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TADfit is a multivariate linear regression model for
profiling hierarchical chromatin domains on
replicate Hi-C data
Erhu Liu 1, Hongqiang Lyu 1,2✉, Qinke Peng1, Yuan Liu1, Tian Wang3 & Jiuqiang Han1,2

Topologically associating domains (TADs) are fundamental building blocks of three dimen-

sional genome, and organized into complex hierarchies. Identifying hierarchical TADs on Hi-C

data helps to understand the relationship between genome architectures and gene regulation.

Herein we propose TADfit, a multivariate linear regression model for profiling hierarchical

chromatin domains, which tries to fit the interaction frequencies in Hi-C contact matrix with

and without replicates using all-possible hierarchical TADs, and the significant ones can be

determined by the regression coefficients obtained with the help of an online learning solver

called Follow-The-Regularized-Leader (FTRL). Beyond the existing methods, TADfit has an

ability to handle multiple contact matrix replicates and find partially overlapping TADs on

them, which helps to find the comprehensive underlying TADs across replicates from dif-

ferent experiments. The comparative results tell that TADfit has better accuracy and

reproducibility, and the hierarchical TADs called by it exhibit a reasonable biological

relevance.
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Previous studies suggest that the three-dimensional archi-
tecture of eukaryotic genome is non-random and organized
into complex stratums1–4. Knowledge about genome

architectures is helpful for understanding multiple cellular pro-
cesses, such as epigenetic organization5, gene regulation6–8, and
DNA replication timing9. As a derivation of chromosome con-
formation capture technology, Hi-C has been widely used to
investigate the spatial organization of genome for its ability in
profiling chromatin interactions on a genome-wide scale. It
produces up to billions of paired-end reads, which can be binned
into a contact matrix10, and the element in this contact matrix
reflects the interaction frequency (IF) between the corresponding
pair of genomic loci. Hi-C technology has brought a deeper insight
into the chromatin organization at multiple levels, including A/B
compartment10,11, topologically associating domain (TADs)3,4,
and chromatin loops7,12. Among them, TADs are structural blocks
composed of genomic regions that show a high degree of self-
interacting, and play an important role in guiding and con-
straining long-range regulation of gene expression13–15. Getting
off the ground, TADs were regarded as disjoint functional blocks
of genome, which makes the concerns focused on their bound-
aries. It was observed that TAD boundaries are enriched for
insulator binding protein CTCF, housekeeping genes, specific
cohesion complexes, and histone marks3,16, and the disruption of
these boundaries may result in misregulation and even
diseases17,18. Further studies showed that TADs exhibit structural
heterogeneity and functional diversity, which cannot be explained
with traditional disjoint organization of TADs19–21. Thus, the
internal substructures, known as sub-TADs nested within meta-
TADs, were subsequently investigated21–23. It was found that
these hierarchical sub-TADs have different transcriptional activ-
ities, they are segregated into compartment A or B, and exhibit
distinctive epigenetic features, such as histone marks and gene
expression level, while the larger meta-TADs appear to be more
stable24,25. Currently, some partially overlapping TADs have also
been reported26–28. They are considered to be associated with
weak border or transition zone of two adjacent TADs, and may
play an important role in gene regulation29.

A variety of computational methods have been proposed to
identify TADs on Hi-C contact matrix. According to whether the
hierarchical structures of TADs are considered, they can be
roughly divided into two categories. One category regards TADs
as insulated regions without mutual containing or overlapping,
such as Directionality Index (DI)3, HiCSeg30, Insulation Score
(IS)31, TopDom32, and ClusterTAD33. Among them, DI, IS, and
TopDom are all linear score approaches, the difference is that DI
scores each bin with a defined directionality index and infers TAD
boundaries with the help of a hidden Markov model, while IS and
TopDom determine boundaries by locating a local minimum
insulation bin via a customized insulation square and diamond-
shaped area, respectively. HiCSeg and ClusterTAD are separately
statistical and clustering approaches, the former calculates an
optimal segmentation by solving a maximum likelihood estima-
tion problem with dynamic programming, and the later detects
TAD boundaries using an unsupervised clustering algorithm34.
The other category takes into account sub-TADs nested
within meta-TADs, such as TADtree22, GMAP23, CaTCH35,
3DNetMod28, OnTAD25, SpectralTAD36, and TADpole37. Among
them, TADtree and GMAP both rely on statistical models of the
interaction distributions, to the best of our knowledge, the former
is the first publicly available approach to detect nested TADs by
optimizing an objective function that describes the hierarchy of
TADs, while the later achieves the same purpose by combining
Gaussian mixture model with proportion test. CaTCH and
OnTAD are considered to be hybrid linear score approaches
which determine nested TADs from candidate ones with the help

of customized score functions. 3DNetMod is a graph-theory-based
approach which can handle nested and partially overlapping
TADs by optimizing network modularity. And SpectralTAD and
TADpole are clustering approaches, the former determines nested
TADs via spectral clustering algorithm, while the later via con-
strained hierarchical clustering. The two categories of methods are
devoted to the identification of disjoint and nested TADs,
respectively. Unfortunately, the existing methods are designed to
accept individual Hi-C sample, none of them is capable of
handling multiple replicates. Besides, these methods assume that
TADs are disjoint or nested without considering more complex
structures, except for 3DNetMod which can find out partially
overlapping ones by optimizing network modularity based on
graph theory28. With the continuous accumulation of Hi-C
datasets and introduction of partially overlapping TADs, it may
help to get a deeper understanding of genome architectures at
TAD level to outline a more comprehensive profile of hierarchical
chromatin domains on the basis of replicate Hi-C data.

In this paper, we present TADfit, a multivariate linear regres-
sion model for profiling hierarchical chromatin domains. It tries
to fit the IFs in Hi-C contact matrix with and without replicates
using all-possible hierarchical TADs, and the regression coeffi-
cients, which can be used to determine the significance of these
TADs, are obtained by an online learning solver called Follow-
The-Regularized-Leader (FTRL)38,39. Beyond the existing meth-
ods for TAD identification, TADfit addresses the following two
issues, one is an attempt to accept replicate Hi-C data, which is
conducive to find the underlying TADs across different experi-
ments. The other one is that it runs without any assumption that
TADs are disjointed or nested, so that more comprehensive
structures at TAD level can be revealed, such as partially over-
lapping ones. Using both simulated and experimental Hi-C data,
the two issues were demonstrated by a comparative analysis with
the other five state-of-the-art methods, including TADtree,
3DNetMod, OnTAD, SpectralTAD, and TADpole, and the results
tell that TADfit has better accuracy and reproducibility in almost
all cases. Besides, the hierarchical TADs called by it present a
reasonable biological relevance in terms of histone marks,
architectural proteins, regulatory elements, gene expression level
and A/B compartment, which suggests that TADfit profiles a
biologically relevant hierarchy of TADs.

Results
Overview of TADfit. TADfit is designed to fit the IFs of Hi-C
contact matrix replicates with all-possible hierarchical TADs on
them using a multivariate linear regression model. It takes a group
of Hi-C contact matrix replicates or an individual contact matrix
as input, and outputs the regression coefficient for each hier-
archical TAD. TADfit consists of three major steps (Fig. 1). The
first step, preparation of candidate hierarchical TADs. A pseudo
contact matrix is generated by geometric mean per matrix element
across replicates, The TAD boundaries called by TopDom on
diagonal of the pseudo contact matrix are then assembled in all-
possible pairs, and the chromatin domain between each pair of
boundaries is regarded as a candidate TAD. In this way, the
prepared candidate TADs can cover all the possible hierarchical
structures at TAD level, including disjoint, nested, and partially
overlapping ones. The second step, modeling the relationship
between IFs and candidate hierarchical TADs. A multivariate
linear regression model is proposed to describe the relationship
between the IFs of contact matrix replicates and the candidate
hierarchical TADs, on the hypothesis that each IF in contact
matrix reflects the cumulative effect of hierarchical TADs in which
it is fallen. And the unknown regression coefficients which reflect
the weights of candidate TADs can be estimated by solving an
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optimization problem characterized by a minimum objective
function. The third step, solving the model by FTRL. An online
machine learning algorithm called FTRL is chosen to solve the
optimization problem, so that the regression coefficients for these
candidate hierarchical TADs are obtained, and the significant ones
can be screened out by a right-tailed permutation test. Beyond the
existing methods, TADfit has an ability to handle multiple contact
matrix replicates and find partially overlapping TADs on them.
The details can be found in the “Methods” section.

Results on simulated Hi-C data. To investigate the performance
of TADfit in identifying hierarchical TADs on simulated Hi-C
data, the simulated contact matrix replicates, with and without
partially overlapping TADs at five different noise levels, were fed
into TADfit and the other five methods, including TADtree,
3DNetMod, OnTAD, SpectralTAD, and TADpole. The called
TADs were compared with ground-truth TADs using Jaccard
index and F1 score to examine the accuracy of these methods in
identifying hierarchical TADs in different cases. We first ran the
proposed TADfit on simulated Hi-C data in two different ways.
One way is to feed a group of contact matrix replicates into
TADfit to get a set of called TADs across replicates, the other is to
feed one individual contact matrix each time to get a respective
set of TADs for each replicate. It is obvious that the former has a
higher Jaccard index and F1 score than the later (Supplementary
Tables 1, 2). That tells the advantages of taking multiple replicates
into account in the design of our model. Moreover, even in the
case of processing individual contact matrix one by one, TADfit
can produce much higher Jaccard index and F1 score than the
other five methods, regardless of the noise level and whether
partially overlapping TADs are considered (Fig. 2a, b). In addi-
tion, to conduct an intuitive comparison, heatmaps with the
called hierarchical TADs on them at five noise levels were pre-
sented. As we can see, for simulated Hi-C data with partially

overlapping hierarchical TADs, no method can decompose TADs
when they are partially overlapped, except for TADfit and
3DNetMod (Fig. 2c and Supplementary Figs. 1–5), where the
former outlines almost all the hierarchical TADs, including par-
tially overlapping ones, while the latter tends to give out some
small sub-TADs which are not consistent with the ground-truth.
For simulated Hi-C data without partially overlapping TADs
(Supplementary Figs. 6–10), all the above methods have the
ability to outline disjoint and nested TADs, but their power is
different. TADtree and OnTAD may overlook some unobvious
sub-TADs, 3DNetMod and SpectralTAD, on the contrary, are
inclined to produce some excessively small sub-TADs, and
TADpole prefers to regard some large but visually unreliable
regions as TADs, leaving TADfit to describe hierarchical struc-
tures better in most cases. Thus, TADfit outperforms the other
five methods in identifying hierarchical TADs on simulated data.

Regression analysis of the proposed model. To gain insight
beyond simulation, a regression analysis was conducted on
experimental Hi-C data to investigate the ability of our proposed
model in interpreting the true relationship between interaction
frequencies and candidate hierarchical TADs, as well as the
effectiveness of FTRL online regression solver. The analysis
results on five contact matrix replicates for chromosome 1 of
GM12878 at 25K resolution were shown in Fig. 3. Obviously, the
value of R-squared (R2) grows as the number of iterations
increases, and while FTRL online learning is iterated 10 times, the
average R2 can reach up to 0.89 ± 0.02 (Fig. 3a). That is to say, the
variance of dependent variable can be well explained by the
independent variables in our regression model. Considering the
computational economy, two iterations with an average R2 of
0.86 ± 0.02 is acceptable, so that all the results in this paper were
produced using this configuration arbitrarily. Moreover, the
scatter plot of fitted values versus original values were presented

Fig. 1 Overview of TADfit. TADfit consists of three major steps. Step 1, a set of TAD boundaries on the diagonal of a pseudo contact matrix derived from
input replicates is called by TopDom, and then assembled in all-possible pairs to prepare the candidate hierarchical TADs. For example, a total of 21
candidate hierarchical TADs can be obtained by assembling 7 TAD boundaries, and the number of these TADs can be optionally limited to 14 according to
the threshold of TAD size given by user. Step 2, a multivariate linear regression model is proposed to fit the IFs of Hi-C contact matrix replicates with the
candidate hierarchical TADs, on the hypothesis that each IF in contact matrix reflects the cumulative effect of hierarchical TADs in which it is fallen. Step 3,
the model is solved with the help of FTRL. The regression coefficients for these candidate hierarchical TADs are output, and a right-tailed permutation test
is used to determine the significant ones, as shown above, 10 significant ones are screened out from 14 candidate TADs.
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to visualize the statistical difference between them (Fig. 3b). In
general, the scattered points are evenly distributed on both sides
of the ideal baseline, and the loess-fitted curve runs close to this
line, which is consistent with the above results scored by R2. The
homoscedasticity of residuals was also examined (Fig. 3c, d). It
seems that the residuals are independent of fitted values, there
should be no discernible pattern, and the proposed model has
captured the inherent relationship between residuals and fitted
values to a considerable extent. In addition, considering heatmap
is the primary means of overall graphical presentation of Hi-C
data, herein an artificial contact matrix with the upper right tri-
angle for original values and the lower left triangle for the cor-
responding fitted values was visualized in the form of a heatmap
(Fig. 3e). As we can see, the IFs in the two symmetrical triangular
regions follows the same decay pattern in signal as bin distance
increases, and most importantly, these two regions exhibit a
highly similar block structure with each other, especially near the
diagonal, which reflects the goodness of fitting of our model and
the effectiveness of FTRL solver. Some extra analysis results for
different cell lines (GM12878, IMR90, and K562) can be found in
Supplementary Figs. 11–13.

Reproducibility of the called TADs. Different from simulated
Hi-C data, the ground-truth TADs on experimental Hi-C data are

unknown, and there is no gold standard to score the accuracy of
identified TADs. To evaluate the performance of TADfit in
profiling hierarchical TADs on experimental contact matrices, the
reproducibility of the called TADs was examined in multiple
ways. First, reproducibility across replicates. Since TADfit is a
multi-replicate method, the hierarchical TADs called by it would
be exactly the same across replicates, in other words, the Jaccard
index of hierarchical TADs called by TADfit between replicates
should always be one. Thus, there is no doubt that the index is
absolutely higher than those of the other methods where a multi-
replicate input is not allowed. To conduct a comparative analysis
on an equal footing, herein contact matrix replicates were fed into
TADfit individually, just like the other methods. Even so, it can be
seen that the Jaccard index of hierarchical TADs called by TADfit
is still higher than those of the other five methods in most cases
(Fig. 3f and Supplementary Fig. 14). Second, reproducibility
between different resolutions. Genome is organized into complex
hierarchical structures at TAD level. Chromatin domains at
higher resolution can be regarded as a subdivision of the domains
at lower resolution, and chromatin domains at lower resolution
should be detectable in the corresponding regions at higher
resolution. That is to say, the hierarchical TADs detected at lower
resolution are theoretically a subset of those detected at higher
resolution. Based on this, a modified Jaccard index is proposed to
assess how the hierarchical TADs identified on contact matrices

Fig. 2 Performance comparison on simulated Hi-C data. TADfit and the other five methods, including TADtree, 3DNetMod, OnTAD, SpectralTAD, and
TADpole, were compared on simulated Hi-C data. Simulated contact matrices were fed into these methods individually, the called TADs on each contact
matrix were compared with ground-truth TADs to obtain a set of Jaccard indexes and F1 scores. Boxplots of a Jaccard index and b F1 score on simulated
contact matrices with (left) and without (right) partially overlapping TADs at five different noise levels (4%, 8%, 12%, 16%, 20%) were given. The center
line of the box indicates the median, whereas the bottom and top of the box indicate the first and third quartiles, respectively, and whiskers are extended to
the most extreme data point that is no more than 1.5 × interquartile range from the bottom and top of the box. Besides, c heatmaps of a simulated contact
matrix (ChrS_MAT_noise0.20_POP0.15_rep1, bin 1–bin 200 out from a total of about 400 bins) and the TADs called by different methods on it were
shown. These heatmaps were drawn on a log scale, the ground-truth TADs as well as the TADs called by TADfit and the other five methods were outlined
with blue solid lines, and the partially overlapping TADs were marked with a green dotted circle on the first heatmap.
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at lower resolutions are reproducible on corresponding contact
matrices at higher resolutions (Fig. 3g and Supplementary
Fig. 15). Compared with the other methods, TADfit and TADpole
have higher modified Jaccard indexes. Finally, variation at dif-
ferent sequencing depths. Four artificial contact matrices were
generated by down-sampling40 each experimental contact matrix
at four different sequencing depth levels (1/2, 1/4, 1/8, and 1/16),
and the hierarchical TADs called by different methods on these
artificial contact matrices were compared with those on corre-
sponding original matrices using Jaccard index. In general, the
index decreases with the level of sequencing depths comes down,
and TADfit has higher Jaccard indexes in almost all cases (Fig. 3h
and Supplementary Fig. 16).

Biological relevance of TADs profiled by TADfit. The biological
features of hierarchical TADs profiled by TADfit were investi-
gated with the help of histone marks, architectural proteins, gene

expression level, and A/B compartment. Different from the other
methods to give out the hierarchical level of called TADs, TADfit
can return a regression coefficient for each possible hierarchical
TAD. Considering hierarchical structures, these coefficients were
projected to corresponding chromatin regions according to the
genomic coordinates of called TADs, and then accumulated, so
that a comprehensive value (CV) was obtained for each basic
TAD block, which is a chromatin region sandwiched between two
adjacent TAD boundaries. As shown in Fig. 4, the CVs of these
basic TAD blocks are different from each other, indicating the
divergence between these relatively independent structures at
TAD level. What is interesting is that the CVs of these basic TAD
blocks have a considerable relevance with the degree of enrich-
ment of active histone marks (H3K36me3, H3K4me3, and
H3K27ac) and gene expression level, while the repressive histone
marks (H3K27me3) show a weak opposite relevance. That is to
say, in the same chromatin region, the greater the CVs, the more

Fig. 3 Performance evaluations on experimental Hi-C data. In the absence of clear indication, the evaluations were carried out on contact matrix
replicates (GSM1551550_HIC001–GSM1551554_HIC005) for chromosome 1 of GM12878 at 25K resolution. As one part, a regression analysis was
conducted to investigate the goodness of fitting of our TADfit. a A curve of R2 (mean ± SD) versus iterative number, as well as a total of three scatter plots,
including b plot of fitted values versus original values, c plot of residuals versus fitted values and d scale location plot, were shown, and the loess-fitted
curves were drawn with red dotted line. Besides, e the heatmap of an artificial contact matrix with the upper right triangle for original values
(GSM1551550_HIC001, 150–155Mb) and the lower left triangle for the corresponding fitted values was presented. As the other part, the reproducibility of
hierarchical TADs called by TADfit and the other five methods in three different contexts were compared, including f reproducibility across replicates,
g reproducibility between different resolutions (50K versus 25K), and h variation at four different sequencing depth levels (1/2, 1/4, 1/8, and 1/16). To
conduct a comparative analysis on an equal footing in the first context, the contact matrix replicates were fed into TADfit individually, since TADfit is a
multi-replicate method, the Jaccard index of hierarchical TADs called by it between replicates should always be one, which is always higher than those of
the other methods where a multi-replicate input is not allowed. The reproducibility in these contexts was quantified using Jaccard index, except for the
middle context where a modified Jaccard index is proposed to assess how the hierarchical TADs identified on contact matrices at lower resolutions are
reproducible on corresponding contact matrices at higher resolutions. The center line of the box indicates the median, whereas the bottom and top of the
box indicate the first and third quartiles, respectively, and whiskers are extended to the most extreme data point that is no more than 1.5 × interquartile
range from the bottom and top of the box.
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enriched the active histone marks, and the higher the level of gene
expression. Besides, the regions with greater CVs are obviously
more inclined to belong to active compartment A, and vice versa
to repressive compartment B. In addition, the enrichment of
architectural proteins (CTCF, Smc3, and Rad21) and histone
mark (H3K4me3) within 50 Kb of TAD boundaries at different
hierarchical levels was also examined across three cell lines
(GM12878, IMR90, and K562) on a genome-wide scale (Sup-
plementary Fig. 17). Herein the level of a TAD boundary is
determined using the terminology given by An et al.25, that is, a
TAD boundary belonging to a single TAD is regarded as a first-
level boundary, and the second-level and third-level boundaries
correspond to the ones that are shared by two and three hier-
archical TADs, respectively. It is shown that the number of ChIP-
seq peaks at the second-level boundaries is significantly greater
than that at the first-level boundaries (right-tailed paired t-test, p-
value <5.04e−4), based on an assumption that the enrichment
differences between two different levels are normally distributed
irrespective of the type of ChIP bindings and cell lines, and the
same trend can also be seen at the TAD boundaries between the
higher levels and second-level (right-tailed paired t-test, p-value
<6.22e−5), thus, the enrichment of these ChIP bindings at TAD
boundaries is significantly enhanced as the level of boundaries
increases, which is in line with the observations of other
studies21,36,41 where the TAD boundaries with higher levels are
believed to be more biologically meaningful. These results tell that
the regression coefficients and hierarchical level of TADs called
by TADfit present a reasonable biological relevance to some
extent.

Discussion
To illustrate the ability of TADfit in handling partially over-
lapping TADs, the hierarchical TADs called by TADfit, OnTAD,
and TADpole on a contact matrix were compared (Fig. 5a and

Supplementary Fig. 18). It is worth noting that a TAD marked
with a green dotted circle on heatmap of the contact matrix can
be considered as a sub-TAD nested within both an upstream
meta-TAD and a downstream meta-TAD. That is to say, the TAD
is located in the common overlapping area of two adjacent TADs
at a higher hierarchical level, which seems to be a partially
overlapping TAD. To this complex hierarchical structure, dif-
ferent methods have different responses. It can be seen that since
OnTAD and TADpole are designed without considering partially
overlapping structure, the former takes the TAD for a sub-TAD
completely nested within the downstream meta-TAD, leaving the
upstream meta-TAD unrevealed, while the latter is just the
opposite, which takes the TAD for a sub-TAD completely nested
within the upstream meta-TAD, leaving the downstream meta-
TAD unrevealed. The inconsistent results indicate the limitations
of such methods, and support the rationality of the existence of
partially overlapping TADs to some extent. Unlike them, TADfit
tries to fit the interaction frequencies using all-possible TADs
without assuming that these TADs are disjointed or nested, so
that both upstream and downstream meta-TADs can be identi-
fied even if they are partially overlapped. For the partially over-
lapping TADs called by TADfit, the reproducibility of them
across contact matrix replicates was examined (Fig. 5b). The
median values of Jaccard indexes are always higher than 0.60 in
all cases, and the highest value can reach up to 0.87, even though
lower than that of the other TADs. One more step forward,
herein we tried to scan the whole genome of GM12878 at 25K
resolution using our TADfit in the way of multi-replicate input,
the numbers of both partially overlapping TADs and the other
TADs for every chromosome are given (Supplementary Fig. 19).
It is found that about 10.95% of the called TADs are partially
overlapping ones. Thus, partially overlapping structure at TAD
level may be considerable in spatial organization of human gen-
ome. That is basically in line with our expectations derived from
other Hi-C experiments. In detail, super-resolution microscopy

Fig. 4 Biological features of hierarchical TADs called by TADfit. The hierarchical TADs were called by TADfit on contact matrix replicates
(GSM1551550_HIC001–GSM1551554_HIC005) for chromosome 1 of GM12878 at 25K resolution, the regression coefficients were projected to
corresponding chromatin regions according to the genomic coordinates of called TADs, and then accumulated, so that the CVs for basic TAD blocks were
obtained. For A/B compartment, the first eigenvector was calculated on replicate GSM1551550_HIC001 via an eigenvector command provided by
juicer_tools51. The histone marks (H3K36me3, H3K4me3, H3K27ac, and H3K27me3) and RNA-seq data were captured online with the aid of New WashU
Epigenome Browser55 available at www.epigenomegateway.wustl.edu. This browser was also used to graphically present the above data in the form of
heatmap (GSM551550_HIC001, 150–170Mb) and tracks.
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image of chromatin with nanometer-scale precision shows that
TAD structures in a bulk Hi-C contact matrix can be considered
as the ensemble average of TAD-like domains in thousands of
single cells42, and the boundaries of these TAD-like domains in
single cells present a high degree of cell-to-cell variations42–44,
whereas it is suggested that the hierarchical TADs in bulk Hi-C
contact matrix are unlikely to be perfectly nested, but also par-
tially overlapped. This may be one of the motivations that par-
tially overlapping structure has been considered now or claims to
be in the further by a few of the latest computational methods for
TAD identification25,28,45. In addition, the biological features
between partially overlapping regions and the other regions were
compared in terms of histone marks (H3K36me3, H3K4me3,
H3K27ac, and H3K27me3) and active genes (FPKM >5) (Sup-
plementary Fig. 20). Generally, an enrichment difference can be
seen between the two types of regions by examining all the results
throughout different cell lines (GM12878 and K562), that is, the
average signal of active histone marks (H3K36me3, H3K4me3,
and H3K27ac) and the density of active genes in partially over-
lapping regions trend to be higher than that of the other regions,
while the repressive histone mark (H3K27me3) does the opposite.
That can be explained, since active epigenetic states and highly

expressed genes are reported to be more enriched in inner TADs
than in outer TADs21,36,41,46, and the partially overlapping
regions are usually inner parts in a hierarchy of TADs. Further-
more, although the mechanisms underlying hierarchical TADs,
especially partially overlapping ones, in gene expression regula-
tion remain unclear47,48, the promoters and enhancers, especially
active promoters and strong enhancers, are found to be favored
within partially overlapping regions (Supplementary Fig. 21).
That suggests the high-intensity interaction between enhancers
and promoters within these regions and support the enrichment
difference in active genes.

There are two hyperparameters need to be tuned during the
iterative optimization of FTRL, including α for per-coordinate
learning rate and l for the strength of L1 regularization strength.
The former determines the step size at each iteration while
moving toward a minimum of loss function, and the latter con-
trols the sparsity of regression coefficients. To examine how
significantly the tunning of these two hyperparameters affect the
iterative optimization, the curves of R2 versus α and l were
plotted, respectively (Fig. 5c, d). As we can see, the values fluc-
tuate slightly with the increase of α from 0.01 to 0.05 and l from 1
to 5, and the average R2 is always larger than 0.80. These suggest

Fig. 5 Illustration of TADfit in handling partially overlapping TADs and the robustness to hyperparameters. To analyze the ability of TADfit in handling
partially overlapping TADs, the hierarchical TADs were called by TADfit on contact matrix replicates (GSM1551550_HIC001–GSM1551554_HIC005) for
chromosome 1 of GM12878 at 25K resolution, and one of the replicates (GSM1551550_HIC001) was fed into OnTAD and TADpole, since they cannot
accept multiple replicates as input. a Heatmaps of contact matrix (GSM1551550_HIC001, 162 Mb–165 Mb) and the hierarchical TADs called by the three
methods on it were drawn. There are four heatmaps shown above, on the first of which a partially overlapping TAD was marked with a green dotted circle,
and on the last three of which the called TADs were outlined with blue solid line. Besides, to investigate the reproducibility of partially overlapping TADs
called by TADfit, the contact matrix replicates for chromosome 1 of three cell lines (GM12878, IMR90, and K562) at resolutions of 50K and 25K were fed
into TADfit individually, and b the Jaccard index of partially overlapping TADs across replicates were shown. In addition, to analyze the affection of the
tuning of two hyperparameters (α for per-coordinate learning rate and l for the strength of L1 regularization) on the iterative optimization, as well as the
tuning of two parameters (the maximum size of TADs and p-value cutoff of permutation test) on the identification of hierarchical TADs, the contact matrix
replicates for chromosome 1 of three cell lines (GM12878, IMR90, and K562) at 25K resolution were separately fed into TADfit with each cell line as a
group. c–e The curves of R2 (mean ± SD) with different α, l and maximum sizes of TADs, as well as f–i the Jaccard index of called TADs across replicates
with different α, l, maximum sizes of TADs and p-value cutoffs were given, respectively. The center line of the box indicates the median, whereas the
bottom and top of the box indicate the first and third quartiles, respectively, and whiskers are extended to the most extreme data point that is no more than
1.5 × interquartile range from the bottom and top of the box.
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that the online iterative optimization is not significantly affected
when the two hyperparameters change in a reasonable range.
Besides, the reproducibility of hierarchical TADs called by TADfit
across replicates were checked when α and l change (Fig. 5f, g). It
can be seen that the median values of Jaccard indexes of hier-
archical TADs between replicates are larger than 0.85 in all cases,
indicating the robustness of called TADs to the two hyperpara-
meters. In addition, another two parameters in TADfit, including
the maximum size of TADs and p-value cutoff of permutation
test, were also investigated in exactly the same way. For the
maximum size of TADs, both the R2 and Jaccard index show a
rising pattern while the parameter increases from 0.5 to 1.5 Mb,
but as this parameter grows above 1.5 Mb, these two metrics no
longer have a significant improvement (Fig. 5e, h). Thus, it is not
recommended to tune the maximum size of TADs too large, since
it cannot obviously improve the goodness of model fitting and the
reproducibility across replicates, but consumes extra computing
resources. As for the p-value cutoff, the reproducibility across
replicates was also examined while the cutoff changes from 0.03
to 0.07 near the default value 0.05 (Fig. 5i). It is shown that the
median value of Jaccard index is always larger than 0.84, and do
not fluctuate too much in different cases, telling the robustness of
called TADs to this parameter.

To evaluate the computational performance of TADfit in
running time, we compared the execution time of TADfit with the
other five TAD callers on replicates for chromosome 8 of
GM12878 cell line at resolutions of 50K, 25K, and 10K (Sup-
plementary Fig. 22). It is shown that the running time of all the
methods increases with the growth of the size of contact matrix
fed into them, the efficiency of our TADfit is close to that of the
other methods except for OnTAD and SpectralTAD, and slightly
better than TADtree and TADpole.

In summary, TADfit is a promising computational tool for
the structural analysis of genome at TAD level. Beyond the
existing methods, it has an ability to handle Hi-C contact
matrix replicates and find the underlying hierarchical TADs
with more comprehensive structures across them, such as par-
tially overlapping ones. The analysis results support our
hypothesis that each IF in contact matrix reflects the cumulative
effect of hierarchical TADs in which it is fallen. It is expected
that TADfit helps to get a deeper insight into the genome
structure at TAD level, especially with continuous accumulation
of replicate Hi-C data.

Methods
Datasets. Both simulated and experimental Hi-C data are involved to compare the
performance of TADfit and the other five methods in identification of hierarchical
TADs. For simulated data, a modified version of the strategy given by Forcato27

and Lun49 was used to generate a total of 50 Hi-C contact matrices, where partially
overlapping TADs are allowed. These simulated contact matrices can be divided
into five groups according to noise level. Each level has ten samples, five of which
are contact matrix replicates with partially overlapping TADs, and the other five
are replicates without partially overlapping TADs (Supplementary Table 3). For
experimental data, the Hi-C contact matrices covering different experimental
designs (e.g., different restriction enzymes), cell lines (GM12878, IMR90, and
K562), and resolutions (50K, 25K, and 10K) were derived from three Hi-C
studies3,4,50. To prepare these contact matrices, 15 experimental Hi-C samples were
downloaded from Juicer data archive at https://bcm.app.box.com/v/aidenlab/ in the
form of a highly compressed binary file .hic (Supplementary Table 4). Then the
contact matrices were extracted from these files using the Dump command pro-
vided by a java-based program called juicer_tools51, and were normalized by means
of iterative correction and eigenvector decomposition (ICE)52 as well as log counts
per million (logCPM). Beyond Hi-C data, some histone marks (H3K36me3,
H3K4me3, H3K27ac, and H3K27me3), architectural proteins (CTCF, Smc3, and
Rad21), regulatory elements (promoter and enhancer) and RNA-seq data asso-
ciated with chromatin activity were taken into account to validate the biological
relevance of identified TADs. They can be downloaded from ENCODE53, UCSC
genome browser54 (Supplementary Table 5), or captured online through New
WashU Epigenome Browser55.

Preparation of candidate hierarchical TADs. The candidate hierarchical TADs
on Hi-C contact matrix replicates are prepared using a strategy of arbitrary
assembly of TAD boundaries. Considering that contact matrix replicates share the
same set of TAD boundaries, a pseudo contact matrix is generated by calculating
the geometric mean per matrix element across replicates, and the boundaries on
diagonal of the pseudo contact matrix are called using TopDom (V. 0.0.2) with the
settings recommended in its manual. Then, the boundaries are assembled in all-
possible pairs, and the chromatin domain between each pair of boundaries is
regarded as a candidate TAD. In this way, the candidate TADs can cover all the
possible hierarchical structures at TAD level, including disjoint, nested and par-
tially overlapping ones. In addition, the prepared candidate hierarchical TADs can
be optionally screened according to the size threshold given by user.

Modeling the relationship between IFs and candidate hierarchical TADs.
Assume that each IF in contact matrix reflects the cumulative effect of hierarchical
TADs in which it is fallen. Based on this, a linear regression model is proposed to
describe the relationship between IFs and candidate TADs. Given a m ×m contact
matrix with a total of n candidate TADs, the proposed model has the following
form:

y ¼ Xbþ ε ð1Þ

where y 2 R
mðmþ1Þ

2 is an artificial vector derived from IFs in the lower triangle and

diagonal of normalized contact matrix on a log scale. X 2 R
mðmþ1Þ

2 ´ n is a designed
matrix in which Xij ¼ log m

dþ1 if the ith IF in y falls into the jth candidate TAD,
otherwise Xij ¼ 0, and d indicates the bin distance of the ith IF to the diagonal.
b 2 Rn , bj ≥ 0 is a vector consisting of unknown coefficients for the candidate

TADs. ε 2 R
mðmþ1Þ

2 denotes an error vector in which ε i 2 Nð0; σ2Þ is assumed to be
independently and identically distributed. Thus, the unknown coefficients for the
candidate TADs can be estimated by solving the following optimization problem:

argmin
b

ky � Xbk22 þ lkbk1
� �

s:t: bj ≥ 0
ð2Þ

where the first term is a quadratic loss function, and the second term indicates L1
regularization which helps to sparse the objective coefficients.

The model can be extended to profile the hierarchical TADs from multiple
contact matrix replicates (Supplementary Note 1). Given a context with k
replicates, an artificial matrix Y ¼ ðy1; y2; :::ykÞ is composed of k artificial vectors
in Eq. (1), and the coefficients for candidate TADs in these replicates are denoted
as B ¼ ðb1; b2; :::bkÞ. Considering that the hierarchical TAD structures across
replicates are consensus, there is b1 ¼ b2 ¼ ::: ¼ bk , and consequently the
unknown coefficients for these hierarchical TADs can be estimated in the following
form:

argmin
B

∑
k

j¼1
ðkY:j � XB:jk22 þ lkB:jk1Þ

� �

s:t: b1 ¼ b2 ¼ ::: ¼ bk
Bij ≥ 0

ð3Þ

where the subscript :j corresponds to the jth column of a matrix.

Solving the model by FTRL. The optimization problem above is solved with the
help of an online machine learning algorithm called FTRL. This algorithm can be
seen as a hybrid of Forward-Backward Splitting (FOBOS)56 and Regularized Dual
Average (RDA)57, which centers stabilizing regularization in the manner of FOBOS
but handles L1 regularization in the manner of RDA, so that a better tradeoff
between accuracy and sparsity can be achieved38. The online learning solver FTRL
is chosen in this study due to two main reasons. One is online. Both the artificial
matrix Y and designed matrix X are fed into FTRL row by row, so that much less
memory is needed. The other is sparsity. Only non-zero elements in X are needed
to be engaged in updating the coefficients of the hierarchical TADs, which speeds
up the online learning process. Compared with classical convex optimization
methods, these two advantages make our solver much more computationally
economical, since Y, especially designed matrix X, usually have ultra-high
dimensions and considerable degree of sparsity, due to the consideration of mul-
tiple contact matrix replicates and all-possible hierarchical TADs. For example, we
have X 2 R49;715;406 ´ 233;586 while dealing with five contact matrix replicates for
chromosome 1 of GM12878 at 25K resolution. It is unacceptable for most servers
to perform a calculation of such a large matrix with limited memory, which may be
much worse at higher resolutions. Fortunately, the online learning solver FTRL
allows to be fed row by row from X, so that only the memory that can handle
X0 2 R1 ´ 233;586 is enough. Besides, only about 0.20% elements of the designed
matrix X in this example are non-zero, since each IF in Y falls into a limited
number of related hierarchical TADs in all-possible ones. That helps to give full
play to the advantage of FTRL in speeding up the online learning process relying
on the sparsity of X. During the iterative optimization using FTRL, there are three
hyperparameters that need to be tuned, including α and β combined for per-
coordinate learning rate of online gradient descent, and l for the strength of L1
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regularization. For the first two hyperparameters, according to the original pro-
poser of FTRL, α can vary depending on the datasets and features, and β is usually
good enough when set to one39. For the last hyperparameter, l controls the sparsity
of weights by penalizing the absolute value of them. Thus, in this study, β is fixed to
one, and the other two hyperparameters α and l can be tuned near default values to
obtain an approximate optimal solution. To examine how significantly the tunning
of α and l affect iterative optimization, the robustness of TADfit to the two
hyperparameters is discussed in the “Discussion” section. To determine the sig-
nificant hierarchical TADs, the regression coefficients are screened with a threshold
to exclude overly impossible ones, then a right-tailed permutation test is used to
assess how significantly the remaining coefficients are larger than zero with a null
hypothesis that the coefficients are equal to zero. This permutation test is imple-
mented by means of a permTS function from R package perm (1.0.0.0)58, and the
hierarchical TADs with p-value <0.05 are determined as the final significant
hierarchical TADs.

Simulation of contact matrix. Simulated Hi-C contact matrices were generated
using a modified version of the procedures proposed by Forcato27 and Lun49. We
did not change the basic assumptions and settings used to generate contact matrix
in the original method. Interaction frequencies are generated by randomly sam-
pling from a negative binomial distribution with a dispersion parameter and a
mean value μ. The dispersion parameter is always set to 0.01, and the mean value
μij in the ith row and jth column of contact matrix is defined as the sum of three
signal components:

μij ¼
Ktði� jþ pÞc if bin pair ði; jÞ is inside a TAD
0 otherwise

�

þ Kdði� jþ pÞc if bin pair ði; jÞ is part of chromatin loop

0 otherwise

�

þ KNoise if bin pair ði; jÞ is sampled as a noise

0 otherwise

�
ð4Þ

where the first signal component is added to reflect the effects on the interaction
frequency considering whether a bin pair ði; jÞ is inside a TAD, the second com-
ponent is added to account for points of chromatin loop (Kd ¼ 2Kt ¼ 56), and the
third component is considered to account for random noise (KNoise ¼ 2). Besides,
the power decay of interaction frequency is considered in the first two components,
the decay rate c is set to −0.69, and the prior value p is set to one according to the
original procedures. In the light of this way, TADs can be determined by randomly
segmenting the chromosomal coordinates, and chromatin loops and noises are
decided by randomly sampling all bin pairs at a certain percentage (0.01% for
chromatin loops and varying percentages for different noise levels), so that a
simulated contact matrix with configured TADs, chromatin loops and noises can
be produced. For different contact matrix replicates, the interaction frequencies in
them are simulated using the same TADs and chromatin loops but different noises.

Our modifications to the original procedures focus on the generation of
partially overlapping TADs. In the original simulation, the hierarchical TADs are
prepared by stacking three layers of artificial TADs. The first layer of TADs are
disjoint, and are produced with a size ranging from 3 to 20 bins, they are also
termed base TADs. Then the second and third layers are generated by randomly
removing 25% of the TAD boundaries on the lower layer, so that some meta-TADs
on higher layer appears by merging the sub-TADs on the lower layer. In this way,
only nested hierarchical TADs can be generated without considering partially
overlapping structures. To generate hierarchical TADs with partially overlapping
structures, herein we modified the original procedure for preparation of the second
layer leaving the procedures for preparation of the first and third layers unchanged.
In detail, after 25% of TAD boundaries on the first layer are randomly removed, a
certain percentage (set to 15% by default) of the base TADs are picked out. Then a
coupled of meta-TADs are constructed for each picked TAD, one is defined by the
lower boundary of the picked TAD and the upper boundary of its upstream base
TAD, and the other is defined by the upper boundary of the picked TAD and the
lower boundary of its downstream base TAD, so that the two constructed meta-
TADs are adjacent and partially overlapped in the region of the picked TAD. While
all the three layers are completed, a contact matrix with partially overlapping TADs
can be prepared. It is worth noting that we only need to set the percentage to zero,
a contact matrix without partially overlapping TADs can be simulated.

In this study, Hi-C contact matrices with and without partially overlapping
TADs were both simulated with default configurations. For contact matrices with
partially overlapping TADs, five levels of random noises, including 4%, 8%, 12%,
16%, and 20%, were considered, and each level has five replicates, so that a total of
25 contact matrices with partially overlapping TADs were simulated. For contact
matrices without partially overlapping TADs, there were also a total of 25 contact
matrices simulated with the same noise level and the same number of replicates.

Generation of contact matrix with different sequencing depths. Based on the
existing experimental contact matrices covering different cell lines (GM12878,
IMR90, and K562) and resolutions (50K, 25K, and 10K), extra Hi-C contact
matrices with different levels of sequencing depths are generated with the help of a
down-sampling procedure40. Briefly, each experimental contact matrix replicate is
converted into a set of pairwise individual interactions without considering the

zero-valued elements, leaving a pairwise interaction vector of length N, where N is
the sum of individual elements of the contact matrix. Then a given number of
pairwise interactions (1/2*N, 1/4*N, 1/8*N, and 1/16*N) are sampled from this
vector by a uniformly sampling procedure. Finally, the chosen interactions are re-
binned into a new contact matrix with a fixed sequencing depth. Thus, for each
replicate of each cell line at a specific resolution, a total of four contact matrices
with the corresponding four different levels of sequencing depths (1/2, 1/4, 1/8, and
1/16) can be obtained.

Normalization of contact matrix
ICE. ICE is an implicit approach for Hi-C normalization. It attempts to make all
bins of contact matrix equally visible using a matrix-balancing strategy52. In ICE,
the systematic biases between two bins are considered as the product of their
individual biases and the maximum likelihood solution for the individual biases is
obtained by an iterative correction procedure, yielding a normalized matrix. In this
paper, the ICE normalization method was implemented with an R package HiTC
(v. 1.24.0)59 from Bioconductor.

logCPM transformation. The contact matrices normalized by ICE are still different
in library size from each other, even at the same resolution level. In order to
remove the bias caused by sequencing depth and adjust the value of replicates to
the same scale, a transformation of log counts per million (logCPM) was performed
here. The transformation is given by:

Oij ¼ log 10
Iij
L

´ 106 þ s

� �
ð5Þ

where Iij and Oij are the interaction frequency in the ith row and jth column of
contact matrix before and after transformation, respectively. L denotes the library
size estimated by the sum of the lower triangular matrix, and s was set to one to
ensure that Oij is non-negative.

Evaluation of the accuracy of TAD callers
Jaccard index. Jaccard index is used to score the similarity between two sets of
TADs. Given a set of ground-truth TADs T ¼ ðT1;T2;T3; ¼ Þ and a set of called
TADs C ¼ ðC1;C2;C3; ¼ Þ, the Jaccard index between TAD Ti in T and TAD Cj

in C is defined as the number of the intersection bins over the number of the union
bins (IoU) of the two TADs:

JaccardðTi;CjÞ ¼
jTi \ Cjj
jTi ∪Cjj

: ð6Þ

Based on this, the Jaccard index of TAD Cj to TAD set T is given as follows:

JaccardðT;CjÞ ¼ max
i

JaccardðTi;CjÞ: ð7Þ
In the same way, the Jaccard index of TAD Ti to TAD set C can also be

obtained. And finally, the Jaccard index between two sets of TADs T and C is
defined as the average value of the two groups of Jaccard indexes above.

Modified Jaccard index. Modified Jaccard index is proposed to estimate how well
the TADs observed at a lower resolution are reproducible at a higher resolution.
Given a set of TADs A ¼ ðA1;A2;A3; ¼ Þ called at a lower resolution and a set of
TADs B ¼ ðB1;B2;B3; ¼ Þ called at a higher resolution. The Jaccard index of Ai to
B is calculated as Eq. (7), and their average value is defined as the modified Jaccard
index of A to B. Thus, if A is a subset of B, the value of modified Jaccard index will
be one, which means that the TADs called at a lower resolution are fully repro-
duced at a higher resolution.

F1 score. F1 score is also used to quantify the accuracy of different methods for
TAD identification. Different from Jaccard index, both the precision and recall are
considered in it. Considering the ground-truth TAD set T and the called TAD set
C, the precision p is defined as the ratio of the number of common TADs of T and
C to the number of TADs in C:

p ¼ jT \ Cj
jCj ð8Þ

and the recall r is defined as the ratio of the number of common TADs of T and C
to the number of TADs in T:

r ¼ jT \ Cj
jTj : ð9Þ

Then the F1 score can be calculated in light of its definition. It is noted that a
TAD in T is considered to be the same one as a TAD in C if the IoU between them
is larger than 90%, since a small deviation of the boundaries of two TADs does not
means dissimilarity.

Competing methods. A total of 12 other computational methods for TAD iden-
tification are involved in this paper, from which five methods, including TADtree,
3DNetMod, OnTAD, SpectralTAD, and TADpole, are selected for comparative
analysis (Supplementary Table 6). Among them, TADtree is the first publicly
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available method to identify hierarchical TADs to the best of our knowledge, and
the other four methods, including 3DNetMod, OnTAD, SpectralTAD, and TAD-
pole, are the recent progresses in exploring the hierarchical structure of genome at
TAD level. The parameter configurations of our TADfit and these competing
methods are given in Supplementary Note 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sources for all the Hi-C data, histone marks, architectural proteins, regulatory
elements, and RNA-seq data involved in this study can be found in Supplementary
Tables 3–5. The source data underlying Figs. 2a–b, 3f–h and 5b–i is provided as
Supplementary Data 1. And all datasets are available from the corresponding author on
reasonable request.

Code availability
The source code is available at https://github.com/lhqxinghun/TADfit, including R
package TADfit as well as the scripts for simulation, normalization, and down-sampling.
These codes can also be found on Zenodo (https://doi.org/10.5281/zenodo.6528680)60.
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