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Enrichment of the tumour immune microenvironment
in patients with desmoplastic colorectal liver metastasis
Diederik J. Höppener1, Pieter M. H. Nierop1, Joost Hof2, Kostandinos Sideras3, Guoying Zhou3, Lydia Visser4, Annette S. H. Gouw4,
Koert P. de Jong2, Dave Sprengers3, Jaap Kwekkeboom3, Peter B. Vermeulen5, Dirk J. Grünhagen1 and Cornelis Verhoef1

BACKGROUND: Patients with resected colorectal liver metastasis (CRLM) who display only the desmoplastic histopathological
growth pattern (dHGP) exhibit superior survival compared to patients with any non-desmoplastic growth (non-dHGP). The aim of
this study was to compare the tumour microenvironment between dHGP and non-dHGP.
METHODS: The tumour microenvironment was investigated in three cohorts of chemo-naive patients surgically treated for CRLM.
In cohort A semi-quantitative immunohistochemistry was performed, in cohort B intratumoural and peritumoural T cells were
counted using immunohistochemistry and digital image analysis, and in cohort C the relative proportions of individual T cell
subsets were determined by flow cytometry.
RESULTS: One hundred and seventeen, 34, and 79 patients were included in cohorts A, B, and C, with dHGP being observed in 27%,
29%, and 15% of patients, respectively. Cohorts A and B independently demonstrated peritumoural and intratumoural enrichment
of cytotoxic CD8+ T cells in dHGP, as well as a higher CD8+/CD4+ ratio (cohort A). Flow cytometric analysis of fresh tumour tissues
in cohort C confirmed these results; dHGP was associated with higher CD8+ and lower CD4+ T cell subsets, resulting in a higher
CD8+/CD4+ ratio.
CONCLUSION: The tumour microenvironment of patients with dHGP is characterised by an increased and distinctly cytotoxic
immune infiltrate, providing a potential explanation for their superior survival.
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BACKGROUND
Colorectal cancer (CRC) represents one of the most common solid
malignancies.1 Metastatic spread occurs in roughly half of all
patients during the course of the disease, with colorectal liver
metastasis (CRLM) presenting as the most frequent distant
metastasis.2–5 Depending on the hepatic tumour load and vessel
involvement, local therapies, often in conjunction with systemic
therapy, selectively allow for curatively intended treatment
strategies, even in the case of limited extrahepatic metastatic
disease.6 Herein surgical resection is often considered the
mainstay treatment modality.7 Reported 5-year overall survival
(OS) rates after curatively intended surgical treatment for CRLM
generally range from 40% to 60%.8,9

Prognostication and prediction of treatment effect after surgical
treatment of CRLM has changed little over time and is still based
mainly on clinicopathological factors, most notably the nodal
status of the primary tumour, the number and size of hepatic
metastases, and RAS mutational status.10–16 Only in mismatch
repair-deficient tumours, which account for roughly 3% of patients
with CRLM17, has a clear therapeutic indication been demon-
strated for immune checkpoint inhibitors.18,19 This clearly empha-
sises the need for additional, clinically relevant biomarkers. To this

end, recent efforts have focussed on the quantification and
classification of immune cells present within the tumour micro-
environment (TME) of CRC and/or CRLM.20–26 Results have been
promising, with favourable prognosis demonstrated in patients
with increased and activated (i.e. cytotoxic) immune infiltrates in
the TME.20–26

Another emerging biomarker encompassing the TME is the
histopathological growth pattern (HGP) of CRLM. The HGPs
describe the morphology and interaction between tumour and
liver cells at the tumour–liver interface.27 Histomorphologically,
three phenotypes are distinguished: the replacement type, where
the tumour cells “replace” liver cells while the sinusoidal
architecture is maintained at the tumour–liver interface (Fig. 1a);
the rare pushing type, where the tumour cells “push” against the
liver cell plates (Fig. 1b); and the desmoplastic type (dHGP), where
a band of desmoplastic stroma separates the tumour from the
liver parenchyma (Fig. 1c). Apart from these apparent differences
upon histomorphological examination, the desmoplastic and
pushing types have angiogenic ways of vascularisation, while
the replacement type relies on vessel co-option.27–31 For all that,
clinical relevance seems determined by two classes: either
patients where tumours are fully enclosed by a desmoplastic rim
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(i.e. 100% dHGP) or patients where any non-desmoplastic (i.e.
<100% dHGP; non-dHGP) pattern is observed, as multiple HGPs
can appear in conjunction.32 Especially in chemo-naive subjects
(i.e. not treated with systemic chemotherapy within 6 months
prior to resection of CRLM), patients with dHGP exhibit superior
survival compared to their non-dHGP counterparts, with reported
5-year OS rates of nearly 80% in dHGP and as low as 40% in (any)
non-dHGP.32

Upon histomorphological examination, dHGP is often charac-
terised by a distinct immune infiltrate surrounding the desmo-
plastic stroma (Fig. 1c), although this has never been quantified,

classified, or been compared to non-dHGP counterparts in light of
the discovery of the any non-dHGP on/off phenomenon.32 The
aim of the current study was therefore to quantify, classify, and
compare the TME of CRLM between patients with dHGP and non-
dHGP. Given there is evidence to suggest that systemic therapy
not only affects the immune infiltrate in the TME26,33 but also
influences the proportional distribution and possibly the prog-
nostic value of the HGPs32, our study focussed on chemo-naive
subjects only.

METHODS
Investigation of the TME of CRLM was performed in three cohorts,
each analysed using distinct methods. Scoring of the HGPs of
CRLM was performed similarly across all cohorts and according to
international consensus guidelines.27 The current study was
approved by the medical ethics committee of the Erasmus
Medical Centre (MEC-2018-1743).

Scoring of the HGP of CRLM
In each of the three cohorts, all available haematoxylin and eosin
(H&E)-stained slides of formalin-fixed paraffin-embedded tissue
blocks of resected CRLM specimens were retrieved from the
archives of the respective pathology departments. Scoring of the
HGP was performed retrospectively using either light microscopy
or digitalised slide images. All available and eligible (digitalised)
tissue sections were reviewed by simultaneous assessment of at
least two trained observers. For all tissue sections subjected to
review, the relative percentage of each distinct HGP (i.e. pushing,
desmoplastic, and replacement type) was determined at the
tumour–liver interface. Given recent findings by Galjart et al.32,
patients were classified as dHGP if only the desmoplastic type was
observed in all the reviewed sections (i.e. 100% dHGP, Fig. 1c) and
as non-dHGP if any pushing and/or replacement type was
observed in any of the reviewed sections (i.e. <100% dHGP,
Fig. 1a, b).

Cohort A: semi-quantitative immunohistochemistry (IHC)
In the first cohort, analysis of the TME of CRLM was performed
using semi-quantitative IHC in patients who underwent partial
hepatectomy with curative intent at either the Erasmus MC Cancer
Institute, Rotterdam, the Netherlands or the University Medical
Centre Groningen (UMCG), Groningen, the Netherlands. Patients
eligible for inclusion were those with complete metastasectomy
(defined as resection margin >0mm), who did not receive any
preoperative and/or postoperative chemotherapy in addition to
partial hepatectomy, a Clinical Risk Score10 (CRS) of ≤3, no
extrahepatic disease at the time of surgery, and no known medical
history of secondary malignancy. Data on this cohort, together
with RNA sequencing experiments performed in the UMCG cohort
only, has previously been submitted for publication (submitted
manuscript). IHC staining was performed on 4-µm-thick tissue
sections cut from formalin-fixed paraffin-embedded samples of
resected CRLM (Supplementary Fig. 1). For each formalin-fixed
paraffin-embedded sample, a control slide was stained for H&E to
confirm the presence of tumourous and adjacent liver tissue. IHC
staining for CD4 (SP35), CD8 (SP57), CD45 (RP2/18), CD79A (SP18),
and Kappa/Lambda (double polyclonal staining) was done using
the Ventana automated staining system (Roche, Basel, Switzer-
land). Manual staining was performed with the primary antibodies
FoxP3 (236A/E7, 1/100 dilution) and SLAMF7 (HPA055945, 1/200
dilution). Positive and negative controls were implemented. All
IHC-stained tissue sections were assessed by two trained
observers. Expression was graded semi-quantitatively ranging
from 1 to 3 and was determined for peritumoural and
intratumoural regions separately. Peritumoural was defined as
the expression observed at the tumour–liver interface, and
intratumoural was defined as expression observed in the stroma
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Fig. 1 The histopathological growth patterns (HGP) of colorectal
liver metastasis on haematoxylin and eosin-stained tissue
sections. a The replacement HGP (rHGP), b the pushing HGP
(pHGP), and c the desmoplastic HGP (dHGP).
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surrounding the tumour cells or immunopositive intraepithelial
lymphocytes. After consensus was reached by both observers,
expression of each marker was classified into “low” and “high”
using the cut-off value resulting in the most even distribution (1 vs
≥2 or ≤2 vs 3). In addition, the CD8-to-CD4 ratio was calculated by
dividing their respective semi-quantitative scores (i.e. grades 1–3)
for the peritumoural and intratumoural regions separately.
A “high” CD8 to CD4 ratio was defined as a ratio greater or equal
to the median.

Cohort B: quantitative IHC by digital image analysis
Analysis of the TME in the second cohort consisted of quantitative
IHC using digital image analysis. Patients were eligible if they
underwent partial hepatectomy with curative intent at the
Erasmus MC Cancer Institute, Rotterdam, the Netherlands and if
they did not receive any systemic chemotherapy treatment in the
6 months prior to resection. This cohort represents a subset of a
larger cohort that has previously been published.25 IHC staining
for CD8 (SP57) and FoxP3 (236A/E7, 1/100 dilution) was performed
on 4-µm-thick tissue sections using the Ventana Benchmark Ultra
automated staining system (Roche, Basel, Switzerland). Stained
tissue sections were digitalised at 40× using the NanoZoomer
2.0HT system (Hamamatsu Photonic, Shizuoka, Japan). Peritu-
moural and intratumoural cell densities of CD8+ and FoxP3+
were measured in cells/mm2 using the Visiopharm Integrator
System (version 4.2.2.0, Visiopharm, Hoersholm, Denmark). Peritu-
moural cell densities were determined in four high-power fields
(0.54 mm in diameter) at the tumour–liver interface (Supplemen-
tary Fig. 2). The intratumoural cell densities were determined in
several (4–6) large circular areas containing viable tumourous
tissue (Supplementary Fig. 2). In addition, the CD8+/FoxP3+ ratio
was determined for peritumoural and intratumoural densities
separately.

Cohort C: flow cytometry
In the third cohort, the TME was analysed using flow cytometry.
Patients eligible for inclusion were those who underwent partial
hepatectomy at the Erasmus MC Cancer Institute, Rotterdam, the
Netherlands and if they did not receive any systemic chemother-
apy treatment in the 6 months prior to resection. Data on (part of)
this cohort has previously been published.22,23,25 The relative
proportions of CD4+ T cells, CD4+FoxP3− T helper cells, CD4+
FoxP3+ T regulatory cells, and CD8+ cytotoxic T cells within live
CD3+ T cells were determined by flow cytometry in mononuclear
cells (MNCs) isolated from fresh tumour tissue, tumour-free liver
(obtained as distant as possibly from the tumour; minimum 1 cm
distance), and in peripheral blood mononuclear cells (PMBCs)
isolated from peripheral blood collected prior to surgery. Ficoll
density gradient centrifugation was used for PBMC isolation.
Single-cell suspensions from tumour and tumour-free liver were
obtained by tissue digestion. Fresh tissue was cut into small pieces
and digested for 30 min at 37 °C with interrupted gentle swirling
either in PRMI 1640 medium (Lonza, Breda, the Netherlands) with
0.5 mg/ml collagenase IV (Sigma-Aldrich, St. Louis, MO, USA) and
0.1 mg/ml DNase I (Roche, Basel, Switzerland) or in Hanks’
Balanced Salt solution with Ca2+ and Mg2+ (Sigma, Zwijndrecht,
the Netherlands) with 0.125mg/ml collagenase IV and 0.2 mg/ml
DNase I.22,23 Filtration of cell suspensions was done through 100-
µm pore cell strainers (BD Biosciences, Franklin Lakes, NJ, USA).
Ficoll density gradient centrifugation was used to obtain MNCs.
Viability was determined by trypan blue exclusion. Cells were
surface-labelled with fluorochrome-conjugated antibodies against
CD45 (optional), CD3, CD4, and CD8. Intracellular FoxP3 was
stained using FoxP3-specific antibody (clone 236A/E7; eBioscience,
San Diego, CA, USA) after fixation and permeabilisation using the
FoxP3 staining buffer set of eBioscience (San Diego, CA, USA).
Subsequent flow cytometric analysis was performed using a FACS
Canto II flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA)

and FlowJo software (version 10.0, BD, Franklin Lakes, NJ, USA) as
described previously.22,23 Viable (aqua LIVE/DEAD fluorescent dye-
negative) leukocytes were gated in single cells using either CD45
or FSC/SSC. Live T cells were defined based on CD3 expression.
Within live CD3+ T cells, the relative proportions of CD8+ and
CD4+ T cell subsets were determined. Within the CD4+ T cells,
the T regulatory subset was defined as CD4+FoxP3+ while the T
helper subset was defined as CD4+FoxP3−. In addition to these
subsets, the ratio between CD8+/CD4+ T cells and the ratio
between CD4+FoxP3−/CD4+FoxP3+ T cells were calculated. A
representative example of the flow cytometry gating strategy is
provided in Supplementary Fig. 3. The study was approved by the
medical ethics committee of the Erasmus Medical Centre (MEC-
2012-331) and signed informed consent was obtained from all
patients prior to tissue and blood donation.

Survival
The OS, defined as the time in months from resection of CRLM till
death, was compared between patients with dHGP and non-dHGP
in all the three cohorts combined.32 Overall survival was estimated
by Kaplan–Meier method and reported as 5-year OS rate with
corresponding 95% confidence interval (CI). Survival curves were
compared using log-rank test.

Statistical analysis
The TME was compared in each cohort between patients who
exhibited only dHGP (i.e. 100% dHGP) and patients in whom any
non-dHGP was observed (i.e. <100% dHGP). Categorical data were
compared using chi-squared test and non-parametric continuous
data using Kruskal–Wallis test. In addition, linear regression was
performed to study possible relations between the observed
percentage of dHGP at the tumour–liver interface and the TME.
Herein the total proportion of dHGP observed at the tumour–liver
interface represented the independent variable, and continuous
data observed in the TME the dependent outcome variable. In
order to test whether the HGP and the TME were independent of
clinical risk, the CRS was determined.10 Patients were classified as
either low (CRS 0–2) or high (CRS 3–5) risk. Independency of
the HGP with CRS was tested for all cohorts combined and for
each cohort separately. Independency with CRS was also tested
for CD8, CD4, and FoxP3 within each cohort. Categorical data
are reported as frequency and/or percentage and plotted
using bar charts with binomial 95% CI. When plotted, binomial
95% CI for proportions were calculated using the Clopper–Pearson
method. Non-parametric continuous data are reported as median
with corresponding 25th (Q1) and 75th (Q3) percentile (i.e.
interquartile range (IQR)) and plotted using box plots. Outliers
in box plots were defined according to the 1.5 rule (i.e. outside
[Q1− 1.5 × IQR; Q3+ 1.5 × IQR]). Statistical significance was
defined as an α < 0.05. All statistical analyses were performed
using R version 3.5.3 (http://www.r-project.org).

RESULTS
Data on 198 individual patients were collected, 160 of whom
received treatment at the Erasmus MC Cancer Institute, and the
remaining 38 at the University Medical Centre Groningen. Of the
160 patients of the Erasmus MC, 1 was included in all three
cohorts, 2 were included in both cohorts A and C, and 28 were
included in both cohorts B and C. Upon histopathological
examination, dHGP was observed in 46 patients (23%). The CRS
was available for 191 patients (98%) and was independent of the
HGP (p= 0.089, Supplementary Table 1). Clinicopathological
patient characteristics stratified by cohort are reported in Table 1.

Cohort A: semi-quantitative IHC
A total of 117 patients were included in the first cohort, 79 of
whom underwent resection of CRLM at the Erasmus MC Cancer
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Institute between March 2000 and February 2015 and 38 of whom
underwent resection of CRLM at the University Medical Centre
Groningen between January 1994 and June 2013. Clinicopatho-
logical patient characteristics are reported in Table 1. Thirty-two
patients exhibited dHGP (27%) and 85 non-dHGP (73%).
The results of peritumoural and intratumoural IHC expression
stratified by HGP are reported in Figs. 2 and 3, respectively. All
intratumoural expression was scored based on stromal expression,
with the exception of CD8, which was determined on both stromal
and intraepithelial lymphocyte expression. The cut-off to deter-
mine “high” expression was grade 3 for CD4 and CD45 and grade
≥2 for all other markers. The TME of dHGP patients more often
displayed high peritumoural CD8, CD45, CD79A, Kappa/Lambda,
and SLAMF7 expression, all p ≤ 0.001 (Fig. 2). Similarly, high
intratumoural CD8 (intraepithelial), CD79A, FoxP3, and Kappa/
Lambda were more frequently observed in the TME of patients
with dHGP, all p < 0.05 (Fig. 3). Concerning the CD8-to-CD4 ratio,
patients with dHGP more often displayed a high peritumoural
CD8/CD4 (p= 0.041, Fig. 2), as well as a high intraepithelial CD8 to
stromal CD4 (p= 0.004, Fig. 3). No difference was found in the
stromal CD8 to stromal CD4 ratio (p= 0.311, Fig. 3). Peritumoural
and intratumoural CD8, CD4, and FoxP3 expression were all
independent of CRS (all p > 0.10, Supplementary Table 1).

Cohort B: quantitative IHC by digital image analysis
Quantitative IHC by digital image analysis was performed in 34
patients who underwent partial hepatectomy at the Erasmus MC

Cancer Institute between October 2009 and October 2011.
Clinicopathological patient characteristics are reported in Table 1.
Out of 34, dHGP was observed in 10 (29%) and non-dHGP in 24
(71%) patients. Figure 4a reports the peritumoural and intratu-
moural CD8 and FoxP3 counts stratified by HGP using box plots.
The TME of dHGP patients was associated with significantly higher
peritumoural and intratumoural CD8 (p= 0.002 and p= 0.014,
respectively) and peritumoural FoxP3 counts (p= 0.026). No
significant difference was observed concerning intratumoural
FoxP3 counts or the peritumoural and intratumoural CD8/FoxP3
ratios. Figure 4b displays the linear regression models investigat-
ing the peritumoural and intratumoural CD8 and FoxP3 counts
and the total percentage of dHGP at the tumour–liver interface.
The percentage of dHGP at the tumour–liver interface proved a
significant positive predictor for both peritumoural (β= 4.261, p <
0.001) and intratumoural (β= 1.99, p= 0.002) CD8 counts. No
such associations were found for peritumoural and intratumoural
FoxP3 counts or the peritumoural and intratumoural CD8/FoxP3
ratios (all p > 0.10, Fig. 4b). Peritumoural and intratumoural CD8
and FoxP3 counts were all independent of CRS (all p > 0.15,
Supplementary Table 1).

Cohort C: flow cytometry
Viable MNCs were successfully isolated from tumour tissue of 79
patients who underwent partial hepatectomy at the Erasmus MC
Cancer Institute between October 2009 and August of 2018. Viable
MNCs from tumour-free liver tissue were successfully isolated in

Table 1. Baseline characteristics stratified by cohort.

Cohort A Cohort B Cohort C

Semi-quantitative IHC Quantitative IHC Flow cytometry

n= 117 (%) n= 34 (%) n= 79 (%)

Centre Erasmus MC 79 (68) 34 (100) 79 (100)

UMCG 38 (32) 0 (0) 0 (0)

Age at resection of CRLM (median [IQR]) 67.0 [61.0, 73.0] 64.5 [57.2, 72.0] 67.0 [59.0, 75.0]

Gender Female 50 (43) 11 (32) 29 (37)

Male 67 (57) 23 (68) 50 (63)

Primary tumour location Left sided 48 (41) 17 (50) 40 (51)

Right sided 48 (41) 11 (32) 25 (32)

Rectal 21 (18) 5 (15) 11 (14)

Missing 0 (0) 1 (3) 3 (4)

Adjuvant CTx following CRC resection No 85 (73) 31 (91) 63 (80)

Yes 30 (26) 3 (9) 15 (19)

Missing 2 (2) 0 (0) 1 (1)

Nodal status of primary CRC N0 59 (50) 18 (53) 39 (49)

N+ 58 (50) 14 (41) 39 (49)

Missing 0 (0) 2 (6) 1 (1)

Disease-free interval in monthsa (median [IQR]) 15.0 [4.0, 25.0] 7.0 [0.0, 17.5] 8.0 [0.0, 18.5]

Preoperative CEA in µg/L (median [IQR]) 16.1 [4.6, 50.5] 6.0 [3.9, 17.0] 13.0 [5.6, 29.1]

Number of CRLM (median [IQR]) 1.0 [1.0, 2.0] 2.0 [1.0, 2.0] 1.0 [1.0, 2.0]

Diameter of largest CRLM in cm (median [IQR]) 3.4 [2.5, 4.5] 2.4 [1.5, 3.5] 3.0 [2.0, 3.8]

Clinical Risk Score Low risk (0–2) 101 (86) 22 (65) 57 (72)

High risk (3–5) 16 (14) 8 (24) 17 (22)

Missing 0 (0) 4 (12) 5 (6)

Histopathological growth pattern dHGP 32 (27) 10 (29) 12 (15)

non-dHGP 85 (73) 24 (71) 67 (85)

CEA carcinoembryonic antigen, CRC colorectal cancer, CRLM colorectal liver metastasis, dHGP desmoplastic-type histopathological growth pattern, IHC
immunohistochemistry, IQR interquartile range, non-dHGP non-desmoplastic-type histopathological growth pattern, UMCG University Medical Centre
Groningen.
aBetween resection of primary CRC and detection of CRLM.
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73 and viable PBMCs from peripheral blood samples in 55 of
the 79 patients. Clinicopathological patient characteristics are
reported in Table 1. Twelve (15%) patients were found to have
dHGP; non-dHGP was seen in 67 patients (85%). Figure 5a reports
the relative proportions of T cell subsets within CD3+ T cells
isolated from tumour tissue stratified by HGP using box plots. The
relative proportion of CD8+ T cells was significantly higher in
patients with dHGP (p= 0.015), while the relative proportion of
CD4+ T cells was significantly higher in patients with non-dHGP
(p= 0.004). Congruently, the CD8/CD4 ratio was significantly
higher in dHGP patients (p= 0.001). This difference in CD4+

T cells was due to a higher relative CD4+FoxP3− T helper subset
in non-dHGP only (p= 0.006), as no difference was observed for
the CD4+FoxP3+ regulatory T cell subset (p= 0.551). Concerning
the CD4+FoxP3−/CD4+FoxP3+ ratio, no difference was observed
(p= 0.566). Similar results were seen in the linear regression
models investigating T cell subsets in tumour tissue and the
percentage of dHGP at the tumour–liver interface, reported in
Fig. 5b. A positive linear association was found for the percentage
of dHGP and the CD8+ T cell subset (β= 0.094, p= 0.007), while
a negative linear association was seen for the CD4+ T cell subset
(β=−0.182, p < 0.001). Correspondingly, the percentage of dHGP

Intratumoural IHC expression stratified by HGP

High stromal CD4

High stromal CD45 High stromal CD79A High stromal K/L High stromal SLAMF7High stromal FoxP3

High stromal CD8 High intraepithelial CD8 High ST CD8/ST CD4 High IE CD8/ST CD4
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Fig. 3 Results of semi-quantitative immunohistochemistry (IHC) in cohort A: bar charts representing the proportion of patients with high
intratumoural expression of individual markers stratified by histopathological growth pattern (HGP). The black lines represent the
binomial 95% confidence interval (Clopper–Pearson). ST stromal, IE intraepithelial, K/L Kappa/Lambda.
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was positively associated with the CD8+/CD4+ ratio (β= 0.007,
p= 0.002). Within the CD4+ subsets, the percentage of dHGP was
only negatively associated with the CD4+FoxP3− subset (β=
−0.184, p < 0.001), as no association was found between dHGP
and the CD4+FoxP3+ subset (p= 0.715). No linear association
was found for the CD4+FoxP3−/CD4+FoxP3+ ratio (p= 0.272).
The relative proportions of CD8+, CD4+, CD4+FoxP3−, and
CD4+FoxP3+ T cells in fresh tumour tissues were all independent
of CRS (all p > 0.30, Supplementary Table 1).
The relative proportions of T cell subsets within CD3+ T cells in

tumour-free liver tissues and peripheral blood stratified by HGP, as
well as the linear regression models investigating T cell subsets in
tumour-free liver or peripheral blood and the percentage of dHGP
at the tumour–liver interface, are reported in Supplementary
Figs. 4a, 5a, 4b, and 5b, respectively. When stratifying for HGP, no
differences existed in the relative proportions of T cell subsets in
either tumour-free liver tissues (all p > 0.30, Supplementary Fig. 4a)
or peripheral blood samples (all p > 0.50, Supplementary Fig. 5a).
Interestingly, the percentage of dHGP at the tumour–liver
interface was negatively associated with the relative proportion
of CD4+ T cells in tumour-free liver samples (β=−0.103, p=
0.021, Supplementary Fig. 4b), and positively associated with the
CD8+/CD4+ ratio (β= 0.022, p= 0.026, Supplementary Fig. 4b).
Again, this association was due to the CD4+FoxP3− T helper
subset (β=−0.099, p= 0.018, Supplementary Fig. 4b), as no
association existed for the CD4+FoxP3+ regulatory T cell subset
(β=−0.003, p= 0.371, Supplementary Fig. 4b). No association was
found for the CD8+ subset or the CD4+FoxP3−/CD4+FoxP3+
ratio (both p > 0.10, Supplementary Fig. 4b). Concerning possible
associations between T cell subsets in peripheral blood samples
and the percentage of dHGP at the tumour–liver interface, no
relationships were found (all p > 0.20, Supplementary Fig. 5b).

Survival
Survival data was available for all 198 patients. The Kaplan–Meier
estimates for OS stratified by HGP are reported in Fig. 6. The 5-year
OS (95% CI) rate for patients with dHGP was 82% (70–95%)
compared to 45% (38–54%) for non-dHGP (overall log rank:
p < 0.001).

DISCUSSION
The current study aimed to quantify, classify, and compare the
TME of patients with dHGP and non-dHGP. Three distinct analytic

methods were applied in 3 cohorts of chemo-naive patients
undergoing resection of CRLM (with 1 patient included in all
3 cohorts, 2 included in both cohorts A and C, and 28 in both
cohorts B and C). In order to correctly interpret the results, it is
important to recognise the difference in outcome measures of
each analytical method.
In the first cohort (A), semi-quantitative IHC scoring was applied.

High peritumoural expression of CD8, CD45, CD79A, Kappa/
Lambda, and SLAMF7 and intratumoural CD8 (intraepithelial),
CD79A, Kappa/Lambda, and FoxP3 were significantly more often
seen in patients with dHGP. In addition, dHGP was associated with
a high peritumoural CD8/CD4 ratio, as well as a high intraepithelial
CD8 to stromal CD4 ratio. These differences suggest a general
increased immune infiltrate in dHGP, both in the peritumoural and
the intratumoural TME. In cohort A, intratumoural CD8 was
determined for both stromal and intraepithelial expression.
Interestingly, high intraepithelial CD8 expression was more often
seen in dHGP patients (p= 0.005), whereas no significant
difference was found for stromal CD8 expression (p= 0.258).
Intraepithelial CD8+ lymphocytes have been linked to favourable
prognosis in CRC and are associated with antitumour immunity.34

Furthermore, it has been postulated that intraepithelial CD8+
lymphocytes play an important role in the suppression of
micrometastasis and hence are associated with a decrease in
distant metastasis.34 The higher expression of intraepithelial CD8+
lymphocytes in patients with dHGP therefore corroborates the
recent findings that patients with non-dHGP are at higher risk for
extrahepatic and multi-organ recurrences following first surgical
treatment of CRLM.35

This general increased immune infiltrate in patients with dHGP
seen in cohort A is supported by cohort B, where CD8 and FoxP3
expression levels were quantified both peritumourally and
intratumourally using digital image analysis. Median counts/mm2

of peritumoural CD8 and FoxP3 and intratumoural CD8 were
significantly higher in dHGP patients. Previously published results
describing a cohort that consisted of the same patients plus
patients treated with preoperative chemotherapy suggested that
the CD8/FoxP3 ratio was prognostic for survival after resection of
CRLM.25 Given the superior survival observed in chemo-naive
dHGP patients32, one would expect dHGP to be associated with a
high CD8/FoxP3 ratio. Contrastingly, no relationship between the
HGP and the CD8/FoxP3 ratio was found.
Assuming that a general increased immune infiltrate is present

in dHGP, interpretation of individual markers from cohorts A and B
is somewhat difficult due to the non-relative nature of their
outcome. Relative increases in the TME of non-dHGP patients
could exist but—given the absence of normalisation methods for
individual IHC markers—are potentially missed when analysing
just expression grades or absolute cell counts. Furthermore, IHC
analysis does not always allow for adequate discrimination
between individual cell populations, for instance, concerning
CD4, which is expressed on both CD4+FoxP3− T helper cells as
CD4+FoxP3+ T regulatory cells. In the third cohort, analysis was
performed using flow cytometry, which incorporates a relative
outcome measure (i.e. proportion within live CD3+ T cells) and
allows for discrimination of T helper and T regulatory cell
populations.
Flow cytometry in fresh tumour tissues showed a relative

increase in CD8+ T cells within infiltrated CD3+ T cells in the TME
of patients with dHGP. Contrastingly, the TME of non-dHGP
patients was associated with a relative increase in CD4+ T cells
within infiltrating CD3+ T cells. These results are in line with
cohort A, considering the semi-quantitative nature of the outcome
measure and that CD4 was the only marker in which no significant
difference in either intratumoural or peritumoural expression
existed between dHGP and non-dHGP. The relative increase in
CD8 and relative decrease in CD4 in the TME of dHGP patients was
consistent with the CD8/CD4 ratio, which was significantly higher
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in patients with dHGP in both cohorts A and C. The relative
increase of CD4+ T cells in the TME of non-dHGP patients
appeared only due to an increased CD4+FoxP3− T helper subset,
as no difference was found for the CD4+FoxP3+ T regulatory
subset. This is especially interesting considering the previously
demonstrated immunosuppressive effect of CD4+FoxP3+ T
regulatory cells on antitumour immunity.22,36 The absence of a
difference in relative numbers of T regulatory cells within CD3+
T cells in the TME between dHGP and non-dHGP patients suggests
that the detrimental prognosis observed in non-dHGP patients
may not be mediated by T regulatory cells (or at least T regulatory
cell numbers, since functionality was not studied). The flow
cytometric data show that the observed increases in absolute
numbers of FoxP3+ cells observed in cohorts A and B are
probably due to increased absolute number of T cells in the TME
of dHGP patients and not to selective enrichment of the
regulatory T cell subset within infiltrating CD3+ T cells.
While the T cell immune infiltrate was investigated in all three

cohorts, B and plasma cells were only investigated in the first. Herein
CD79A, a double polyclonal Kappa/Lambda, and SLAMF7 staining
were used to identify B lineage and plasma cells. As stated before,
interpretation of these individual markers should be done with
caution due to absent normalisation. Nevertheless, some of the
most striking differences in both the peritumoural and intratumoural
TME in cohort A were observed in the expression of these B/plasma
cell markers. For instance, high peritumoural CD79A was observed in
all but 1 (97%) of the patients with dHGP vs 60% in non-dHGP and
high intratumoural CD79A in >80% vs <60%. Similarly, large
differences were seen for intratumoural and peritumoural Kappa/
Lambda and peritumoural SLAMF7. While T cells in CRC (metastases)
have been studied extensively, less is known about the prognostic
impact of B and plasma cells. A recent review identified five studies
investigating the prognostic impact of CD20+ B cell tumour
infiltration within CRC (metastases).37 Three of these studies
demonstrated a positive,38–40 one demonstrated a negative,41 and
one failed to demonstrate any prognostic effect of tumour-
infiltrating CD20+ B cells.42 The majority of studies in other cancer
types also report positive prognostic effects of tumour-infiltrating B
cells.37 It is thought that B cell production of stimulatory cytokines
can enhance the T cell antitumour response.37 In addition, the
production of tumour antigen-specific antibodies by plasma cells
could trigger antibody-dependent cellular cytotoxicity and enhance
antigen presentation to T cells through Fc receptors on dendritic
cells.37 It has, however, also been suggested that B and plasma cell
infiltration is the result of interferon-γ production and might
therefore be more a reflection of the T cell antitumour response
rather than a mediating factor.43 Although only demonstrated in a
single cohort by a single method, these results suggest that the TME
of dHGP could also be characterised by B cell and plasma cell
enrichment. Further research should aim at validating these findings
and to determine underlying mechanisms.
Assimilation of all three cohorts demonstrates an increased

absolute and relative infiltration of CD8+ cytotoxic T cells in the
TME of patients with dHGP. This provides a potential explanation
to the superior survival previously observed in patients with
dHGP32 and also within the current study. All the more because
the HGP and the immune infiltrate at the TME were found to be
independent of clinical risk. Not only has increased infiltration of
CD8+ cytotoxic T cells been linked to prognosis in primary CRC44

and metastatic CRC patients24,40,45 but Katz and colleagues have
also specifically correlated increased CD8+ T cell infiltration to
prolonged survival following resection of CRLM.21 Brunner et al.
also found that high CD8+ infiltration was linked to favourable
prognosis in patients with CRLM.46 Moreover, Brunner et al.
specifically correlated fibrotic capsule formation (which likely
represents the 100% dHGP population of our study) with high
CD8+, CD45+, and CD4+ infiltration on IHC, suggesting a general
increased immune infiltrate in those patients.46 This is similar to

our results from cohorts A and B of the current study, where a
general increased immune infiltrate in dHGP was found. This
general increased immune infiltrate further adds to the possible
explanation for the superior survival observed in dHGP, since
Brunner et al. specifically reported that an increased immune
infiltrate, especially in combination with fibrotic capsule forma-
tion, was strongly related to favourable prognosis.46 Likewise, Katz
et al. reported a general increased infiltration of CD3 T cells to be
prognostic following surgical treatment of CRLM.21 More recently,
the internationally validated immunoscore for stage I–III CRC
proposed by Galon et al.20,47, derived from intratumoural and
peritumoural densities of CD3+ and CD8+ T cells, was also found
to be positively correlated with favourable prognosis in patients
with CRLM.26

The question then arises whether the immune response seen in
the TME drives the HGP phenotype (i.e. HGPs are host-
determined) or that intrinsic tumour characteristics determine
the HGP, in turn driving the immune phenotype (i.e. HGPs are
tumour-driven). Linear regression analysis in cohorts B and C
demonstrated a positive linear relationship between the percen-
tage of dHGP scored at the tumour–liver interface and CD8+
T cells, as well as the CD8/CD4 ratio. In addition, a negative linear
association for CD4+ T cells existed, which was explained by a
negative linear association in the CD4+FoxP3− T helper cell
subset only. These linear relationships indicate a level of
interactivity between the immune infiltrate and the HGP
phenotype. Considering that flow cytometry of distant tumour-
free liver samples demonstrated similar linear relationships
between CD4+ T cells, CD4+FoxP3− T helper cells, the CD8/
CD4 ratio, and the percentage of dHGP scored at the tumour–liver
interface, HGPs could, at least in part, be host-determined. Linear
regression analysis of peripheral blood samples and the percen-
tage of dHGP showed no such linear correlations, suggesting that
the HGP phenotype may be more influenced by the local
immunologic environment of the liver than by systemic immunity.
The strength of our study is that three cohorts were

independently studied using distinct analytic methods. However,
some limitations have to be noted. First, data on intrinsic tumour
characteristics such as mismatch repair status and RAS/RAF
mutational status were unavailable in all three cohorts. It would
have been especially valuable to include mismatch repair status,
since it is currently the only indication for checkpoint inhibitors
within metastatic CRC. Consequently, mismatch repair status is
thought to be a main driving force of the immune infiltrate.18,19

Mismatch repair deficiency is, however, only present in 3% of the
patients with CRLM.17 As such, mismatch repair deficiency alone
could never account for the entire dHGP phenotype, which is
present in roughly 20% of chemo-naive CRLM patients32,
suggesting (at least partial) independency. Second, although
HGP evaluation was performed according to international
consensus guidelines27, assessment was done by several obser-
vers and both light microscopy and digitalised slide images were
used. This is likely of little relevance though, as interobserver
reliability for HGP assessment, even for trained observers with
limited histopathological experience, was found to be excellent.48

Furthermore, within- and between-metastasis concordance of
HGPs is especially high in chemo-naive patients.48 Third, the semi-
quantitative IHC assessment in cohort A only incorporated grading
of antibody expression and not antibody intensity compared to
positive control. Previous studies have incorporated methods for
scoring both antibody expression and antibody intensity.49 Such
methods would have likely added discriminatory power in cohort
A and is something that should be considered for similar future
investigations. Finally, flow cytometry could only be performed in
samples from which sufficient viable MNCs for flow cytometric
analysis could successfully be isolated. Thus patients with a desert
immune phenotype are likely not included in the analyses. No
data were available on the frequency of unsuccessful isolation of
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viable MNCs from tumour, tumour-free liver, or peripheral blood
samples. In addition, CD45 was not always included in the flow
cytometry panel due to limited channels. It would be interesting
to compare CD3+ T cells (and its subsets) based on the CD45+
population.
In conclusion, the current study demonstrates that the TME of

chemo-naive patients with a purely angiogenic desmoplastic
growth pattern is characterised by a general increased and
distinctly cytotoxic immune infiltrate compared to patients
with any observed non-desmoplastic growth. These findings
provide a potential explanation for the superior survival observed
in chemo-naive patients with purely desmoplastic colorectal liver
metastases.
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