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Abstract: Resistance to trimethoprim and other antibiotics targeting dihydrofolate reductase may
arise in bacteria harboring an atypical, plasmid-encoded, homotetrameric dihydrofolate reductase,
called R67 DHFR. Although developing inhibitors to this enzyme may be expected to be promising
drugs to fight trimethoprim-resistant strains, there is a paucity of reports describing the develop-
ment of such molecules. In this manuscript, we describe the design of promising lead compounds
to target R67 DHFR. Density-functional calculations were first used to identify the modifications
of the pterin core that yielded derivatives likely to bind the enzyme and not susceptible to being
acted upon by it. These unreactive molecules were then docked to the active site, and the stability
of the docking poses of the best candidates was analyzed through triplicate molecular dynamics
simulations, and compared to the binding stability of the enzyme–substrate complex. Molecule 32
([6-(methoxymethyl)-4-oxo-3,7-dihydro-4H-pyrano[2,3-d]pyrimidin-2-yl]methyl-guanidinium) was
shown by this methodology to afford extremely stable binding towards R67 DHFR and to prevent si-
multaneous binding to the substrate. Additional docking and molecular dynamics simulations further
showed that this candidate also binds strongly to the canonical prokaryotic dihydrofolate reductase
and to human DHFR, and is therefore likely to be useful to the development of chemotherapeutic
agents and of dual-acting antibiotics that target the two types of bacterial dihydrofolate reductase.

Keywords: computer-aided molecular design; molecular dynamics; density-functional theory; molec-
ular docking; drug development

1. Introduction

Inhibition of dihydrofolate reductase (DHFR) is lethal to most cells, as it prevents
the synthesis of tetrahydrofolate, which plays a crucial role as a methyl donor in the
synthesis of thymidylate from uridylate. Several competitive inhibitors of dihydrofolate
reductase are therefore used as chemotherapeutic agents (e.g., methotrexate) or as antibi-
otics (e.g., trimethoprim, which binds much more strongly to the bacterial DHFR than to
human DHFR [1] and is therefore non-toxic for human cells). Several bacterial taxa ac-
quire resistance to trimethoprim through the acquisition of plasmid-encoded dihydrofolate
reductases [2–4], at least one of which (R67 DHFR, or Type II DHFR) bears no structural
resemblance to classical dihydrofolate reductases [5]. R67 DHFR is a soluble homo-tetramer
which contains a single symmetrical pore traversing the length of the molecule, lined
by amino acids from all four monomers and where folate and NADPH bind. The high
symmetry of the active-site-containing pore implies that evolution of catalytic ability in
R67 DHFR should face large constraints, as each mutation in the DHFR gene leads to either
no changes around the active site (if it occurs away from the pore-facing surface) or to four
simultaneous, symmetrical, changes which may have quite contradictory effects on the
ability of binding each of the substrates [6]. Individual mutations in the crucial V66-Q67-
I68-Y69 substrate-binding region are therefore most often deleterious [7–9]. Surprisingly,
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combinatorial exploration of the pore surface identified several instances where multi-
ple simultaneous mutations of the substrate-binding region afforded native-like activity,
whereas changing one of the amino acids in these mutants to the wild-type residue resulted
in total loss of activity [10]. Besides confirming the exquisite sensitivity of the active site to
individual changes, these data showed that catalysis by R67 DHFR does not require the
active intervention of specific amino acid sidechains (e.g., as proton donors/acceptors), but
is rather controlled by the spatial arrangement of folate vis à vis NADPH allowed by the
pore geometry, and by the general electrostatic environment of the cavity itself [10]. The
non-intervention of specific amino acids as catalytic aides is likely to be responsible for
its relatively modest catalytic activity, which is 200-fold lower [11] than that of the highly
optimized chromosomally encoded enzyme [12].

Due to the remarkable differences in selectivity of the different classes of DHFR, the de-
velopment of drugs targeting the trimethoprim and methotrexate-resistant, plasmid-borne,
bacterial R67 dihydrofolate reductases may enable potent antibiotic activity accompanied
by low toxicity to human cells. In spite of this, limited effort has been expended so far in
this endeavor which has resulted in the discovery of a single class of symmetrical com-
petitive inhibitors based on 1H-benzimidazole-5-carboxylic acid [13,14] with low toxicity
towards mammalian cells, but limited potential for use as drugs due to relatively low
affinity towards the target DHFR (Ki = 2–4 µM, instead of the nanomolar range usually
required for a successful drug). The present paper describes a computational search for
dihydrofolate analogues, which may competitively bind to DHFR. Molecular dynamics
simulations of the best candidates show that their interaction with the enzyme is better
than that of the natural substrate, strongly suggesting that they may be suitable for further
development as lead compounds for novel DHFR-targeting drugs. Moreover, the best
candidate is shown to also bind strongly to the chromosomally encoded “regular” DHFR,
as well as to human DHFR, enabling it to be further improved into broader-spectrum
antibacterial and chemotherapeutic agents.

2. Results and Discussion
2.1. Computational Development of Unreactive Analogues of Folate

Direct hydride transfer from NADPH to non-protonated folate has been shown to be
prohibitively expensive in the canonical dihydrofolate reductase from E. coli [15], therefore
requiring substrate reduction to be preceded by protonation of the substrate N5-atom.
The same energetic constraints are present in the plasmid-borne dihydrofolate reductase,
where substrate turnover has moreover been shown to require the substrate N5-atom to
be protonated by solvent, due to the absence of a proton donor in the active site [16].
Development of a substrate analogue into an effective competitive inhibitor therefore
requires that, besides having a high affinity for the active site of the enzyme, the selected
substrate analogue should be not only resistant to protonation in its N5-position but also
unreactive towards NADPH in its N5-deprotonated form, to prevent it from reacting with
NADPH in any of its potential protonation states. The required resistance to N5-protonation
in turn implies that, in order to act as an inhibitor, the candidate must be able to bind to the
plasmid-borne dihydrofolate reductase in the deprotonated state. The successful design of
putative inhibitors therefore required us to ascertain the proton affinity and redox potential
of each potential analogue.

Candidate analogues of the dihydropterin core were designed through sequential
substitution of the heteroatoms in the pteridine system, as well as replacement of the amine
substituent by neutral groups (aiming at obtaining less reactive analogues) or positively
charged groups (to enable better binding through interactions with the phosphate groups
in the NADPH) (Figure 1).
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Figure 1. Putative inhibitors tested in this work. Differences from dihydrofolate (molecule 1) are
highlighted in grey. The pteridine core of methotrexate (which does not inhibit the plasmid-borne
dihydrofolate reductase [3]) is depicted as molecule 15.

Quantum chemical computations were then performed as described in the Methods
Section. Most substitutions tested afforded less basic molecules than the original folate
(Table 1). Interestingly, the effect of most substitutions proved to be additive: for example,
the extra basicity of molecule 4 (which has been mutated from dihydropterin in two
positions) is almost exactly predicted by the individual effects of each of the individual
mutations (2 and 3). The only exceptions to this pattern were observed in the molecules
where N8 had been replaced by O simultaneously with the replacement of N5 by CH. In
contrast to what was observed for the protonation affinities, two thirds of the substitution
patterns tested were found to facilitate the reduction of the pteridine analogues, and in
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a third of the cases even decreasing the reduction energy to values below 22 kcal.mol−1,
which is the theoretical limit below which their reduction by NADPH can be performed at
reasonable rates (1 h−1) at room temperature.

Table 1. PBE0/6-311+G(2d,p)//PBE0/6-31+G(d) energies for the protonation (at position 5) and
hydride transfer from NADH to each molecule (in its original protonation state). Bolded values
show molecules significantly less basic than the pteridine core (>10 kcal·mol−1 difference) or with
reduction energies above 22 kcal·mol−1.

Molecules
Protonation Energy

(kcal/mol)
(vs. Dihydrofolate Core)

Reduction by
NADH

(kcal/mol)
Molecule

Protonation Energy
(kcal/mol)

(vs. Dihydrofolate Core)

Reduction by
NADH

(kcal/mol)

1 0.0 35.2 17 10.6 28.0
2 4.0 28.8 18 8.2 26.2
3 2.8 33.5 19 10.5 22.9
4 7.0 26.3 20 20.1 46.0
5 9.4 22.0 21 26.0 37.2
6 −2.9 38.4 22 25.1 40.2
7 −9.1 39.6 23 33.8 32.2
8 1.8 33.2 24 7.9 4.5
9 −0.4 36.3 25 8.2 20.3
10 −2.4 37.8 26 11.4 2.3
11 13.9 53.8 27 11.7 3.6
12 2.2 30.5 28 16.1 2.2
13 9.8 23.8 29 8.6 16.1
14 9.0 5.8 30 11.7 16.2
15 16.8 40.7 31 29.4 35.5
16 8.7 10.4 32 32.3 32.0

The intersection of the sets of molecules predicted to have much lower basicity than
dihydropterin and to strongly resist reduction by NADPH afforded seven hits with suit-
able chemical inertness: 11, 15, 20–23, 31 and 32. Docking of these molecules into the
active site of NADPH-bound R67 dihydrofolate reductase suggested (Table 2) that the
positively charged molecules 31 and 32 were the most likely to afford better binding than
the dihydropterin core of dihydrofolate (1). Molecular dynamics simulations of those com-
plexes were therefore performed and compared with similar simulations of the predicted
complexes bearing either dihydropterin or the full folate molecule.

Table 2. Dissociation energies (kcal·mol−1) of selected molecules from the active sites of selected
dihydrofolate reductases, computed using the Autodock scoring functions on the highest-scoring
docking poses.

Molecules R67 DHFR
(PDB: 2RK1)

Human DHFR
(PDB: 4M6K)

S. aureus DHFR
(PDB: 3FRE)

1 5.85 6.58 5.57

11 5.81 6.61 5.03

15 5.00 4.39 4.55

20 6.29 6.93 5.81

21 6.76 7.42 5.97

22 5.91 6.40 5.76

23 6.01 6.76 6.09

31 7.94 8.40 7.89

32 6.94 7.78 6.70
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2.2. Binding Stability of the Unmodified Dihydropterin Core (Molecule 1)

The deprotonated form of the dihydropterin core (molecule 1) was surprisingly shown
by our MD simulations to have remarkably low affinity towards the R67 DHFR active
site: it completely separated from the protein in less than 30 ns in two of the triplicate
simulations, and disengaged before 50 ns had elapsed in the last simulation (Figure 2).
Although N5-protonation of this molecule moderately increased its affinity to the active
site and enabled it to remain bound to it and in close proximity to NADPH in two out
of three simulations (Figure 3), these results clearly show that the dihydropterin core is,
by itself, not very prone to interact with R67 dihydrofolate reductase, especially in the
deprotonated state. The productive binding of folate with R67 DHFR needed for catalysis
to occur must therefore be primarily due to other factors, such as the interactions of its
p-aminobenzoylglutamate tail with specific features of the protein surface, as already hinted
at by previous experimental studies [17].

Figure 2. Evolution of contacts between the dihydropterin core (molecule 1) and R67 DHFR along
multiple simulations. red: number water molecules < 3 Å from the ligand; green: number of
aminoacid residues < 3 Å from the ligand; violet: number of H-bonds between protein surface and
the ligand; blue: number of H-bonds between NADPH and the ligand.

Figure 3. Evolution of contacts between the N5-protonated dihydropterin core (molecule 1) and
R67 DHFR along multiple simulations. red: number water molecules < 3 Å from the ligand; green:
number of amino acid residues < 3 Å from the ligand; violet: number of H-bonds between protein
surface and the ligand; blue: number of H-bonds between NADPH and the ligand.

2.3. Binding Dynamics of Folate in the R67 DHFR Channel

To ascertain the role of the benzoylglutamate tail in folate binding, we performed
additional simulations with the complete ternary R67 DHFR:folate:NADP+ complex in both
the N5-protonated (Figure 4) and the N5-deprotonated (Figure 5) states. As expected from
the experimental observations, folate remained bound to the protein, but the simulations
revealed considerable variation in binding mode throughout (and between) simulations,
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with remarkably little reliance on specific interactions such as those between the negatively
charged benzoylglutamate tail and the two positively charged Lys32 residues present at
the entrance of the pore: indeed, we found that the distances between those groups varied
much more widely than observed in previous (shorter) molecular dynamics/empirical
valence bond studies of the complex with protonated folate [18]. Our simulations are
therefore in better agreement than previous studies with the lack of well-defined binding
orientation of the glutamate tail observed in NOE [19] and crystallographic studies [5,20].

Figure 4. Evolution of key distances between N5-deprotonated dihydrofolate and R67 DHFR along
multiple simulations (A–C). Dark orange: distance between 2′-phosphate and folate N3-H; violet:
distance between Gly64 C=O and folate N3-H; light blue: distance between Val66 C=O and folate
N8-H; dark blue: distance between nicotinamide C4 and folate C6; green: distance between Val66 NH
and folate C=O; violet: distance between Thr51A C=O and folate NH2 group. (D–F): the final poses
obtained at the end of each 50 ns simulation. Most amino acids have been hidden for clarity.

Interestingly, whereas the N5-protonated dihydrofolate is known to be the catalytically
active substrate, the binding profiles are actually much more stable for the deprotonated
dihydrofolate: in this form, the reactive dihydropterin C6 and nicotinamide C4 atoms
consistently lie around 4 Å from each other (Figure 5), whereas in the simulations of the
N5-protonated dihydrofolate the extra positive charge on the dihydropterin is attracted
towards the negatively charged phosphate present in the 2′-position of the NADP+ ribose
ring, quickly leading to larger distances between the dihydropterin C6 and nicotinamide
C4 atoms, and in one of the simulations of the N5-protonated dihydrofolate (Figure 4A,D)
the substrate was actually seen to bend over itself. Regardless of whether this bending
represents a frequent event or is an artifact caused by electrostatic repulsion between
the protonated dihydropterin core and the oxidized NADP+ present in our simulations,
the other five simulations establish the better capacity of the deprotonated substrate to
achieve a productive conformation in the active site. It therefore appears that, in spite
of the requirement of protonation of the ligand by the solvent, the structure of the active
site forces this protonation to occur only after substrate binding, in an active site that is
devoid of proton donors. This factor may contribute to the low kcat/KM of this enzyme
(≈1000 times lower than that of its chromosomally encoded counterpart [6]): the enzyme-
substrate complex is only stable when the substrate is in the deprotonated (unreactive)
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form, but since catalytic competence can only be achieved upon protonation and the active
site is bereft of proton-donating sidechains, substrate conversion will only occur during the
small portion of ligand dwelling time in the active site when a rare hydronium from bulk
solution coincidentally wanders into it.

Figure 5. Evolution of key distance between N5-protonated dihydrofolate and R67 DHFR along
multiple simulations (A,C,E). Light-green: distance between 2′-phosphate and folate N3-H; violet:
distance between 2′-phosphate and folate NH2 group; light blue: distance between Val66 NH and
folate N1; dark blue: distance between Gly64 C=O and folate NH2; orange: distance between Lys32C
and folate glutamyl carboxylate; red: Lys32D and folate glutamyl carboxylate. (B,D,F): the final poses
obtained at the end of each 50 ns simulation. Most amino acids have been hidden for clarity.

2.4. Binding Dynamics of Candidates 31 and 32 in the R67 DHFR Channel

Molecules 31 ([6-(methoxymethyl)-4-oxo-3,7-dihydro-4H-pyrano[2,3-d]pyrimidin-2-
yl]ethylamine) and 32 ([6-(methoxymethyl)-4-oxo-3,7-dihydro-4H-pyrano[2,3-d]pyrimidin-
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2-yl]methyl-guanidinium) were designed with a positively charged substituent on C2 to
enable them to dock more strongly into the active site through electrostatic interactions
with the anionic diphosphate present in NADPH. This strategy proved fruitful, since both
candidates remained tightly bound throughout the triplicate simulations, in contrast to the
bare dihydropterin core. Their detailed behavior, however, was quite distinct because, in
spite of similar initial docking positions, the two molecules ultimately assume different
positions relative to NADPH: the guanidinium portion of molecule 32, which bears a highly
delocalized positive charge in a bulky substituent, sandwiches itself in the NADPH groove
formed by the adenine heterocycle, the phosphates, and the nicotinamide, whereas the
amino group in molecule 31, with its concentrated positive charge on a small substituent,
is instead attracted to the phosphate appended to the adenosine ribose C3, so that the
ligand maneuvers itself towards the opposite face of the NADPH molecule (Figure 6). As a
consequence, molecule 31 settles into a position where enough room is left between it and
NADPH (Figure 7A) and folate can still approach the nicotinamide ring unimpeded (as
shown in the upper panels of Figure 7), whereas a portion of molecule 32 always remains
within 4 Å of the nicotinamide ring (Figure 6B), where it completely blocks the productive
binding of folate (as shown in the lower panels of Figure 7).

Figure 6. Binding modes and evolution of key ligand-NADPH distances along three molecular
dynamics simulations for ligand 31 (A) and ligand 32 (B). NADPH is depicted as sticks, ligands
as solid atom sphere models. Each line in the graph corresponds to the evolution of the distance
between the atoms connected with an arrow of the same color in the left-most panel.

To obtain estimates of the interaction strength between molecule 32 and R67 DHFR,
umbrella sampling simulations of the separation process were performed. The interior of
R67 DHFR forms a channel, and therefore two possible separation directions are possible:
either through the “bottom” of the channel (where the adenine moiety of NADPH lies)
or to the top of the channel (where the Lys32 residues involved in interactions of the
benzoylglutamate chain in folate lie). Analysis of these results through the weighted-
histogram analysis method (WHAM) showed that the complex is quite strongly bound,
as ligand separation from its stable position through the bottom of the channel has an
unfavorable barrier of approximately 12 kcal/mol (Figure 8).
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Figure 7. Final binding modes (after 50 ns) of molecule 31 (A–C): three replicate simulations, shown
in the same relative orientation; and molecule 32 (D–F): three replicate simulations, shown in the same
relative orientation, rotated ≈ 90◦ relative to the orientation of panels (A–C). NADPH is depicted as
sticks, ligands as solid atom sphere models. In each panel, the crystallographic position (PDB:2RK1)
of the dihydropterin core of folate is depicted as yellow solid atom sphere models.

Figure 8. Potentials of mean force of the separation of ligand 32 from each of the three examined
dihydrofolate reductases.

2.5. Analysis of the Binding of Molecule 32 Able to Other Dihydrofolate Reductases

Chromosomally encoded prokaryotic dihydrofolate reductases have a very different
overall structure and active site architecture from the plasmid-borne R67 DHFR: instead of
a homotetrameric structure enclosing a full-length channel where NADPH and substrate
bind, they are monomers where NADPH binds to a long surface cleft that leads into the
active site pocket, to which the folate binds through an opening on the opposite side
(Figure 9A). The differences in active site architecture are responsible for the different
affinity of both enzymes to inhibitors such as trimethoprim, and it is therefore possible that
a good inhibitor towards one of the forms will not be active towards the other. Docking our
candidate molecules into chromosmal DHFR from S. aureus (3FRE) suggested that molecule
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32 would be a better binder than the dihydrofolate core. Further analysis of the binding
mode showed that the 32 binds in a peculiar way: whereas in dihydrofolate-bound protein,
the long hydrophilic benzoylglutamate forces the pterin to orient its lactam-containing ring
towards the bottom of the active site, in molecule 32 the bulky hydrophilic substituent
(guanidinium) is attached to the lactam-containing ring substituent on the pterin ring,
which forces the docking pose to have the opposite orientation of the pterin ring to ensure
that the hydrophilic portion is oriented towards the open protein surface. This binding
pose is, nonetheless, extremely stable: all triplicate simulations showed that the inhibitor
remained very tightly bound to the active site, both through interactions with NADPH
and with the active site residues (Figure 9). Attempts to separate the ligand from the
active site by introducing an artificial force constant between the guanidinium and the
bottom of the active site pocket and sequentially increasing the equilibrium distance of
this artificial spring enabled us to compute the potential of mean force of the separation
process (Figure 8). This value (11.5 kcal/mol) is very similar to the value obtained for
ligand separation from the plasmid-borne DHFR, which suggests that this molecule can be
used to control microorganisms bearing any of these types of dihydrofolate reductases.

Figure 9. Comparing binding modes of chromosomally encoded prokaryotic dihydrofolate reductase
towards dihydrofolate and molecule 32. (A) Active site architecture of dihydrofolate-bound DHFR
from S. aureus (PDB:3FRD); (B) final binding mode (after 50 ns) of molecule 32. Protein orientation is
the same as in the right-most panel of Figure 8A; (C–E): evolution of number of contacts between
molecule 32 and NADPH/protein in three replicate simulations: green: number of protein atoms
within 3 Å of ligand; red: number of NADPH atoms within 3 Å of ligand; blue: number of residues
within 3 Å of ligand.

The ability of candidate 32 to bind human DHFR was also analyzed (Table 2). Eu-
karyotic and prokaryotic chromosomal DHFR share a similar fold, and their structural
differences are modest: an additional 10-aminoacid stretch between helix α1 and sheet β4,
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11 aminoacids between α3 and β10 and an insertion of several aminoacids in the middle of
the stretch what would otherwise form sheet β10 (Supplementary Materials Figure S1). The
insertion between helix α1 and sheet β4 is responsible for the differences in the dynamic
behavior observed upon substrate binding [21], and we observed that this subtle difference
allows 32 to bind the eukaryotic enzyme in a manner similar to the one observed during
folate binding (i.e., with the lactam ring of the pteridine pointing towards the bottom of the
cavity). Triplicate molecular dynamics simulations showed that the binding of 32 is also
very stable in this case, as it consistently remains in the pocket defined by the nicotinamide
ring, the N-terminal of helix α1, and the β-sheets segments Ile-7-Val8 and Phe134-Tyr136
(Figure 10).

Figure 10. Stability of the binding mode of molecule 32 at the human DHFR active site. (A) Represen-
tative snapshot of a trajectory of ligand-bound human dihydrofolate-bound DHFR; (B–D) evolution
of key ligand-protein distances in three simulations. Each line in the graph corresponds to the
evolution of the distance between the atoms connected with an arrow of the same color in panel (A):
blue for NADPH:ligand distance, red for the Val8 carbonyl:guanidinium distance and green for the
Ile7 carbonyl:ligand N1-atom distance.

Comparison of the binding stability of 32 with that of the unmodified pteridine core 1
further highlighted the remarkable binding affinity of our novel ligand: the pteridine core
1 proved to be only weakly bound by the active site (Figure 11): in one of the simulations
(Figure 11B) the ligand completely left the protein in less than 30 ns, whereas in each
of the other two replicates the ligand assumed different binding modes: either moving
(Figure 11C) towards Ile7 carbonyl (which keeps within a reactive distance relative to
the nicotinamide ring), or in the opposite direction, towards Thr56, Ser59 and Val 115
(Figure 11D). The ability of folate to bind to the active site of human DHFR is therefore,
(as in the R67 DHFR) not due to the pteridine core, but can be attributed instead to the
favorable interactions of the p-aminobenzoylglutamate tail with the Arg70, Arg32 and
Arg28 present at the entrance of the channel leading to the active site.
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Figure 11. Stability of the binding mode of molecule 1 at the human DHFR active site. (A) Rep-
resentative snapshot of a trajectory of pteridince core-bound human dihydrofolate-bound DHFR;
(B) evolution of ligand-protein contacts in the simulation where unbinding was observed. Red:
number water molecules < 3 Å from the ligand; green: number of amino acid residues < 3 Å from the
ligand; violet: number of H-bonds between protein surface and the ligand; blue: number of H-bonds
between NADPH and the ligand. (C,D) Evolution of key ligand-protein distances in the remaining
two simulations. Each line in the graph corresponds to the evolution of the distance between the
atoms connected with an arrow of the same color in panel (A).

Finally, umbrella sampling simulations of the unbinding process of the complex
between human-DHFR: 32 were performed to obtain the potential of mean force. The
results (Figure 8) show that our novel ligand binds even more strongly to human DHFR
than to the two bacterial DHFR, which raises the tantalizing possibility of its use in anti-
cancer applications, like other human DHFR inhibitors like methotrexate.



Antibiotics 2022, 11, 779 13 of 16

3. Materials and Methods
3.1. Quantum Chemical Computations

Quantum chemical computation of the proton affinity and reduction energies of folate
analogues were performed using with the Firefly quantum chemistry package [22], which
is partially based on the GAMESS (US) source code [23]. The geometries of every analogue
were optimized using the PBE0 density-theory functional [24,25] and 6-31+G(d) basis
set with the help of autogenerated delocalized coordinates [26]. Single-point energies
of the DFT-optimized geometries were then calculated using the same functional using
the 6-311+G(2d,p). This particular combination of methods was earlier [27] shown to
afford extremely small errors in protonation and reduction energies of NADH and other
organic molecules. Solvation effects were computed using the Polarizable Continuum
Model [28–30] implemented in Firefly.

3.2. Molecular Docking and Molecular Dynamics

Docking and molecular dynamics computations were performed in YASARA [31]
using the 1.26 Å resolution crystal structure of R67 dihydrofolate reductase bound to
NADPH and dihydrofolate (PDB: 2RK1) [20]. After excising the dihydrofolate ligand
from the crystal structure, dihydrofolate-based ligands (Figure 1) were locally docked
the wild-type structure with AutoDock 4.2.3 [32] using its Lamarckian genetic algorithm
with default docking parameters and point charges assigned according to the AMBER14
force field [33]. The docking volume consisted of a 17.23 Å × 13.25 Å × 19.20 Å box
centered on the crystallographic position of the dihydropterin moiety of the folate ligand.
Selected ligands were also docked to the wild-type structure of human dihydrofolate
reductase (PDB:4M6K) [21] bound to NADP+ and folate, after excising the folate ligand.
The docking volume in this instance consisted of a 14.68 Å × 15.03 Å × 18.92 Å box
centered on the crystallographic position of the dihydropterin moiety of the folate ligand.
The docking box for S. aureus dihydrofolate reductase (PDB:3FRE) was a cube 77 Å wide that
completely surrounded the whole protein. The ligands with higher dissociation energies
were selected for further study through molecular dynamics. All molecular dynamics
simulations were run with the AMBER14 forcefield [33], using a multiple time step of
1.25 fs for intramolecular and 2.5 fs for intermolecular forces. Simulations were performed
in cubic cells at least 10 Å larger than the solute along each axis (65.9 Å wide for R67 DHFR,
72.00 Å wide for human DHFR), and counter-ions (22 Cl− and 25 Na+ for R67 DHFR,
31 Cl− and 33 Na+ for human DHFR) were added to a final concentration of 0.9% NaCl. In
total, the simulation contained approximately 28,900 atoms (R67 DHFR) and 37,300 atoms
(human DHFR). A 7.86 Å cutoff was taken for Lennard–Jones forces and the direct space
portion of the electrostatic forces, which were calculated using the Particle Mesh Ewald
method [34] with a grid spacing <1 Å, 4th order B-splines and a tolerance of 10−4 for the
direct space sum. Simulated annealing minimizations started at 298 K, velocities were
scaled down with 0.9 every ten steps for a total time of 5 ps. After annealing, simulations
were run at 298 K. Temperature was adjusted using a Berendsen thermostat [35] based
on the time-averaged temperature, i.e., to minimize the impact of temperature control,
velocities were rescaled only about every 100 simulation steps, whenever the average of
the last 100 measured temperatures converged. Substrate parameterization was performed
with the AM1BCC protocol [36,37]. All simulations were run for at least 50 ns.

3.3. Computation of Potentail of Mean Force Using Umbrella Sampling/Wheighted Histogram
Analysis Method

Umbrella sampling was performed on the complexes of molecule 32 with each DHFR
to obtain an estimate of their relative binding energies. Fifteen windows were used for each
system to sample the position of the ligand within the binding cavities. The centers of the
umbrella potentials were spaced by 0.8 Å. In each window, a harmonic potential of the form
V = 1/2k(x− x0)

2 with a force constant of 5.0 kcal/mol/Å2 was used to apply the distance
restraints between a ligand atom (generally chosen as the carbon atom in the guanidinium
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moiety of the ligand) and a protein atom (Cα Val31, for S. aureus DHFR; Cα Ile7, for human
DHFR; Cα Gln67A, for R67 DHFR). For human DHFR, the ligand atom was instead chosen
as the outermost methyl carbon of the methoxymethyl group on the ligand. Sampling was
performed for 5.2 ns in each bin, of which the first 1.2 ns were used to enable the ligand to
relax into the position defined by the new equilibrium distance of the harmonic potential
and were therefore eliminated from the analyses. Statistics were thereafter collected every
0.5 ps. The potentials of mean force were obtained from the statistical distribution of the
distances between the ligand and protein atoms in the restrained coordinate through the
weighted histogram analysis method (WHAM) [38,39] using a bin size of 0.2 Å.

4. Conclusions

The docking and molecular dynamics studies above show that candidate 32 strongly
binds to the to both types of prokaryotic dihydrofolate reductase, as well as to human
DHFR. Its direct use as an antibiotic agent in clinical settings may therefore be expected to
yield undesired side-effects through the inhibition of human cell metabolism. Such side-
effects of its intended antibiotic use may be mitigated if 32 is instead used as a scaffold for
the development of improved molecules that (for example) are unable to enter human cells
or modifying it so that it would be quickly metabolized by liver enzymes upon intestinal
absorption, so that it would never reach high concentrations in the systemic bloodstream.
Further improvements of 32 in the direction of increased human toxicity (e.g., through
enhanced binding caused by inclusion of the p-aminobenoylglutamate tail responsible for
the large increase of affinity of dihydrofolate compared to the bare core 1) may, on the
other hand, afford better chemotherapeutic entities for use against fast-dividing, cancerous,
cells. We expect this report to stimulate such developments towards the synthesis of novel
anti-cancer drugs, as well as human-tolerated dual-acting antibiotics that target the two
types of bacterial dihydrofolate reductase.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics11060779/s1, Figure S1: Structure and sequence comparison of human and S. au-
reus DHFR.
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