TGA, transposition of the great arteries; TGA-IVS, TGA and intact ventricular sep-
tum; and TGA-VSD, TGA with ventricular septal defect.
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111 patients reached the end point of AR ≥grade 2 
(32%). The median age at which this end point was 
assessed was 8.5 [interquartile range, 3.5–11.5] years. 
Other important clinical variables can be found in 
Table 1.

Data Visualization
A first step into the analyses is a visual exploration of 
the marker trajectories over time. In this tutorial, we will 
be investigating the trajectories of the Root diameter 
(mm). Figure 1 shows the evolutions of this marker, 
where each line represents the evolution of a patient. 
The x axis represents the age of the patients in years. 
The figure is split into patients that reached the event 
of interest (AR≥grade 2) and the patients without the 
event.

All patients demonstrate rapid growth at the begin-
ning of the follow-up period as children, which pro-
gresses but attenuates from adulthood. There are, 
however, apparent differences in the evolutions; some 
patients’ Root dimension grows faster than others. 
Moreover, not every patient had the same number of 
measurements, the same start of follow-up, or the same 
follow-up time depending on the availability of high-
quality echocardiograms and the year of operation, 
respectively. Outpatient visits were planned according 
to the patients’ clinical status and residual abnormalities 
on the echocardiogram.

Modeling Strategies
Fictive simulated data, similar to the real dataset, is pub-
lically available online at https://github.com/SaraBaart/
Joint-Model-Tutorial. In the Data Supplement and on the 
GitHub page code is provided to run the analyses dis-
cussed in this tutorial.

Time-Dependent Cox Model
The aim of the analysis is to model time until certain 
degree of valve leakage (AR≥grade 2) is reached and to 
identify risk factors that contribute to the development of 
valve leakage, such as the echocardiographic measure-
ments. One strategy that is traditionally used for analyzing 
time-to-event data, is a Cox proportional hazards model.3 
When a risk factor is measured repeatedly over time, the 
Cox model can be extended to a time-dependent Cox 
model (TD Cox model), where the values of the longitu-
dinal factor can change over time.4 A difficulty in such 
markers is that their values are only known at the visit 
times. Therefore, an assumption has to be made about 
their values in between visit times. The TD Cox model cre-
ates a step-function path of the time-dependent covari-
ate and assumes that the value of the covariate stays 
constant in between 2 measurements when comparing 
marker values of patients with and without valve leak-
age. For this step function, it is possible to keep the value 
constant before or after the measurement. These options 
are visualized by the dashed lines in Figure 2A and Fig-
ure 2B, respectively.

The results of the TD Cox model can be found in 
Table 2 (TD Cox) and show the association between 
the repeatedly measured Root diameter and time 
to AR. The model additionally includes morphologi-
cal subtype, sex, pulmonary valve morphology, previ-
ous pulmonary artery banding, and age at surgery >6 
months as baseline covariates. Root diameter shows 
a nonsignificant association with the risk of AR, with 
a hazard ratio (HR) of 1.04 for each millimeter higher 
Root dimension (95% confidence interval [CI], 0.99–
1.09). In this analysis, the value of the Root dimension 
was assumed constant in the time period before it was 
measured.

In creating a step-function path of the longitudinal 
outcome and using the measured value of the marker 
to estimate the hazard, the TD Cox model also implies 
there is no measurement error. In case of biomarkers, 
this representation of the longitudinal outcome usu-
ally does not correspond to the real world. In the data 
studied in this tutorial, the Root diameter will, most 
likely, grow gradually over time and will not stay con-
stant between 2 measurements. When measurements 
are further apart in time, the TD Cox model will make 
a greater error, than if the measurements are close 
together in time. Additionally, the diameter needs to 

Figure 1. Individual trajectories of the neoaortic root 
dimension. 
Each line represents the trajectory of the echocardiographic 
measurements of the neoaortic root diameter of time in years. 
The lines in the left represent the patients that do not develop 
neoaortic valve regurgitation ≥grade 2, and the right represents 
the patients that do.
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Figure 2. Graphical representation of 2 versions of the time-dependent Cox model and the joint model (JM). 
A graphical representation of 2 versions of the time-dependent version of the Cox model (TD Cox model) and the JM. The dots represent neoaortic root 
measurements of 2 fictional patients, one that reaches the event at 15 y and one that remains event-free. The dashed lines represent the values used by 
the TD Cox model in the estimation of the hazard, as a step-function path, and the solid line the values of the JM, following a more natural trajectory. In 
(A), the TD Cox model assumes the value to remain constant before the observation and in (B) after the observation. The 2-sided arrow represents for 
each model the value of the nonevent patient used in the hazard at the time of the event, showing a big difference in the 2 versions of the TD Cox model.
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be assessed from an echocardiographic image, which 
can result in some measurement error. An additional 
assumption of the TD Cox model is that the availability 
of the measurement is not related to the event sta-
tus. This indicates that the longitudinal marker needs 
to be an exogenous or external variable. Examples of 
exogenous variables could be the nurse taking the 
examination on a visit or the air quality in the area. The 
root diameter is a measurement taken from the patient 
and is, therefore, an endogenous or internal variable. 
Because of these simplifications and assumptions of 
the longitudinal outcome, the TD Cox model is not the 
most suitable model for analyzing these data.

Joint Models
A more appropriate model to analyze data with these 
features is the JM for longitudinal and time-to-event 
data.5–7 The JM uses a separate regression model to 
describe the evolution of the marker over time and uses 
these estimated evolutions in a time-to-event relative 
risk model for the event of interest. A mixed-effects 
model is used to analyze the longitudinal marker over 
time, which combines fixed and random effects.8,9 The 
fixed effects estimate the population or average tra-
jectory of the marker. In our example, the fixed effects 
model the average root diameter trajectory during fol-
low-up. The random effects represent the deviation of 
each patient from this average trajectory. The random 
effects account for the correlation between repeated 
measurements from the same patient.

Instead of assuming a constant level of the longitudi-
nal marker between observed values, the mixed-effects 
model results in an estimated value of the marker at each 
point in time. In the JM, this estimated evolution is related 
to the event status (ie, the estimated Root diameter at the 
time of the event is used for the relative risk analysis). This 

can be seen in Figure 2A and 2B, where the solid lines 
represent the estimated marker trajectories by the JM.

BASIC JM
To estimate the JM on the TGA patient data, first sub-
models for the longitudinal outcome and the survival out-
come need to be specified.

For the longitudinal outcome, a mixed-effects model, 
as discussed in the previous section, is made to obtain 
an appropriate estimate of the evolution of the Root 
dilation. Based on Figure 1, we have seen that patients’ 
growth of the Root over time is not linear. This can be 
accounted for by specifying nonlinear time effects in 
the mixed model. There are multiple ways to model 
nonlinear effects in a model. Quadratic or higher-order 
polynomial terms can be added to the model to cap-
ture curvatures in the data. In this way the nonlinear-
ity is modeled globally, meaning that one curve is fitted 
for the entire range of values of the covariate. There 
are scenarios where this will not provide an accurate 
fit of the data. For example, an upward curve could be 
shown for low values of the covariate, but a flat plateau 
phase for higher covariate values. In this case, we want 
to model the nonlinearity locally, which can be done 
using splines.10,11 With splines, the range of values of 
the covariate is broken up into pieces, and curves are 
fitted locally to the separate pieces. The breakpoints 
where the function changes are called knots. The num-
ber of knots and the location of the knots should be 
chosen by the researcher beforehand. Restricted cubic 
splines are a type of splines, fitted in such a way that 
the different functions are connected smoothly at the 
breakpoints. In the current data set, we used restricted 
cubic splines with 2 knots placed at 2 and 10 years 
postoperatively.10,11 The cubic splines are used in the 
fixed and random effects parts of the model.

Table 2. Results From the TD Cox and JMs

Model Marker HR 2.5% 97.5% P value

TD Cox* Root 1.04 0.99 1.09 0.165

JM1† Root 1.14 1.08 1.21 0.000

JM1 (interval censoring) Root 1.15 1.08 1.22 0.000

JM2‡ (value) Root 1.10 1.04 1.18 0.006

JM2 (slope) Root 2.28 1.28 4.02 0.008

MVJM§ Root 1.16 1.09 1.24 0.000

MVJM BSA 0.22 0.02 1.70 0.158

The models estimate the relationship between repeated values of the Root dimension and the event of aortic regurgitation 
≥grade 2 (AR). All models include the baseline covariates: morphological subtype, sex, pulmonary valve morphology, previous 
PAB, and age operation >6 mo. AR indicates neoaortic valve regurgitation; BSA, body surface area; HR, hazard ratio; JM, joint 
model; MVJM, multivariate JM; PAB, pulmonary artery banding; Root, neoaortic root; and TD Cox, time-dependent Cox model.

*TD Cox: keeping the value constant before the measurement.
†JM1: The basic JM, which combines a linear mixed submodel and a survival submodel. In the second version of the model, 

the interval-censored nature of the data is taken into account.
‡JM2: The slope of the marker is modeled and added to the JM.
§MVJM: aortic root dimension is modeled together with repeated values of BSA.
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Second, the survival submodel is specified, which is 
a relative risk model, similar to a Cox proportional haz-
ards model. The longitudinal model for the root values 
is combined with the survival model by estimating the 2 
models jointly. Now, instead of using the measured value 
of the marker in the survival submodel, the marker value 
estimated by the mixed-effects submodel is used (repre-
sented by the solid gray line in Figure 2).

Statistical software has been developed for estimat-
ing JMs, such as the JMbayes package in R.12,13 Details 
on evaluating the diagnostics of the JM can be found 
in previous publications (Rizopoulos, 20126; Rizopoulos, 
201613). The results from the estimated JM (JM1) are 
shown in Table 2. The same baseline variables as in the 
TD Cox model are added as baseline covariates in the 
JM. Compared with the TD Cox model, the Root dimen-
sion shows a stronger and statistically significant asso-
ciation (HR, 1.14 [95% CI, 1.08–1.21]) with the event of 
AR (P<0.001).

Extensions of the JM
In the TGA patient data, the event status (whether or 
not the patient has reached AR) is only obtained at the 
visit dates. This means that the event times are interval 
censored; the event probably did not take place exactly 
on the day the patient has a visit but rather somewhere 
between this day and the previous visit (when the patient 
was still without the event). This can be incorporated by 
estimating a survival submodel that takes interval cen-
soring into account and is implemented in the software 
for the JM. The survival model that accounts for inter-
val-censored data is a parametric survival model; here, 
we assumed a Weibull distribution for the event times. 
We reestimated the JM including the interval censoring 
information (JM 1–interval censoring) in Table 2 and the 
HR for the Root dimension showed very little difference 
between the 2 models (1.15 [95% CI, 1.08–1.22] versus 
1.14 [95% CI, 1.08–1.21]).

Different Association Structures
Apart from relating the value of the marker to the risk 
of the event, the joint modeling framework allows for 
extensions assessing additional associations. Perhaps 
it is not (only) the value of the marker that is related to 
the event but the fact that the marker is growing rap-
idly at that moment. The growth rate, that is, the slope 
of the marker, can be added to the JM to analyze this 
relationship. The results for the JM that uses both the 
value of the Root dimension and the growth rate, along 
with the same baseline covariates as earlier, are shown 
in Table 2 (JM2). This model is estimated with the sur-
vival submodel that accounts for interval censoring. The 
growth rate of the Root has a significant positive relation 

with the hazard of the event. This means that the faster 
the root increases, the higher the risk of valve leakage 
becomes (HR, 2.28 [95% CI, 1.28–4.02], P=0.008). In 
this model, the value of the root remains significant, so we 
can conclude that the velocity of the Root has additional 
information on top of its absolute value at each point in 
time. Incorporating neoaortic growth rate together with 
absolute neoaortic dimensions may give additional infor-
mation on the risk of neoaortic regurgitation. In patients 
with aortopathy, current guidelines for surgical interven-
tions on aneurysmatic ascending aortas are mainly based 
on absolute diameter thresholds. Lower aortic diameters 
thresholds can be considered in case of additional risk 
factors, of which rapid aortic growth rate or the presence 
of moderate-to-severe aortic valve insufficiency are some 
of these factors.

Apart from the slope of the longitudinal marker, mul-
tiple other features can easily be included in the JM: 
lagged effects (if there is a delay in timing between the 
marker and its effect on the event) and area under the 
curve (if the cumulative burden of a marker has an effect 
on the event), etc.

Multiple Markers
The JM can also be extended by using multiple mark-
ers in the same JM. To illustrate this in our data, we 
included repeated values of the BSA of the patient in 
the model together with the Root dimensions. In this way, 
the association between the root diameter and the AR is 
conditioned on the BSA of the patient. This is of major 
importance in growing children, reflected by the TGA 
patient population used as example, but also serves for 
adult patients with different body stature. To estimate this 
multimarker model, a multivariate version of the mixed 
model is constructed, where the evolutions for both the 
root and the BSA are obtained. The multivariate mixed 
model additionally models the correlation between the 
2 markers. The multivariate mixed model is combined 
with the survival model to obtain a multivariate JM. The 
multivariate JM is again estimated accounting for interval 
censoring.

In the multivariate JM, the estimated value of the Root 
appears to still have a significant association when cor-
rected for repeated values of the BSA and the baseline 
covariates (HR, 1.16 [95% CI, 1.09–1.24], P<0.001), as 
seen in Table 2 (multivariate JM).

Dynamic Predictions
The estimated JM can be used to make individualized pre-
dictions. Based on a set of repeated values of the marker 
and relevant baseline covariates, the model can make pre-
dictions on future levels of the marker, and, more interest-
ingly, on the probabilities of a future event.14 With graphs, 
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it can be shown directly how adding new marker infor-
mation updates the event probability of a patient. This is 
demonstrated in Figure 3 for 2 patients of the TGA study. 

Each patient has 4 plots, with an increasing number of 
root measurements. On the left part of each plot, the root 
values are plotted with the estimated trajectory through 
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Figure 3. Dynamic predictions of the incidence probability for 2 patients.
Dynamic predictions for 2 real patients. The left part on each graph shows the values of the neoaortic root diameter and the estimated 
trajectory by the joint model. The right part shows the estimated probability of the event for that patient, including the 95% CI. In each graph, 
new measurements are added and the probabilities are updated. AR indicates neoaortic valve regurgitation.
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them. The right part of each plot shows the correspond-
ing predicted event probabilities for that patient, which are 
equal to one minus the survival probabilities. The shaded 
gray area represents the 95% CI. Both patients are female 
with a TGA and intact ventricular septum diagnosis.

The 2 patients start with one measurement for the 
Root and have at that moment similar estimated event 
probabilities. After this, patient A shows limited growth of 
the root values that stabilizes over time. This is translated 
to lower event probabilities when more measurements 
are added to the prediction. For patient B, however, the 
root values grow more rapidly, with corresponding high 
event probabilities.

In addition, the plots can indicate whether there are 
any strong misspecifications in the fitted longitudinal tra-
jectory. For both patients, the estimated longitudinal tra-
jectory corresponds to the observed Root measurements.

The time-dependent Cox model, as discussed earlier in 
the tutorial, cannot be used to make survival predictions 
in a dynamic matter because the anticipated changes in 
future values of the time-varying covariate are not incor-
porated in calculating survival predictions for a single Cox 
model. A related method that could be used for dynamic 
predictions is a landmark approach. With the landmarking 
approach, multiple Cox models are estimated at different 
time points during follow-up, including only the patients 
that are still at risk set at the time of interest. The land-
marking approach suffers from the same problem the 
time-dependent Cox model has in terms of dealing with 
endogenous covariates as discussed earlier in this tuto-
rial. Previous studies have compared dynamic predictions 
in the landmarking and the JM approach, in real-life data 
sets and different simulations scenarios.15–17 In most sce-
narios, predictions based on the JM approach were better 
than the results from the landmarking approach; however, 
it might perform worse when the trajectory of the longitu-
dinal marker is strongly misspecified in the JM (Rizopou-
los et al16 and Ferrer et al17). This finding highlights the 
importance to evaluate the fit of your estimated model.

DISCUSSION
Studies with repeated marker measurements over time 
and a long follow-up provide us with a wealth of informa-
tion, both on the trajectory of the marker and the risk 
of an event of interest. Currently, a time-dependent Cox 
model is often used to analyze the association between 
longitudinal measurements and a time-to-event outcome. 
For example, the data of this patient cohort after surgi-
cal repair for TGA was previously analyzed and reported 
in that way.2 However, this model is not optimal due to 
several restrictive assumptions that rarely hold in these 
types of data. Among them, the model keeps the marker 
constant between 2 time points of measurement. A JM is 
a more suitable option: it combines a mixed model with a 
relative risk survival model and relates an estimated value 

of the biomarker at each point in time to the risk of the 
event. Additionally, the JM allows for several extensions 
by incorporating other associations structures or com-
bining multiple markers in the model. Moreover, the JM 
can be used to estimate event probabilities of patients in 
a dynamic manner, by updating these each time a new 
biomarker measurement is added.

In the illustrative example used in this article, repeated 
measurements of neoaortic dimensions are analyzed 
together with time to AR≥grade 2, in patients who under-
went ASO for TGA with data from childhood to adulthood. 
Using a simpler time-dependent Cox model, the dimen-
sion of the Root does not appear to have a large nor sig-
nificant association with AR. The JM, however, shows a 
different result. In this modeling approach, the Root shows 
a stronger and significant association with AR≥grade 2. 
These results from these additional JM analyses were 
reported recently.18 The JM additionally allows for inclu-
sion of different aspects of a marker in the model. As 
shown, apart from using the diameter of the Root, the 
growth of these markers can be included in the model. In a 
different extension of the JM, a multimarker model can be 
constructed, illustrated by including the BSA which is of 
major importance in growing children with large changes 
in body stature over time. The use of dynamic predictions 
that can be obtained from the JM was illustrated using 
2 patients selected from the TGA patient data. Based on 
their repeated values of the Root, event probabilities were 
estimated in a dynamic manner. This entails that each time 
a new measurement is obtained, the new information is 
incorporated in the estimated probability. The 2 patients 
showed different evolutions of their Root, which corre-
sponded to different event probabilities. These dynamic 
predictions are implemented in software and can be made 
available to clinicians to update the event probabilities of 
a patient during each outpatient visit. Because the model 
incorporates the whole longitudinal trajectory, it is expected 
that these predictions based on the JM are more accurate 
than from more simple methods.

One major difference between the TD Cox model 
and the JM is how the models deal with the longitudi-
nal marker at time points in between visits. As discussed, 
TD Cox keeps the value of the marker constant between 
2 measurements, whereas the JM aims to estimate the 
complete trajectory. In the TGA patient data, these differ-
ences have led to contrasting conclusions on the asso-
ciation of the marker. In the TD Cox model we kept the 
value of the marker constant before the measurement as 
demonstrated in Figure 2A, which means that, in a sense, 
the model used information from the future. The value 
of the marker can also be assumed constant after the 
measurement instead of before, in which case a differ-
ent value of the marker will be used in the TD Cox model 
(Figure 2B). In this version of the model, the HR of the 
TD Cox increased to 1.36 (95% CI, 1.26–1.46, P<0.001). 
This indicates that in this specific data set the TD Cox 
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model is very sensitive to the choice of when to keep the 
marker constant, probably aggravated by the interval-
censored nature of the data. This issue is not present in 
the JM (Figure 2A and 2B), indicating that the JM has a 
more robust way of dealing with the longitudinal outcome.

This JM methodology has important research 
advances in congenital and acquired cardiovascular 
disease, useful for future personalized decision making 
and predictive cardiovascular medicine as shown in this 
tutorial. Repeated imaging, laboratory, and clinical param-
eters over a period of time can be evaluated simultane-
ously for their impact on morbidity and mortality.

In congenital cardiology, for example, joint modeling 
can aid in optimizing the timing for surgical pulmonary 
valve insertion in repaired tetralogy of Fallot patients 
which is of ongoing debate. These patients suffer from 
chronic pulmonary regurgitation resulting in right ven-
tricular volume overload with chamber dilatation (cardiac 
dimension, function, and heart failure laboratory values 
as longitudinal markers) and are at risk for the events 
cardiac dysfunction, arrhythmias, and sudden death (out-
come parameters). Benefits of pulmonary valve implan-
tation include recovery of cardiac function and chamber 
dilatation and joint modeling can aid in personalized 
decision making. Furthermore, joint modeling can serve 
as individualized prediction model to help prevent acute 
cardiac events (readmission, ventricular arrhythmias, or 
death) in patients treated for heart failure with echocar-
diographic, clinical, and laboratory measures as longitu-
dinal markers for monitoring.

CONCLUSIONS
Multiple modeling strategies are available to model the 
relationship between a longitudinal and a time-to-event 
outcome. Currently, a time-dependent version of the Cox 
model is used often; however, this model puts restrictive 
assumptions on the longitudinal marker. A more robust 
model is the JM for longitudinal and time-to-event data, 
which models the trajectory of the longitudinal outcome 
and relates this to the event of interest. Additionally, dif-
ferent associations and multiple markers can be incorpo-
rated into the JM, resulting in a flexible framework. The 
JMbayes package in R has been developed to easily run 
these models in practice. The software additionally allows 
calculating dynamic predictions of the survival outcome, 
so that the developed models can be used by clinicians 
treating patients.
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