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High-resolution episcopic microscopy (HREM) [1] is a straightforward method for
generating digital volume data of organic tissue samples sized between hundreds of cubic
microns and a few cubic centimeters. The data fit for immediate three-dimensional (3D)
computer visualization and spatial analysis of tissue architecture and gene expression
topology. Although specimen preparation and data generation are based on quite sim-
ple principles, the method is still constantly optimized and new scientific applications
are explored.

HREM already proved to fit for visualizing embryo anatomy and the tissue architecture
of samples and biopsies harvested from all sorts of animals, humans, plants, as well
as synthetic skin substitutes, coated and uncoated paper, and many other materials [2].
The HREM workflow involves harvesting, fixation, dehydration, and resin embedding,
followed by sectioning of the resin blocks on a special microtome. During sectioning,
images of all freshly exposed block faces are scanned to produce a virtual stack of several
thousands of perfectly aligned digital images [3–5]. The quality of the single images is close
to the quality of digital images captured in a light-microscopy setting. Numeric resolution
of the full 3D data is down to less than 1 cubic micron.

The collection of papers published in this Special Issue will provide and discuss
examples for utilizing HREM and introduce new technical developments and data
interpretation strategies.

Mark et al. [6] for example, study pathogenesis of anorectal malformations in a retinoic
acid receptor (RAR) knock out mouse line. They employ HREM for screening the phe-
notype of mouse embryos from E10.5 to E15.5 after silencing RAR-coding genes at E10.5
and E11.5. Thanks to their holistic application of HREM, they detected a wide array of
malformations, including the expected anorectal agenesis as well as malformations of the
urogenital and cardiovascular system and ocular and nasal defects. They demonstrated
that abnormalities of the umbilical arteries precede cloacal defects and concluded that the
investigated RAR pathway plays a significant role in the development of the umbilical
arteries and its derivatives. In summary, by relying on HREM imaging, the authors nicely
demonstrate the effects defective RAR signaling pathways have on morphogenesis. The
study thus emphasizes the usefulness of HREM for researching the mechanisms underlying
morphogenesis and malformations.

Wendling et al. [7] demonstrate the versatility of their HREM-apparatus and the
usefulness of HREM for characterizing tissues and organs of embryonic, but also adult mice.
They visualize the developing nervous and urogenital system of embryos and examine the
knee joint with ligaments as well as atherosclerotic plaques in the aorta of adult mice. Their
study relies on surface rendered models after segmentation of the studied structures and
demonstrates that HREM data fit for quick volumetric analysis. Furthermore, the results
underline the importance of volumetry for understanding the growth and development of
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biomedical model organisms and demonstrate the importance of HREM data for the exact
characterization of pathologies, such as atherosclerotic plaques in the adult mouse model.

The study of Pokhrel et al. [8], demonstrates that HREM is not limited to visualizing
mice. They work with the chick and study the role the cell cycle regulator WEE1 plays in
the diapause. Diapause refers to a developmental arrest that embryos of the blastoderm
stage enter, if the temperature of the environment decreases below 21 ◦C. The authors show
that WEE1 is upregulated at 12 ◦C and triggers an arrest of the cell cycle in the G2/M phase,
while at 18 ◦C, lower WEE1 levels cause prolonged cell proliferation and lower survival
rate. This was elegantly confirmed by exploring volume rendered computer models and
quantifications of blastodermal components based on HREM data.

Technical issues are addressed by Reissig et al. [9]. The authors systematically char-
acterize artefacts inherent to HREM data, by making use of more than 600 HREM data
sets of E14.5 mouse embryos, produced under standardized conditions in the scope of
the “Deciphering the mechanisms of developmental diseases” (DMDD) program. They
characterize and categorize the artefacts and provide information about their frequency.
In addition, they discuss the influence artefacts have on the correct interpretation of the
phenotype of mouse embryos and provide examples for pitfalls in diagnosing malforma-
tions. Hence, the results prepare scientists for working with HREM data and assist them
in their interpretation. Most importantly, they will form the basis for triggering efforts to
optimize specimen processing and data generation protocols in order to overcome or at
least minimize artefacts obscuring tissue information in HREM data.

Finally, Keuenhof et al. [10] address the role of HREM in novel, cutting-edge imaging
approaches. They provide examples of multimodal imaging pipelines, in which HREM
plays a central role. Such pipelines allow for multiscale 3D visualization of specimens,
through their subsequent imaging with multiple imaging methods. Imaging pipelines
thus provide the opportunity for a holistic visualization of organisms and materials at all
levels of resolution. Subcellular structures and functional information are visualized in
the context of cells, tissues, organs, and whole organisms. This sounds trivial, but a large
number of obstacles, chiefly caused by different specimen processing requirements, have
to be resolved. HREM proved to be combinable with quite a large number of different
imaging modalities, including (micro) magnetic resonance tomography/imaging (MR),
(micro) computed tomography (CT), optical coherence tomography (OCT), photo acoustic
tomography (PAT), histopathology, and others. The paper thus nicely demonstrates the
opportunities HREM offers in the scope of cross scale imaging.

In sum, this Special Issue represents a nice compendium of excellent research papers,
which cover all major aspects of HREM imaging. It therefore represents a useful resource
for exploring and using HREM in science, research, and teaching.
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