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Simple Summary: Measles virus is currently under investigation as an innovative cancer treatment.
The virus selectively replicates in and kills cancer cells. Furthermore, it can be genetically engineered
to increase tumor specificity and therapeutic efficacy. Importantly, treatment with measles virus
activates antitumor immune responses. A number of clinical trials using measles virus for cancer
treatment have been completed or are ongoing. Future studies will further harness the possibilities
of virus engineering and potential of combination immunotherapies to improve clinical outcome.

Abstract: Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis
and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under
investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engi-
neering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can
further be enhanced by combination treatments. An emerging focus in this regard is combination
immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from
antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have
demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials
with engineered viruses, rational combination regimens, and comprehensive translational research
programs will realize the potential of oncolytic immunotherapy.

Keywords: oncolytic virus; measles virus; cancer immunotherapy; vector engineering; vaccination;
immune checkpoint blockade

1. Introduction—Measles Virus for Cancer Therapy

Measles virus (MeV) is a negative-strand RNA virus belonging to the family Paramyx-
oviridae, genus Morbillivirus. Its genome has a length of approximately 16 kb and en-
codes six structural and two non-structural proteins (Figure 1a,b). The viral glycoproteins
hemagglutinin and fusion mediate receptor binding and fusion at the plasma membrane,
respectively. While wild type MeV uses CD150/SLAM on lymphoid cells and epithelial
nectin-4 as receptors, vaccine strains of MeV infect cells primarily via CD46 [1]. This is due
to mutations in the receptor attachment protein hemagglutinin H in vaccine strain MeV,
resulting in high affinity of H for CD46 [2–6]. MeV infection results in syncytia formation
as typical cytopathic effect (Figure 1c).
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safety record [10]. Several years later, testing of Edmonston B measles vaccine strain de-
rivatives for cancer treatment began. In many early studies, hematological malignancies 
were chosen as target entities [11–14]. This was supported by the natural lymphotropism 
of MeV. However, other malignancies including ovarian cancer [15] and glioblastoma [16] 
were soon found to also be sensitive to MeV oncolysis, while normal cells are spared 
[15,17]. 

Meanwhile, preclinical efficacy of oncolytic MeV has been demonstrated against a 
broad range of cancer entities (reviewed in [18]). In addition to Edmonston B derivatives, 
also the vaccine strains Moraten-Schwarz [19], Edmonston-Zagreb and AIK-C [20], rMV-
Hu191 [21], as well as Leningrad-16 [22] have been shown to exert oncolytic effects in 
preclinical studies. 

 
Figure 1. Measles as an oncolytic virus. (a) Schematic of the measles virus particle. The viral RNA genome is encapsulated 
by the nucleocapsid (N) protein and is associated with the viral polymerase (L, large protein) and its cofactor phospho-
protein (P), forming the ribonucleoprotein complex (RNP). The matrix (M) protein connects the RNP and the viral enve-
lope. The surface glycoproteins hemagglutinin (H) and fusion (F) mediate receptor binding and cell fusion, respectively. 
(b) Schematic of the measles virus genome with open reading frames encoding the six structural proteins flanked by the 
3′ leader (ld) and 5′ trailer (tr). (c) Syncytia formation as the typical cytopathic effect associated with measles virus infec-
tion. Human colorectal cancer (KM12, top) and pancreatic adenocarcinoma (T3M4, bottom) cells were transfected with 
plasmids encoding the MeV glycoproteins H and F as well as enhanced green fluorescent protein as reporter. Control cells 
were subjected to mock transfection. Phase contrast and fluorescence images were acquired with an Axiovert 200 micro-
scope (Zeiss) at 36 h (KM12) and 12 h post-transfection (T3M4). Scale bar: 200 µM. (d) Lymphoma remission after measles 
infection. Left panel: The patient presented with orbital Burkitt’s lymphoma. Middle panel: The patient was infected with 
measles; the typical skin rash is visible. Right panel: Without specific anti-lymphoma treatment, the orbital mass resolved. 
Reproduced from Lancet 10 July 1971; 2 (7715): 105–106, with permission. 

Thus, MeV is one of several oncolytic platforms currently developed for cancer ther-
apy. Advantages of MeV include the excellent safety profile of the oncolytic vaccine 
strains and lack of genotoxicity, its immunogenicity, and especially the plethora of engi-
neering possibilities offered by the MeV reverse genetics system. Specific challenges re-
lated to MeV include pre-existing antiviral immunity, the choice of preclinical models and 
manufacturing. These assets and drawbacks are discussed in more detail within this re-
view article. 

2. Measles Virus Oncotropism 
Measles vaccine strain oncotropism correlates with CD46 overexpression on malig-

nantly transformed cells [23]. Although viral entry occurs in benign cells and at low CD46 
receptor density, a certain threshold of expression is required for syncytia formation and 
cell death [24]. In myeloma, CD46 upregulation has been associated with abnormal p53 
[25]. The epithelial receptor for MeV, nectin-4 [26,27], is also a tumor marker which may 
render carcinomas of pancreatic [28], colorectal [29], and mammary [30] origin susceptible 
to MeV oncolysis. Post-transcriptional regulation of nectin-4 levels by miR-31 and miR-
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by the nucleocapsid (N) protein and is associated with the viral polymerase (L, large protein) and its cofactor phosphoprotein
(P), forming the ribonucleoprotein complex (RNP). The matrix (M) protein connects the RNP and the viral envelope. The
surface glycoproteins hemagglutinin (H) and fusion (F) mediate receptor binding and cell fusion, respectively. (b) Schematic
of the measles virus genome with open reading frames encoding the six structural proteins flanked by the 3′ leader (ld)
and 5′ trailer (tr). (c) Syncytia formation as the typical cytopathic effect associated with measles virus infection. Human
colorectal cancer (KM12, top) and pancreatic adenocarcinoma (T3M4, bottom) cells were transfected with plasmids encoding
the MeV glycoproteins H and F as well as enhanced green fluorescent protein as reporter. Control cells were subjected to
mock transfection. Phase contrast and fluorescence images were acquired with an Axiovert 200 microscope (Zeiss) at 36 h
(KM12) and 12 h post-transfection (T3M4). Scale bar: 200 µm. (d) Lymphoma remission after measles infection. Left panel:
The patient presented with orbital Burkitt’s lymphoma. Middle panel: The patient was infected with measles; the typical
skin rash is visible. Right panel: Without specific anti-lymphoma treatment, the orbital mass resolved. Reproduced from
Lancet 10 July 1971; 2 (7715): 105–106, with permission.

Originally, the idea to treat cancer patients with MeV arose after case reports which
linked measles infection to tumor remission [7]. One highly cited example relates to a boy
suffering from Burkitt’s lymphoma [8] (Figure 1d). These experiments of nature inspired the
idea of using MeV in cancer treatment. However, measles is a severe infectious disease [9].
Thus, employing a pathogenic strain of MeV in cancer therapy is out of question. Live
attenuated MeV strains for vaccination were licensed in the 1960s and have a proven safety
record [10]. Several years later, testing of Edmonston B measles vaccine strain derivatives
for cancer treatment began. In many early studies, hematological malignancies were
chosen as target entities [11–14]. This was supported by the natural lymphotropism of MeV.
However, other malignancies including ovarian cancer [15] and glioblastoma [16] were
soon found to also be sensitive to MeV oncolysis, while normal cells are spared [15,17].

Meanwhile, preclinical efficacy of oncolytic MeV has been demonstrated against a
broad range of cancer entities (reviewed in [18]). In addition to Edmonston B derivatives,
also the vaccine strains Moraten-Schwarz [19], Edmonston-Zagreb and AIK-C [20], rMV-
Hu191 [21], as well as Leningrad-16 [22] have been shown to exert oncolytic effects in
preclinical studies.

Thus, MeV is one of several oncolytic platforms currently developed for cancer therapy.
Advantages of MeV include the excellent safety profile of the oncolytic vaccine strains
and lack of genotoxicity, its immunogenicity, and especially the plethora of engineering
possibilities offered by the MeV reverse genetics system. Specific challenges related to MeV
include pre-existing antiviral immunity, the choice of preclinical models and manufacturing.
These assets and drawbacks are discussed in more detail within this review article.

2. Measles Virus Oncotropism

Measles vaccine strain oncotropism correlates with CD46 overexpression on malig-
nantly transformed cells [23]. Although viral entry occurs in benign cells and at low
CD46 receptor density, a certain threshold of expression is required for syncytia formation
and cell death [24]. In myeloma, CD46 upregulation has been associated with abnormal
p53 [25]. The epithelial receptor for MeV, nectin-4 [26,27], is also a tumor marker which
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may render carcinomas of pancreatic [28], colorectal [29], and mammary [30] origin sus-
ceptible to MeV oncolysis. Post-transcriptional regulation of nectin-4 levels by miR-31
and miR-128 has been demonstrated in breast cancer and glioblastoma [31]. In certain
EBV-associated B cell lymphomas, viral latency may promote upregulation of the MeV
receptor CD150/SLAM [32].

On the post-entry level, the cellular interferon (IFN) response has been identified as a
key determinant of sensitivity to oncolytic MeV across several tumor entities, including
the NCI60 panel of cancer cell lines [33]. In adult T cell leukemia/lymphoma, resistance
to MeV oncolysis was associated with IFN-β production, while sensitive cells did not
produce IFN [34]. In mesothelioma and melanoma, effects of treatment with oncolytic
MeV were found not to correlate with CD46 expression, but rather with defects in the
IFN response [35,36]. Consistently, expression of retinoic acid inducible gene I (RIG-I)
and IFN-induced protein with tetratricopeptide repeats 1 (IFIT1) [37] and IFN-induced
transmembrane protein 1 (IFITM1) [38] have been suggested as correlates of relative
resistance to MeV oncolysis. Kurokawa et al. have devised a gene expression signature
designating constitutive IFN pathway activation to predict outcome of oncolytic MeV
treatment [39]. Further, RSAD2/viperin, encoded by an IFN-stimulated gene (ISG), has
been shown to inhibit release of MeV progeny in ovarian cancer models [40].

Aside from the cellular antiviral response, several additional cellular factors have been
associated with sensitivity to MeV oncolysis. For instance, apoptosis regulators appear
to play a role. Caspase 3 has been implicated in MeV-induced cancer cell death [41,42]
and overexpression of Bcl-2 reduces MeV-induced cell death in B cell lymphomas [43].
More broadly, basic cellular processes such as protein translation are necessary for efficient
MeV replication and thus tumor cell killing. Stimulating cellular translation by insulin-like
growth factor-I (IGF-I) or forced expression of eIF4E increases efficacy of oncolytic MeV,
while inhibitors of cap-dependent translation reduce MeV oncolysis [44]. Furthermore,
it has been reported that integrity of lipid rafts is a prerequisite for oncolysis with the
MV-Hu191 strain [21]. Determinants of MeV oncotropism are summarized in Figure 2.
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Overall, oncolytic MeV acts via mechanisms distinct from other established can-
cer treatments. Accordingly, gemcitabine-resistant pancreatic adenocarcinoma cells are
susceptible to MeV oncolysis [45] and chemotherapy-induced senescence does not abro-
gate oncolysis [46].

3. Combination Therapies

Nevertheless, monotherapy with oncolytic MeV will often be insufficient to cure
advanced stage malignancies. Modern medical oncology builds on effective combination
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therapies. Therefore, measles virotherapy has been combined with other established cancer
therapies such as radiation and chemotherapy (recently reviewed in [47]). Synergistic
effects of oncolytic MeV and radiotherapy against glioblastoma were observed in vitro and
in a xenograft model [48]. In vitro studies have also demonstrated successful combination
of oncolytic MeV with chemotherapies such as paclitaxel [49], camptothecin [50], and
gemcitabine [51]. Combination with the anti-epidermal growth factor receptor (EGFR)
monoclonal antibody nimotuzumab was reported to result in increased antitumor efficacy
in laryngeal cancer models [52].

Several small molecules have also been shown to enhance MeV oncolysis by modu-
lating host cell factors. MeV infection is associated with heat shock protein (Hsp) 70 up-
regulation. Combination treatment with a Hsp90 inhibitor, resulting in increased Hsp70
expression [53,54], led to increased apoptosis [55]. Counteracting the IFN response, e.g.,
with janus-associated kinase (JAK) inhibitors such as ruxolitinib, enhances MeV replication
in vitro [56]. Epigenetic modulation by histone deacetylase (HDAC) inhibition was also
reported to increase efficacy of oncolytic MeV by preventing induction of ISGs in hepa-
tocellular carcinoma [57], but by a different, so far unresolved mechanism in pancreatic
adenocarcinoma [58]. As MeV spread and syncytia formation involves remodeling of
the actin cytoskeleton, inhibition of Rho-associated coiled-coil forming kinase (ROCK)
was tested during treatment of prostate, breast, and glioblastoma cancer cells with MeV,
yielding increased viral replication, spread, and tumor cell killing [59]. Compounds which
modulate cellular metabolism have also been tested in combination approaches. Blocking
aerobic glycolysis with dichloroacetate was shown to increase cell death upon MeV treat-
ment [60]. Furthermore, inducing autophagy has been suggested as a combination strategy
to promote MeV oncolysis [61].

Even combination with other oncolytic viruses is conceivable. Along these lines, the
combination of MeV with mumps virus showed increased efficacy in a human prostate
cancer xenograft model [62].

4. Engineering Oncolytic MeV

Purposeful modification of oncolytic MeV vectors to enhance virotherapy was enabled
by development of a reverse genetics system for rescue of MeV from cloned cDNA [63].
This system allows for insertion of transgenes via additional transcription units equipped
with MeV polymerase regulatory sequences [64]. These genes are then expressed in infected
cells, i.e., within the tumor. A plethora of genetic engineering approaches has been pursued
which are summarized in the following, and in Figure 3 (for recent reviews, see [47,65]).

4.1. Tracking Viral Replication and Spread

Initially, reporter genes were inserted for tracking of MeV replication. Carcinoem-
bryonic antigen (CEA) and β-human chorionic gonadotropin (HCG) were selected, which
can be measured in routine clinical laboratory testing [12]. Encoding the sodium iodide
symporter, NIS, yielding MV-NIS, allowed for γ-camera imaging of iodine-123 (123I) or 99m-
technetium uptake and also radiotherapy with 131I [66]. In later studies, MV-NIS was used
for advanced imaging techniques, such as pinhole micro-single photon emission computed
tomography/computed tomography (SPECT/CT) [67] and contrast-enhanced CT [68].
Recently, a recombinant MeV variant encoding a fluorescent reporter gene was used for
intravital imaging of viral spread at single-cell resolution by two-photon microscopy [69].

Data from preclinical studies with MV-NIS have also been used to develop mathe-
matical models of oncolytic virotherapy and its combinations. This has been devised as a
means to rationalize testing of distinct dosing and scheduling regimens [70–73].
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achieved via target sites for microRNAs (gray) introduced into viral genes which are differentially expressed in malignant
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with reporter genes encoding, e.g., fluorescent proteins (light green) can be used to track viral spread. To increase therapeutic
efficacy, viruses can be armed with additional genes encoding radiosensitizers, prodrug convertases, or immunomodulators.
Bottom: Shielding against neutralizing antibodies can be achieved by exchanging the viral envelope proteins for the
counterparts from a related virus.

Valuable information was gained by employing viruses with reporter genes in clin-
ical trials. After intraperitoneal administration of MV-CEA, dose-dependent increases
in CEA levels were measured in peritoneal fluid and serum [74]. After intraperitoneal
administration of MV-NIS, 123I SPECT/CT scans were positive in three of 13 ovarian cancer
patients, confirming viral gene expression at the tumor site. Scans were positive in eight of
31 multiple myeloma patients receiving MV-NIS i.v. [75]. In both studies, positive scans
were associated with higher virus doses.

4.2. Retargeting MeV

Virus engineering has not only enabled tracking viral spread, but also modifying its
tropism to increase tumor specificity. Retargeting of MeV was accomplished by mutating
the intrinsic receptor binding sites and fusing antibody single-chain variable fragments
(scFv) to the C-terminus of the viral hemagglutinin [76]. Using this strategy, oncolytic MeV
were targeted to the myeloma surface antigen CD38 [13], to CD20 for targeting of B cell
malignancies [77], folate receptor (FR)-α for treatment of ovarian cancer [78], and EGFRvIII
expressed in glioblastoma [79], among others (reviewed in [18]). A range of different
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targeting moieties beyond scFv has been employed, such as the cytokine interleukin (IL)-
13 [80] or the urokinase plasminogen activator [81] for direction of viral tropism to their
respective receptors. Successful targeting has also been achieved using integrin-binding
peptides [82], DARPins [83] and cystine knot proteins [84]. Viral tropism can be redirected
to specific cell populations within the tumor, including tumor-initiating cells [85], the tumor
stroma [86], and vasculature [81].

A sophisticated means of viral entry targeting employs proteases expressed within
the tumor microenvironment. The MeV fusion protein encompasses a furin cleavage site
and requires proteolytic processing for activity. Replacing the furin cleavage site with
sequences recognized by matrix metalloproteinases or the urokinase-type plasminogen
activator can increase tumor specificity [87,88].

Tumor targeting on the post-entry level was achieved using microRNA target sites
inserted into the untranslated regions (UTRs) of viral genes [89]. This concept exploits
downregulation of specific microRNAs in malignant vs. benign cells, leading to virus
restriction in healthy tissue while spread within tumor tissue is unimpaired.

Proof-of-concept was also obtained for using riboswitches to control oncolytic MeV.
Insertion of a ligand-activated ribozyme into the UTR of the MeV fusion gene enabled
regulation of MeV infectivity and spread by addition of the cognate small molecule [90].
Recently, a photocontrollable MeV variant was reported which harbors a split L protein for
control of viral replication by blue light illumination [91].

4.3. Arming with Additional Therapeutic Genes

While these means of targeting aim at enhancing specificity of virotherapy, a number
of genetic engineering approaches have been developed to increase antitumor efficacy,
often referred to as “arming”. First arming strategies aimed at inducing bystander effects in
combination radiotherapy and chemotherapy approaches. As mentioned above, MV-NIS
allows for concentration of radioactive iodine in infected tumor cells [66].

MeV vectors encoding prodrug convertases were designed for local conversion of pro-
drugs into active chemotherapeutics. MeV encoding the purine nucleoside phosphorylase,
which converts fludarabine into 2-fluoroadenine and 6-methylpurine-2’-deoxyriboside
(MeP-dR) to 6-methylpurine, respectively, combined with prodrug administration im-
proved outcome in lymphoma xenograft and immunocompetent murine colorectal cancer
models [92,93]. Analogously, MeV was engineered to encode super cytosine deaminase
(SCD), a fusion protein of yeast cytosine deaminase and yeast uracil phosphoribosyltrans-
ferase, which converts the prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU) [94–97].

Other engineering approaches to increase anti-tumor efficacy include insertion of a
transgene encoding the proapoptotic protein BNiP3 [49] and the angiogenesis inhibitors
endostatin and angiostatin to remodel the tumor microenvironment [98].

5. Immunovirotherapy

While early efforts in engineering oncolytic MeV mainly focused on maximizing direct
tumor cell killing, there has been a recent shift from mainly oncolytic to mainly immunother-
apeutic treatment strategies, spurred by the developments in cancer immunotherapy which
have revolutionized medical oncology.

MeV oncolysis per se has pleiotropic effects on the anti-tumor immune response and
supports all phases of the “cancer immunity cycle” (Figure 4; reviewed in [99]). MeV-
induced cell death is immunogenic [100], induces a distinctive immunopeptidome [101],
and promotes cross-priming of antitumor T cell responses by conventional and plasmacy-
toid dendritic cells [19,102]. MeV oncolysis has also been reported to increase tumor necro-
sis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by myeloid
and plasmacytoid DCs [103] as well as modulation of macrophages towards an antitumor
phenotype [104]. Neutrophil activation also occurs, leading to secretion of IL-8, tumor
necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, and IFN-α, TRAIL
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expression, and degranulation [105], which may be beneficial or not depending on the
tumor model [106].
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been shown to support different phases of the antitumor immune response: Oncolysis induces
immunogenic cell death, which promotes dendritic cell activation, antigen presentation, and cross-
priming of T cells. Measles virotherapy remodels the tumor microenvironment, thereby enhancing
innate (macrophage repolarization and neutrophil degranulation) as well as adaptive antitumor
immunity (T cell infiltration and CD8+ effector responses).

These immunotherapeutic effects can be enhanced by insertion of immunomodula-
tory transgenes into the MeV genome (Table 1). Further, MeV can serve as a vector to
deliver immunomodulators to the tumor site which can be highly toxic when administered
systemically. The first immunomodulatory transgene reported in the context of many
oncolytic viruses and also MeV was the granulocyte macrophage colony stimulating factor,
GM-CSF [14]. In a lymphoma xenograft model, MV GM-CSF led to increased neutrophil
infiltration, which correlated with tumor regression. Further immunomodulators have
been shown to increase innate immune activation in the context of MeV oncolysis. A
MeV vector encoding IFN-β was reported to induce immune infiltration and remodeling
of the tumor microenvironment in mesothelioma xenografts [107]. MeV encoding the
immunomodulatory neutrophil-activating protein (NAP) of H. pylori prolonged survival
and induced a beneficial cytokine response in breast cancer xenograft pleural effusion and
lung colonization models [108].

Introduction of the first fully immunocompetent mouse model of MeV oncolysis,
MC38cea [93], was the prerequisite to further study immunomodulatory MeV vectors
and demonstrate induction of tumor-specific adaptive immune responses. This model
consists of murine colorectal adenocarcinoma MC38, syngeneic to C57BL/6 mice and stably
expressing the carcinoembryonic antigen (CEA), which are susceptible to CEA-targeted
MeV [93]. In this model, treatment with MV GM-CSF led to prolonged survival compared
to control MV. Forty percent of treated mice experienced complete tumor remission and
were subsequently protected from tumor re-engraftment, indicating a tumor vaccination
effect. Further, treatment with MV GM-CSF enhanced intratumoral T cell infiltration as
well as tumor-specific T cell responses [109].
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Table 1. Immunomodulatory oncolytic MeV. Overview of immunomodulatory transgenes that have been encoded in MeV,
their anticipated immunological effects in the context of MeV oncolytic immunotherapy, and the outcome of the respective
preclinical studies. GM-CSF: granulocyte–macrophage colony-stimulating factor; IFN: interferon; NAP: neutrophil activating
protein; CTLA-4: cytotoxic T lymphocyte antigen-4; PD-L1: programmed cell death 1-ligand 1; Th: T helper cell; Teff:
effector T cell; Treg: regulatory T cell; IL: interleukin; AICD: activation-induced cell death; BiTE: bispecific T cell engager;
TAA: tumor-associated antigen; IFNAR: IFN-α receptor.

Immunomodulator Anticipated Immunological Effects Preclinical Data

GM-CSF
Dendritic cell activation and maturation;
activation of monocytes, macrophages,

neutrophils, NK cells

SCID model: increased antitumor efficacy,
increased neutrophil infiltration [14]

Immunocompetent model: increased antitumor
efficacy, increased T cell infiltration, stronger
tumor-specific T cell responses, rejection of

tumor re-engraftment [109]

IFN-β Enhanced antitumor response via innate
and adaptive effector mechanisms

Athymic nude mouse model: increased CD68+
macrophage infiltration, reduced microvessel

density; delayed tumor progression, prolonged
survival [107]

H. pylori NAP Inflammatory response, promotion of
Th1-polarized immune responses

Athymic nude mouse model: prolonged survival,
neutrophil infiltration, secretion of

Th1-promoting cytokines [108]

Anti-CTLA-4, anti-PD-L1 Enhanced antitumor T cell response

Immunocompetent mouse model: delayed
tumor progression, prolonged survival,

increased Teff/Treg ratio, increased
tumor-specific IFN-γ response [110]

IL-12 Activation and recruitment of T cells and
NK cells

Immunocompetent mouse model: increased
survival rates (CD8+-dependent), rejection of

tumor re-engraftment, increased tumor-specific
IFN-γ response, expression of effector cytokines,
increased T cell infiltration, decrease in NK cells,
increased proportion of activated CD8+ T cells

and NK cells [111]

IL-15 superagonist Activation of T cells and NK cells without
induction of AICD

Immunocompetent mouse model: increased
CD8+ T cell and NK cell infiltration and

activation, antitumor efficacy inferior to MeV
encoding IL-12 [112]

BiTEs Recruitment of T cells, enhanced T cell
antitumor cytotoxicity

Immunocompetent mouse model: increased T
cell infiltration, prolonged survival, induction of

tumor-specific immunity
Patient-derived xenograft models: prolonged

survival [113]

TAA Priming and activation of TAA-specific T
cells

IFNAR-/- CD46 transgenic mouse model:
Induction of humoral and cellular responses

against TAA, reduced tumor nodules and
prolonged survival in lung colonization

experiment [114]
Ex vivo assays: Priming and activation of

TAA-specific T cells [115]

Italic: bacterial taxa.

To develop a second immunocompetent model of MeV oncolysis in C57BL/6 mice,
B16 melanoma cells were transduced for stable expression of the CD20 surface antigen
for treatment with CD20-targeted MeV. In this model, MeV vectors encoding immune
checkpoint antibodies against cytotoxic T lymphocyte-associated-4 (CTLA-4) and pro-
grammed cell death-ligand 1 (PD-L1) prolonged survival compared to MeV encoding
the antibody constant region only [110]. Combination with systemically administered
antibodies against CTLA-4, PD-1, and PD-L1 has also demonstrated the therapeutic value
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of this approach [110,116]. In the MC38cea model, systematic comparison of transgenes
targeted at different phases of the cancer immunity cycle—GM-CSF, IFN-γ induced protein
10 (IP-10), membrane-bound CD80, anti-CTLA-4, IL-12, and anti-PD-L1 identified the latter
two as the most potent [111]. MeV encoding IL-12 induced complete tumor remissions in
90% of treated mice, which were mediated by CD8+ effector T cell responses. Oncolytic
MeV vectors encoding an IL-15 superagonist mediated T and NK cell activation, but were
less effective than MeV encoding IL-12 [112]. Bispecific T cell engagers (BiTEs) simultane-
ously bind CD3 on T cells and a tumor surface antigen, thereby redirecting T cells to tumor
cells to mediate antitumor T cell cytotoxicity. Oncolytic measles viruses encoding BiTEs
were shown to promote T cell infiltration and activation in syngeneic and patient-derived
tumor models [113].

For induction of T cell responses against specific antigens, MeV can also be employed
as a heterologous, highly immunogenic vaccine vector (reviewed in [117]). This strategy
has been used to develop vaccines against a range of pathogens, including emerging SARS
CoV-2 [118]. This strategy has been adopted in oncolytic immunotherapy by encoding
tumor-associated antigens in the MeV vector. MeV vectors encoding ovalbumin (OVA)
as model antigen or the tumor antigen claudin-6 either in native form or in association
with lentivirus-like particles were shown to induce antigen-specific humoral and cellular
immune responses in IFN-α receptor (IFNAR)-deficient, CD46-transgenic mice and prolong
survival in B16-derived tumor models [114]. Employing OVA and the melanoma antigen
tyrosinase-related protein-2 (TRP-2), MeV vectors encoding the full-length antigens or
their respective immunodominant CD8+ epitope or epitope variants were generated.
The epitope variants are either secreted or targeted to the proteasome. Using these MeV
vectors, activation and dendritic cell-mediated priming of cognate T cells was demonstrated
ex vivo [115].

As another modality of immunovirotherapy, combination of oncolytic MeV with
adoptive transfer of antitumor immune effector cells such as NK cells [119] or CD8+
NKG2D+ cells [120] has been reported.

Importantly, antitumor immune activation by MeV oncolysis has not only been demon-
strated in preclinical models. Clinical data also suggest augmentation of antitumor im-
munity by oncolytic measles virotherapy. In cutaneous T cell lymphoma, a shift towards
a Th1-biased T cell population in lymphoma lesions was noted after treatment [121]. In
four ovarian cancer patients treated with MV-NIS, IFN-γ and IL-4 responses against the
tumor antigens FRα and IGF binding protein 2 (IGFBP2) were detected by ELISPOT [122].
Increases in IFN-γ ELISPOT counts against cancer testis antigens were also observed in the
majority of tested multiple myeloma patients treated with MV-NIS [123]. The myeloma pa-
tient with an exceptional response to MV-NIS had a high mutational load and high baseline
T cell responses against several tumor antigens, which remained stable after virotherapy.

Of note, the clinical trials published thus far tested oncolytic MeV not encoding
any additional immunotherapeutic payloads. Perhaps the fraction of patients showing
immunological responses and overall therapeutic efficacy can be increased with novel
immunomodulatory oncolytic MeV.

6. Antitumor vs. Antiviral Immunity

However, immune stimulation in the context of oncolytic virotherapy may hamper
overall efficacy by premature viral clearance [124]. Though conferring a safety advantage,
the antiviral immune response and specifically high measles seropositivity in the general
population is one of the main reservations against using MeV for oncolytic virotherapy.
Therefore, multiple strategies have been devised to circumvent anti-viral immunity. Sub-
stitution of the P/V/C and also N and L genes of attenuated oncolytic strains for their
wild type counterparts has been shown to dampen the cellular IFN response and increase
viral spread [125,126]. These variants resulted in higher progeny titers, increased viral
gene expression, and cell killing in presence of interferon or in interferon-competent cells.
Mutation of common antibody epitopes in the MeV envelope glycoproteins allows for
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evasion of virus neutralization in serum [127]. By exchanging the glycoproteins for their
counterparts from a related morbillivirus, canine distemper virus, an envelope chimeric
MeV was generated which showed similar replication kinetics and oncolytic properties as
unmodified MeV, but was not neutralized by human MeV-immune sera [128]. However,
these approaches may compromise safety. As alternatives, different “shielding” approaches
have been developed to protect oncolytic MeV from antibody-mediated clearance.

One approach is to employ cell carriers to “deliver” oncolytic MeV to the tumor site.
Successful tumor delivery by heterofusion of infected carrier cells and tumor cells was first
demonstrated for infected monocytes, endothelial cells, and stimulated human peripheral
blood cells. This allowed for effective oncolysis after i.v. or i.p. administration after passive
immunization in xenograft models [129]. A range of different cell types have been em-
ployed as carriers, including T cells [130], cytokine-induced killer cells [131], mesenchymal
stem cells [132], mesenchymal stromal cells [133], and also irradiated myeloma cells [134].

As an acellular shield, the scavenger receptor ligand polyinosinic acid can be used to
prevent MeV sequestration by hepatic Kupffer cells after i.v. administration [135]. This was
shown to enhance oncolytic efficacy in a nude mouse model. Multi-layer coating with ionic
polymers and graphene oxide sheets [136] have also been reported as a means to protect
MeV from premature clearance [137]. These modifications did not compromise infection of
tumor cells and even enhanced oncolytic effects. Administration of UV-inactivated MeV
as a decoy virus has been suggested as a means to sequester antiviral antibodies prior
to treatment [138].

Instead of modifying the oncolytic agent, immune modulation in the patient has
been envisaged to enable measles virotherapy. Clinically approved multidose cyclophos-
phamide regimens were shown to dampen both primary and secondary antibody responses
to MeV [139]. Although pre-existing immunosuppression in advanced stage cancer and es-
pecially low antibody levels in myeloma patients were anticipated, cyclophosphamide was
also tested in one cohort of the Phase I trial of MV-NIS for advanced multiple myeloma [75].
Clinical data in this regard are still limited, but so far no clear correlation between anti-
measles immunity and therapeutic efficacy has been noted.

7. Preclinical Models

The conundrum of balancing antiviral immunity and antitumor immunity exemplifies
the challenge to identify appropriate models for preclinical development of oncolytic
MeV. Measles is a primate-adapted virus, thus rodents and other small animals commonly
used in research are non-susceptible to the virus. CD46-transgenic, IFNAR-knockout
(IFNAR−/− CD46Ge) mice which are supposed to mimic MeV replication and spread in
humans are commonly used for study of MeV vaccines [117] and have also been used for
testing of oncolytic MeV vaccines [114]. However, it remains unclear how the IFNAR−/−

phenotype affects outcome of virotherapy. Syngeneic transplantable tumor models in
fully immunocompetent mice have been widely adopted [99]. While these models have
enabled proof-of-concept studies, they fail to recapitulate the genetic makeup, heterogeneity
and evolution of human cancers. To address these issues, human precision cut liver
slices [20], clinical samples [140], and patient-derived xenografts [113] have been used in
preclinical testing of measles virotherapy. Successful targeting of cancer-initiating cells
in patient-derived cultures, including glioma stem cells from neurospheres [141] and
colorectal cancer tumor spheroids [85] have been reported. To address specific tumor
niches, orthotopic models such as breast cancer pleural effusion [142] and intracranial
glioblastoma models [116,141] have been studied, demonstrating efficacy of oncolytic MeV
also in advanced preclinical models.

8. Pharmacokinetics and –Dynamics

In preparation of clinical trials, several preclinical toxicology and pharmacokinetic
studies have been carried out in mice and non-human primates [143–147]. These studies
confirmed safety of intravenous injection of up to 108 and 4 × 108 TCID50/kg oncolytic
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MeV in IFNAR−/− CD46Ge and squirrel monkeys, respectively. Further, intraventricular
injection of oncolytic MeV into the cerebrospinal fluid of IFNAR−/− CD46Ge mice [147]
and intrahepatic injection of prodrug convertase-armed oncolytic MeV in IFNAR−/−

CD46Ge mice and rhesus macaques [146] were tolerated. Depending on the model, differ-
ent pharmacokinetics and dose–response relationships were observed. Notably, despite
detection of viral RNA, no significant shedding of infectious virus was reported.

This holds true in clinical settings. Saliva and urine samples were free of infectious
virus after i.p. administration of MV-CEA in ovarian cancer patients [74]. Up to 109 TCID50
i.p. and 1011 TCID50 i.v. have been administered with manageable side effects [75,122].
The available clinical data also suggest a dose–response relationship, with higher doses
associated with more favorable outcome.

9. Early Clinical Trials with MeV

Clinical trials in oncology typically enroll patients after failure of established therapies.
In the first clinical trial with oncolytic MeV, patients with therapy-resistant or relapsed
cutaneous T cell lymphomas received intralesional injections of Edmonston-Zagreb measles
vaccine. As a safety measure, IFN-α was administered prior to treatment. Treatment was
well tolerated and tumor regressions, also of non-injected lesions, were observed. Serial
biopsies showed intralesional viral replication and favorable changes in the intralesional T
cell populations [121].

Quite a high number of subsequent trials were conducted at Mayo Clinic in pa-
tients with very different cancer entities including ovarian cancer [74,122] (NCT02068794;
NCT00390299), glioblastoma multiforme (NCT00390299), medulloblastoma (NCT02962167),
mesothelioma (NCT01503177), breast cancer (NCT04521764), head and neck squamous
cell carcinoma (NCT01846091), malignant peripheral nerve sheath tumors (NCT02700230),
bladder cancer (NCT03171493), and multiple myeloma (NCT00450814; NCT02192775)
using Edmonston B-derived attenuated MeV. These Phase I/II trials showed that MeV
administration through all investigated routes including intraperitoneal, intracranial, in-
tratumoral, intrapleural, and intravenous administration is safe, feasible, and may lead
to a favorable outcome compared to expected median survival in the treated patient pop-
ulation [74,122]. In patients with multiple myeloma, treatment with oncolytic MeV led
to transient drops in serum free light chains as myeloma marker in several patients. One
patient experienced a durable complete remission which is still ongoing to date [75,148].

10. Translational Considerations, Perspectives, and Conclusions

As a consequence of the observed dose–response relationships, highest feasible doses
are administered in current trials. However, large-scale manufacturing of the required high-
titer, highly purified good manufacturing practice (GMP)-grade recombinant MeV remains
challenging [149], despite development of processes including production in serum-free
cell culture, tangential flow filtration, and diafiltration [150–152]. Nevertheless, these
efforts seem worthwhile, given the versatility of MeV as an oncolytic vector platform [47],
the excellent safety record of MeV vaccines [10], as well as the biosafety profile [153] and
genetic stability [154] of recombinant MeV.

As outlined above, several rational combination approaches to cancer immunovirother-
apy employing MeV and different immunomodulators will be under clinical investigation
in the future. Other OVs have already been combined successfully with immune check-
point inhibitors [155] in clinical trials. Moreover, clinical translation of second-generation
MeV engineered to encode relevant immunomodulators as illustrated above will most
likely further improve clinical outcomes.

Moving forward in this direction, it will be decisive to validate predictive markers of
response and resistance in a clinical setting. These markers should not only incorporate
tumor cell characteristics, but also signatures of antitumor immune activation. By defining
criteria of successful immunovirotherapy, these results will also assist in prioritizing the
most effective therapeutic payloads and combination therapies. Towards this end, even
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early stage clinical trials must encompass comprehensive correlative research programs to
accelerate the advancement of effective immunovirotherapies.
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