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Abstract

Accurate early diagnosis of neurodegenerative diseases represents a growing challenge for current 

clinical practice. Promisingly, current tools can be complemented by computational decision-

support methods to objectively analyze multidimensional measures and increase diagnostic 

confidence. Yet, widespread application of these tools cannot be recommended unless they are 

proven to perform consistently and reproducibly across samples from different countries. We 

implemented machine-learning algorithms to evaluate the prediction power of neurocognitive 

biomarkers (behavioral and imaging measures) for classifying two neurodegenerative conditions –

Alzheimer Disease (AD) and behavioral variant frontotemporal dementia (bvFTD)– across three 

different countries (>200 participants). We use machine-learning tools integrating multimodal 

measures such as cognitive scores (executive functions and cognitive screening) and brain atrophy 

volume (voxel based morphometry from fronto-temporo-insular regions in bvFTD, and temporo-

parietal regions in AD) to identify the most relevant features in predicting the incidence of the 

diseases. In the Country-1 cohort, predictions of AD and bvFTD became maximally improved 

upon inclusion of cognitive screenings outcomes combined with atrophy levels. Multimodal 

training data from this cohort allowed predicting both AD and bvFTD in the other two novel 

datasets from other countries with high accuracy (>90%), demonstrating the robustness of the 

approach as well as the differential specificity and reliability of behavioral and neural markers for 

each condition. In sum, this is the first study, across centers and countries, to validate the 

predictive power of cognitive signatures combined with atrophy levels for contrastive 

neurodegenerative conditions, validating a benchmark for future assessments of reliability and 

reproducibility.
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1. Introduction

Neurodegenerative diseases are a world-wide epidemic (Shah et al., 2016; Shaw et al., 

2007). According to the World Alzheimer Report 2015 from the Alzheimer’s Disease 

International, more than 130 million people above age 60 will be diagnosed with dementia 

in 2050 (International AsD, 2015). Accurate early diagnosis across different 

neurodegenerative conditions is important for establishing prognosis and accessing adequate 

treatment. Diagnosis and differential diagnosis represents a clinical challenge due to the 

complexity of neurodegenerative processes, which disturb the patients’ brain structures and 

functions, as well as their cognition and behavior (Oxtoby et al., 2017; Palop et al., 2006). 

Indeed, current guidelines require the identification of a clinical phenotype and the 

recognition of specific patterns of atrophy or hypoperfusion in neuroimaging, which are 
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frequently combined with neuropsychological evaluation (Forman et al., 2006a; Tong et al., 

2017). Accordingly, accurate and timely diagnosis depends on the clinical expertise to 

recognize the co-occurrence of clinical phenotype and neuroimaging data. This frequently 

leads to misdiagnosis in non-specialized dementia centers, even among the most common 

forms of dementia (Johnson et al., 1999; Padovani et al., 2013). This is especially true for 

developing countries, given their minimal mental-health infrastructure, the lack of regionally 

organized research, and reliance on non-local (mostly Anglo-Saxon) reference data (Parra et 

al., 2018). The development of objective, automated, and multidimensional decision-support 

methods for dementia could critically enhance the current clinical toolkit by increasing 

diagnostic accuracy and confidence (Arbabshirani et al., 2017; Huys et al., 2016). 

Computational approaches prove most promising in this context, given their potential to 

detect consistent, reproducible markers across samples from different countries (Henley et 

al., 2005; Humpel, 2011). Capitalizing on this novel approach, here we implement machine-

learning algorithms to evaluate the performance of well-defined cognitive/behavioral and 

neural markers of neurodegeneration for classifying patients with Alzheimer’s disease (AD) 

and behavioral variant frontotemporal dementia (bvFTD) across three different countries.

Neurodegenerative disorders are characterized by abnormalities at molecular, synaptic, 

neuroanatomical, network-level, cognitive, and behavioral levels (Palop et al., 2006; Piguet 

et al., 2011a; Seelaar et al., 2011; Sperling et al., 2011). Although specific disturbances 

across these levels are generally associated with different types of dementia, patients present 

more heterogeneous profiles than would be expected according to diagnostic criteria (Palop 

et al., 2006; Piguet et al., 2011a; Seelaar et al., 2011; Sperling et al., 2011). For example, 

executive function deficits, which are characteristic of bvFTD, may nevertheless be absent in 

some patients. Similarly, such deficits may be observed in AD (Seelaar et al., 2011). This is 

also true for atrophy patterns. For example, a previous cluster-based analysis in bvFTD 

revealed four distinct patterns, with patients showing temporal-dominant, temporo-

frontoparietal, frontal-dominant, or frontotemporal atrophy patterns (Whitwell et al., 2009). 

Given this variability, computational decision-support methods have been proposed as a 

powerful novel approach due to their capacity to jointly assess relevant heterogeneous 

features (Arbabshirani et al., 2017; Dottori et al., 2017).

In the study of dementia, both cognitive and structural MRI data have arisen as potential 

candidates to establish effective, affordable, and massive markers of specific diseases (Fox 

and Schott, 2004; Kloppel et al., 2008a; Larner and Mitchell, 2014; Moreira et al., 2017). 

Valuable information of the patients’ cognitive status can be quickly obtained via cognitive 

screening instrument (Crawford et al., 2012; Galton et al., 2005; Velayudhan et al., 2014), 

such as the Addenbrooke’s cognitive examination (ACE) and the INECO Frontal Screening 

(IFS), which can be readily administered in general clinical settings. The ACE is a quick 

tool to evaluate general cognitive domains (e.g., memory, attention) with great sensitivity for 

AD and dementia in general (Larner and Mitchell, 2014; Crawford et al., 2012; Galton et al., 

2005; Hsieh et al., 2013), while the IFS focuses on executive functions (Moreira et al., 2014, 

2017; Torralva et al., 2009a; Bahia et al., 2018; Custodio et al., 2016) –a domain poorly 

evaluated by the ACE (Hsieh et al., 2013) – with the aim to identify characteristic deficits in 

bvFTD patients who have relative preservation of other cognitive domains (Piguet et al., 

2011a). These two widely used screening tools (Hsieh et al., 2013; Torralva et al., 2009a), in 
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particular, have yielded good accuracy rates to discriminate dementia patients from healthy 

controls (with scores from 83 to 96%) (Larner and Mitchell, 2014; Moreira et al., 2017; 

Hsieh et al., 2013; Torralva et al., 2009a). On the other hand, structural MRI is a non-

invasive method, generally included in routine assessments of dementia, characterized by 

lower costs than other candidate biological biomarkers (Mueller et al., 2006). Of note, 

though anatomical images are only visually inspected for clinical evaluation, they offer 

automatically derivable metrics of atrophy, which can reveal subtle neural alterations 

untraceable to the naked eye (Orru et al., 2012). Furthermore, several studies applying 

computational decision-methods on anatomical neuroimages have yielded good accuracy 

rates (from 80 to 100%) to discriminate AD and bvFTD patients from healthy controls 

(Zheng et al., 2016; Bron et al., 2017; Zhang et al., 2013; Dukart et al., 2011; Kuceyeski et 

al., 2012; Tahmasian et al., 2016; Zhou et al., 2010).

Although this evidence underscores the potential role of cognitive screenings and 

neuroimaging as feasible and effective markers for dementia, several limitations undermine 

their reliability and potential generalizability. First, works testing the classification 

properties of the ACE and the IFS rely on simple statistical methods to establish cut-offs for 

maximizing true positives and minimizing false positives, but no machine-learning 

approaches have yet been applied to evaluate the performance of these screenings, alone or 

in combination with neural measures (Larner and Mitchell, 2014; Moreira et al., 2017; Hsieh 

et al., 2013; Torralva et al., 2009a). Second, although a few neuroimaging studies have 

obtained high classification rates via sophisticated machine-learning approaches (such as 

support-vector machines), none of them has assessed the generalizability of their findings to 

new datasets (Zheng et al., 2016; Bron et al., 2017; Zhang et al., 2013; Dukart et al., 2011; 

Kuceyeski et al., 2012; Tahmasian et al., 2016; Zhou et al., 2010), casting doubts on their 

potential overfitting confounds and widespread translational relevance. Third, no previous 

study has assessed the combined sensitivity of neuropsychological screenings and atrophy 

measures with computational-decision methods, despite the evidence underscoring the 

potential of this approach to tackle behavioral and anatomical heterogeneity (Palop et al., 

2006; Piguet et al., 2011a; Seelaar et al., 2011; Sperling et al., 2011). Finally, most previous 

research is based only on samples from one clinic (typically, from Anglo-Saxon 

populations), so that their results might not be robust against the variability introduced by 

cross-center differences in recording parameters, diagnostic criteria, and the patients’ socio-

demographic profiles.

In sum, computational-decision methods combining cognitive screenings and atrophy 

measures to detect dementia patient profiles prove promising, but key tests of their 

robustness remain to be determined. Here, we implemented machine-learning algorithms to 

evaluate the power of cognitive parameters and brain atrophy measures for classifying AD 

and bvFTD patients across three countries, including Latin-American and Anglo-Saxon 

samples. In addition, we applied a leave-two-out cross-validation approach to test the 

accuracy rates within a reference dataset (within-country analysis), and then performed a 

cross-country validation to further evaluate the generalization of our findings. We predicted 

that the ACE, given its target domains, would contribute more than the IFS for the 

classification of AD. The IFS, given its emphasis on frontal executive functions, was 

hypothesized to be more sensitive to bvFTD. Moreover, we expected that cognitive measures 
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would generalize better than atrophy features, as the latter present higher variability due to 

differences in MRI scanner and acquisition parameters among centers (Abdulkadir et al., 

2011). Finally, we anticipated that the combination of cognitive and atrophy features would 

yield higher classification scores for both within-country analysis and cross-country 

generalization.

2. Materials and methods

2.1. Participants

The data analyzed here partially belong to a previously reported multicenter protocol study 

(Sedeño et al., 2017), and comprised 202 participants from three countries. Fifty-seven 

patients fulfilling revised consensus criteria for probable bvFTD (Rascovsky et al., 2011) 

and 29 patients who satisfied international criteria for AD (McKhann et al., 2011) were 

recruited from three international clinics: INECO Foundation, Argentina (Country-1, C_1); 

San Ignacio University Hospital, Colombia (Country-2, C_2); and FRONTIER, the 

Frontotemporal Dementia Research Group, based in Sydney (Country-3, C_3); further 

details of the origin of each sample are in Table 1.

As described in previous reports (Baez et al., 2014a; Piguet et al., 2011b; Torralva et al., 

2009b) the clinical diagnosis in each center was established by a standard examination –

involving extensive neurological, neuropsychiatric, and neuropsychological assessments–, 

and each case was discussed by a multidisciplinary clinical meeting of AD and bvFTD 

experts. All patients were in early/mild disease stages, and they did not fulfil criteria for 

specific psychiatric disorders. Patients presenting primarily with language deficits were 

excluded (further details about the clinical evaluation are reported in (Sedeño et al., 2017)). 

Each patient sample was matched on sex, age, and education with its own control group 

from the same scanning center (see Table 1). Healthy controls (HC, 116 in total) presented 

no history of psychiatric or neurological disease.

Participants (or their Person Responsible) provided signed informed consent in accordance 

with the Declaration of Helsinki. The study protocol was approved by the institutional Ethics 

Committee of each center.

2.2. Cognitive assessment

Participants completed a general cognitive screening, the ACE (Mathuranath et al., 2000), 

and an executive function brief cognitive test, IFS (Torralva et al., 2009b). The IFS (Torralva 

et al., 2009b) is a sensitive tool to detect executive dysfunction in patients with dementia 

(Dottori et al., 2017; Baez et al., 2014a, 2014b, 2016a, 2016b, 2019; Melloni et al., 2016; 

Santamaria-Garcia et al., 2016, 2017; Sedeno et al., 2016; Gleichgerrcht et al., 2011). This 

test includes eight subtests that evaluate response inhibition and set shifting, abstraction 

skills, and working memory. The global score of the IFS (the sum of the subtests, with a 

maximum value of 30) was considered here, as in previous works (Ibanez et al., 2012). The 

ACE (Mathuranath et al., 2000) is a sensitive tool to detect early stages of dementia and, 

more particularly, to distinguish between AD and FTD patients (Hsieh et al., 2013). This test 
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evaluates orientation, attention, memory, verbal fluency, language, and visuospatial ability 

(with a maximum total score of 100).

2.3. Structural imaging

2.3.1. Image acquisition—We followed the guidelines from the Organization for 

Human Brain Mapping (Nichols et al., 2017) to report the acquisition and preprocessing 

steps. Structural images were obtained from Country-1 participants through whole-brain T1-

weighted spin echo sequences in a 1.5T Phillips Intera scanner, and were acquired parallel to 

the plane connecting the anterior and posterior commissures with the following parameters: 

matrix size = 256 × 240, 120 slices, approx. 1×1×1 mm (1×0.97 × 0.97 mm); repetition time 

(TR) = 7489 ms; echo time (TE) = 3420 ms; flip angle = 8°, acquisition time = 7 min. 

Country-2 participants were scanned in a 3T Philips Achieva scanner. Whole-brain structural 

T1-rapid gradient-echo (MP RAGE) anatomical 3D scans were acquired with the following 

parameters: matrix size = 256×256, 160 slices, 1×1×1 mm isotropic; TR = 8521 ms; TE = 

4130 ms; flip angle = 9° ms, acquisition time = 8 min. In Country-3, whole-brain structural 

T1-weighted spin echo sequences were acquired through a 3T Philips MRI scanner with a 

standard head coil (matrix size = 256×200, 256 slices, 1×1×1 mm isotropic; TR = 5903 ms: 

TE = 2660 ms; flip angle = 8°; acquisition time = 7.42 min).

2.3.2. Voxel-based morphometry—Structural images from each center were analyzed 

via voxel-based morphometry (VBM) with the DARTEL Toolbox of the Statistical 

Parametric Mapping software (SPM12), following validated procedures (Sedeño et al., 

2017). Images were segmented into white matter (WM), grey matter (GM), and 

cerebrospinal fluid (CSF). Then, based on the segmented GM and WM images, we created a 

template from each center’s complete data set with the “DARTEL (create template)” 

module. Next, the final template from the previous step was affine-registered into the MNI 

space with the “Normalize to MNI Space” module from DARTEL Tools, and then this 

transformation was applied to all segmented GM scans to translate them into standard space 

(images were modulated by Jacobian determinants). Finally, an isotropic Gaussian kernel of 

12-mm full width at half maximum (FWHM) was applied to all images.

Following previous procedures (Dukart et al., 2013), we used a mask resembling the 

characteristic atrophy pattern of AD and bvFTD, respectively, to extract the GM volume for 

each participant. Given that we aim to test cognitive and atrophy features with a cross-center 

validation strategy, we used this ‘a priori’ feature selection to avoid the potential bias of a 

data-driven approach, which might find optimum classification features for an specific 

dataset that do not necessarily enable high classification rates in another one (Dukart et al., 

2013). As in a previous work, the general bvFTD atrophy mask was defined using the 

Automated Anatomical Labeling (AAL)-Atlas (Tzourio-Mazoyer et al., 2002), and involves 

the main fronto-insulo-temporal areas of early degeneration, including (Piguet et al., 2011a; 

Rascovsky et al., 2011; Ibanez and Manes, 2012; Schroeter et al., 2007): the anterior 

cingulate cortex (ACC), the orbitofrontal cortex, the gyrus rectus, the inferior frontal gyrus, 

the frontal middle gyrus, the amygdala, the basal ganglia (caudate nucleus, putamen and 

pallidum), the insular cortex, the hippocampus and para-hippocampus (see Supp. Fig. 1). For 

AD, the general mask was also based on the AAL-atlas including the most common atrophy 
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areas for this dementia such as the posterior cingulate cortex, the hippocampus, the 

parahippocampus, the amygdala, the angular gyrus, the precuneus, and the temporal superior 

and middle gyrus (Whitwell et al., 2009; Du et al., 2007) (see Supp. Fig. 1). Regions for 

both masks were selected bilaterally.

2.4. Classification analysis

To test the power of cognitive and brain atrophy features for classifying AD and bvFTD 

patients, we first implemented machine-learning algorithms within a reference dataset. For 

this analysis (from now on referred to as “within-country” approach), we selected the largest 

dataset available with full completion of cognitive screenings, namely, the one from 

Country-1. Then, we performed a cross-country classification analysis to further validate the 

generalization and prediction power of our findings with the within-country approach. In 

short, the classifier was trained with Country-1 subjects, and tested on participants from 

Country-2 or Country-3.

For both classification approaches, six features of interest were included in the analysis: IFS 

and ACE scores, the volume of atrophy, and demographic data including sex, age and 

number of years of formal education. Participants missing any of these parameters were 

excluded from further study. The general processing and analysis steps (conducted 

separately for the two diseases) are presented in Fig. 1. First the data was standardized by 

converting to z-scores, so that each feature in the control group had a zero mean and 

standard deviation of one (see Fig. 1; the details of z-scoring depend on the chosen cross-

validation scheme, and are described in Sections 2.4.2 and 2.4.3). This also transforms the 

distances between data points to be on the same scale. In this way, this step is preferred for 

some clustering and classification methods in order to improve their convergence and to 

avoid bias merely due to different feature ranges. The only categorical variable, sex, was not 

standardized but was given values ±1, since otherwise the values would be different in each 

group due to different proportions of females and males. Next, the hypothetically most 

informative features were inspected by graphing pairs of dimensions for Country-1 –the 

reference dataset (see 2.4.1 Clustering, below). This exploration was completed by principal 

component analysis (PCA), an exploratory technique that finds the most informative 

combination of features as measured by the explained variance of the data. We used 

MATLAB’s default implementation of PCA with a singular value decomposition of feature 

correlation matrix. Indeed, the PCA showed that for Country-1 AD (C_1-AD) [vs Country-1 

FTD (C_1-FTD)] the first principal component explains 46% (43%) of variance (of the 

standardized data), and 82% of this component (97%, calculated as the norm of the 

coefficient vector) comprises roughly equal shares of IFS, ACE, and atrophy scores. Due to 

the small number of features, dimensionality reduction was not needed, and so the clustering 

and classification analyses were not performed on the principal components, but only on the 

z-scored parameters.

2.4.1. Clustering—Clustering is an exploratory technique used when the actual groups 

(like disease and HC, here) are not known. The objective was to assess whether the subjects 

from the reference dataset (Country-1) could be clustered into two separate groups, without 

any knowledge about the meaning of the features. Such an exploration might provide 
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additional insights into the distribution of the data, and help predict difficulties at the 

classification stage, and also show potential errors in the diagnostic label or the presence of 

potential sub-groups of participants. Given that the clustering analysis was conducted solely 

for exploratory purposes and that its results were not used in any form for the classification 

analyses (see sections 2.4.2 and 2.4.3), we used the classic k-means algorithm (see, e.g. 

(Duda et al., 2001),) implemented in Matlab, with k = 2 (see Supp. Data 1). To evaluate 

differences in the expected geometries, we use the Euclidean distance. Although there are 

many other more sophisticated clustering methods, k-means provided us with just enough 

baseline information (i.e., that the data can be reasonably divided into two meaningful 

groups) to proceed to classification.

2.4.2. Within-country classification—We used a default logistic regression classifier 

(Hastie et al., 2009) implemented in Matlab, (see Supp. Data 1) to discriminate patients from 

HC for Country-1, our reference data-set. Logistic regression is a type of regression 

specifically designed to model probabilities –in this case, the probability of a subject 

belonging to a condition group (AD or bvFTD). Since probability is always limited to the 

interval from 0 to 1, predictions of linear regression are ill-defined, because they may lie 

outside of this interval. On the other hand, logistic regression uses a logistic function, which 

is a smooth step function whose values range exactly from 0 to 1, and is thus well fitted to 

the classification problems. This scheme was used, since the sample of this country was the 

largest one compared to the other ones. Also, only participants from this country have 

completed all the cognitive screening assessments (IFS and ACE). These characteristics are 

fundamental to train data both for classification within the country as well as for cross-

country validation.

To evaluate the classifier’s performance, we used a leave-two-out cross-validation that is 

computationally more demanding but allows a better sampling than either leave-one-out or 

10-fold cross-validation (Kearns and Ron, 1999; Wang et al., 2019). In each run, two 

participants were held out from the training set: one from the condition group (of size ncn) 

and one from the control group (of size ncl); the classifier was trained on the remaining ncn + 

ncl − 2 subjects and tested on the two hold-out subjects. In this cross-validation scheme, all 

z-scores were based on the mean and standard deviation of the ncl − 1 training controls. The 

idea is to use only what we know about the training set for classification. Any 

transformation of the test set must be performed using only that knowledge, including the 

values of training means and standard deviations.

The true/false positive/negative scores were accumulated over all runs. Due to the small size 

of the data set, the cross-validation was exhaustive, i.e., all ncn•ncl pairs of condition-control 

subjects were tested. From the accumulated scores, the sensitivity, TP/(TP + FN), and 

specificity, TN/(TN + FP), values were obtained.

To evaluate a classifier’s performance the receiver-operating characteristic (ROC) curves 

(Fawcett, 2006) were calculated, see Fig. 3. The curves depict sensitivity (true positive rate) 

plotted versus 1-specificity (false positive rate). They are calculated by shifting the 

probability threshold (a moving vertical decision line in the histograms of Figs. 3 and 4) by 

means of which subjects are assigned to groups. The probability range was from 0 to 1 in 
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steps of 0.05. The area under the ROC curve (AUC) and the accuracy classification rates 

were used as metrics of the classifier’s performance. These were also used to evaluate the 

relative importance of a given feature for prediction results: first, the classification was 

performed on the whole feature set (denoted “All” in the ROC plots), and then, one by one, 

each of the six (or five for Country-2 and Country-3 data sets) features was omitted in the 

classification. If the resulting AUC or accuracy score decreased without a given feature, the 

feature can be considered relevant, conversely if these values increased, the feature can be 

considered to introduce unwanted noise or correlations. The statistical significance of 

differences between the AUC involving all features and each of the AUC when one feature 

was removed, was estimated with the Mann-Whitney statistic (DeLong et al., 1988) (p-

values are expressed after Bonferroni correction). Typically this test would use as input ncn + 

ncl classification scores, which in this case gives a small sample size (i.e. the expected 

confidence intervals and coverage probability in (Gengsheng and Hotilovac, 2008)). As a 

rule of thumb to obtain 90% power for distinguishing AUC 0.96 and 0.95 at 0.05 

significance level one needs a sample size over 6000, which means in our case the tests for 

ROC differences are severely underpowered (Zhou et al., 2010). Since we perform the leave-

two-out procedure, we decided to bootstrap the sample to 2•ncn•ncl scores (of the order of 

1000). However, such a resampling leads to a stronger bias and produces underestimated p-

values. We nevertheless provide these p-values in the Supplementary Data 2 to accompany 

AUC reported in Table 2.

2.4.3. Cross-country classification—For cross-country classification, the classifier 

was trained on Country-1 subjects and tested on either Country-2 or Country-3, given that 

Country-1 was the largest one and included data from both the IFS and ACE for all the 

participants. As above, the z-scores were computed based on the mean and standard 

deviation of the control group of the training set (Country-1). Again, this is to avoid so 

called data leakage: if we intend to standardize the data based on the control group, then we 

must not use any knowledge from the test set. Z-scoring based on the control group of the 

test set already introduces some knowledge (via mean and standard deviation) about how the 

set is divided. We circumvented this issue by using only the training set for that purpose. 

Note that instead of z-scores the classifiers can also take as input PCA components – again, 

with PCA loadings computed only on the training set. Although the performance of those 

classifiers is comparable or only slightly better, for simplicity and interpretability of 

features, we report on the logistic regression classifier using z-scored features only (See 

Supp. Table 3 for results with PCA components).

Thanks to having separate training and test subjects, leave-two-out cross-validation was no 

longer necessary to estimate the out-of-sample error as above; however, it could be used to 

obtain an estimate on the classification uncertainties. To that purpose, we performed the 

same leave-two-out scheme as before, with two subjects being removed from the training 

set, with the crucial difference that the test set always stayed the same (i.e., it comprised all 

the Country-2 or Country-3 subjects). In other words, this scheme models a possible 

variance of the training set, but does not involve variance of the test set. While in the within-

country case, in each run there were only two subjects classified and the results had to be 

accumulated to obtain true/false positive/negative scores, in the cross-country case the test 
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set was big enough to allow computing the scores already in each run. Consequently, we 

calculated means and standard deviations of these scores over all cross-validation runs, thus 

obtaining a more robust estimate. The AUCs were then given error estimates as well, by 

shifting each point in ROC by respective standard deviation and calculating the areas under 

the maximally shifted curves. The errors are not symmetric, so for simplicity we report only 

on the larger of the two. The statistical significance of the differences between AUCs can 

already be approximately inferred from such error estimates. However, for comparability, 

the p-values were estimated following the same procedure as indicated in the previous 

section 2.4.270 (with the only difference that leave-one-out bootstrap was used to obtain 

comparable sample sizes: ntrain • ntest).

2.5. Research data for this article

Cognitive and neuroimaging final processed data from the patients of this study are available 

on the “Open Science Framework” repository under the following link: https://osf.io/ctjkv/

3. Results

3.1. Clustering

In the case of k-means clustering with Euclidean distance for C_1-AD, the patients and 

control groups are clearly visible, and the obtained partition is approximately correct with 

IFS and atrophy measures, with only 3 mis-classifications (2 false negatives and 1 false 

positive) (Fig. 2–C). For C_1-FTD, the partition is different from the real distribution with 

only the extreme atrophy and IFS score subjects clustered separately from the control group. 

The other 10 bvFTD individuals were clustered together with the control. A similar 

clustering partition was found regarding the ACE and atrophy features, in which the C_1-

AD patients and controls present 3 misclassifications (2 false negatives and 1 false positive), 

while the C_1-FTD showed 10 misclassifications (10 false negatives). These results show 

that the unsupervised clustering techniques alone do not deal well with the borderline cases, 

especially given sparse data (as in the case of bvFTD patients).

3.2. Within-country classification

The results of classification are illustrated in Fig. 3 and also in Table 2. The histograms show 

the probability score (accumulated over all runs of cross-validation) provided by the logistic 

regression, which is the probability of assigning a subject to the dementia group. Visibly, the 

subjects from the control and dementia groups are well separated.

In Fig. 3, the ROC curves shown refer to classifiers using all the available features or all but 

one (seven curves in total). The combination of features yielded high maximal classification 

accuracy rates for both AD (0.94) and bvFTD (0.91). Notably, in C_1-AD group, general 

performance decreased the most when the IFS parameter was removed, which highlights this 

measure as a crucial feature in predicting the population of AD in this cohort. In addition, all 

AUC results presented significant differences compared to the one including all features, 

except for the one excluding gender (see Supp. Data 2). In the C_1-FTD group, 

classification accuracy values decreased the most upon removal of IFS scores and atrophy 

measures. Only this AUC and the one excluding ACE presented significant differences 
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against the one combining all features (see Supp. Data 2). One must be cautious, however, 

that the result of removing a feature from the classifier depends on the correlations between 

the features. It is thus not surprising that the performance did not drop after removing 

atrophy in C_1-AD group, since it is highly linearly correlated with IFS, as visible in Fig. 2–

A. As a complementary analysis, we tested this same within-country approach but 

combining the data sets that share the same cognitive screening (i.e., Country-1 and 

Country-2, which share the IFS; and Country-1 and Country-3, which share the ACE), with 

the aim of increasing the sample size of our analyses. As shown in Table 2, accuracy scores 

were around 0.88 when all features were considered, and results also showed that cognitive 

screening scores and atrophy measures were relevant features for AD and bvFTD 

classification (see Supp. Fig. 2 and Supp. Data 3).

3.3. Cross-country classification

As discussed above, it is uncertain how variable are the biomarkers of neurodegenerative 

diseases across countries. A way to test for that is to attempt out-of-sample predictions, i.e., 

train the classifier with data from one country and test it on the others. This case is presented 

in Table 2 and Fig. 4 (in the same format as used in Fig. 3) where the results for Country-2 

bvFTD (C_2-FTD) are in the left column, those from Country-3 bvFTD (C_3-FTD) and 

Country-3 AD (C_3-AD) in the middle and right columns, respectively. ROC curves showed 

that the combination of features yields high accuracy rates for C_2-FTD (0.91), for C_3-

FTD (0.91), and for C_3-AD (1.00). Across countries, the cognitive screenings were the 

features that most contributed to the classification rates. Atrophy and demographic features 

showed lower accuracy results compared to cognitive measures. In bvFTD patients from 

Country-2 and −3, all the AUCs presented significant differences when features were 

excluded, compared to the AUC combining all of them (except for gender in Country-2) (see 

Supp. Data 2 and the error estimates in Table 2). Notwithstanding, for the classification 

between controls and bvFTD from Country-2 and −3, atrophy data was the most relevant 

feature to correctly identify non-pathological cases (specificity outcome, 1-Spec). In the case 

of AD, the only AUC that presented significant differences was the one in which ACE was 

not included as a feature, given that the other models presented the same values as the AUC 

combining all the features (see Supp. Data 2). Overall, results showed that the training data 

obtained from the Country-1 cohort is able to predict classes with high scores for both 

bvFTD and AD in the other two countries, demonstrating the robustness of the approach and 

the reliability of the markers.

4. Discussion

This is the first work to validate the relevance of combined cognitive-behavioral assessment 

and neuroanatomical measures for identifying bvFTD and AD patients from controls, across 

countries, based on machine-learning algorithms. We obtained high classification rates 

(>0.91) for both diseases in Country-1. More crucially, these results offered high predictive 

power (>0.91) when used to classify new patient cohorts from other international centers 

using different MRI acquisition equipment. Therefore, despite further research is needed, 

our study strongly supports the implementation of computer-based methods combining 
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cognitive screenings and anatomical information as a potential gold-standard for clinical 

neuroscience (Huys et al., 2016; Cohen et al., 2017).

As shown by the within-country analysis of Country-1, classification of bvFTD via 

combined measures (>0.91) surpassed previous outcomes based on cognitive screenings 

(using simple statistical methods) (Moreira et al., 2017; Hsieh et al., 2013; Torralva et al., 

2009a) and anatomical neuroimaging features (relying on data-driven computational 

approaches) (Bron et al., 2017; Zhang et al., 2013; Dukart et al., 2011; Kuceyeski et al., 

2012; Tahmasian et al., 2016). Similarly, discrimination of AD patients through combined 

measures was higher than or similar to previous results based solely on cognitive or atrophy 

measures (Larner and Mitchell, 2014; Crawford et al., 2012; Galton et al., 2005; Hsieh et al., 

2013; Zheng et al., 2016; Salvatore et al., 2016). Moreover, our cross-country validation 

presented a large predictive accuracy power for both diseases (>0.91 for bvFTD patients 

from Country-2 and −3, and 1.00 for AD patients from Country-3), highlighting the 

reliability of these markers for optimal classification of new patients. This robust 

generalization to independent data suggests that these measures are able to face the 

variability introduced by clinical assessments and MRI recordings from different centers, 

and that they might reflect universal properties and alterations of neurodegenerative 

conditions. This characteristic is critical to evaluate the potential role of a measure as an 

early biomarker for a disease (Henley et al., 2005; Humpel, 2011).

Furthermore, the latter results are particularly relevant, as previous research on dementia has 

yielded high detection and differentiation rates but limited generalization power (Zheng et 

al., 2016; Bron et al., 2017; Zhang et al., 2013; Dukart et al., 2011; Kuceyeski et al., 2012; 

Tahmasian et al., 2016; Salvatore et al., 2016). This is especially true for data-driven studies 

in which anatomical feature selection was based on the minimum number of areas providing 

optimal separation of samples for a specific dataset, which was later used for the validation 

process (Zheng et al., 2016; Bron et al., 2017; Zhang et al., 2013; Dukart et al., 2011; 

Kuceyeski et al., 2012; Tahmasian et al., 2016; Salvatore et al., 2016). Although this 

procedure can yield large accuracy rates, it does not necessarily enable the same 

performance for independent cohorts, given that features might be specific for the initial data 

(Huys et al., 2016). To overcome this potential bias, we first selected hypothesis-driven 

cognitive and atrophy features (Dukart et al., 2013) reported as hallmarks of bvFTD and AD 

in a country-unspecific fashion, and tested them in two independent samples. The high 

accuracy rates thus obtained extend previous MRI studies successfully using cross-center 

validation methods in Anglo-Saxon AD samples (Kloppel et al., 2008a; Abdulkadir et al., 

2011; Dukart et al., 2013; Gerardin et al., 2009; Varol et al., 2012; Yang et al., 2011). Of 

note, to our knowledge, present results for this condition (1.00 for AD from Country-3) 

surpass even the highest outcomes reported in the literature so far, emphasizing the relevance 

of combined neuropsychological and neuroanatomical methods.

Such a combined approach affords a more plausible model of the complex alterations found 

in dementia patients (Oxtoby et al., 2017). Neurodegenerative disorders are characterized by 

abnormalities at multiple levels –from molecular deficits to behavioral impairments (Palop 

et al., 2006; Piguet et al., 2011a; Seelaar et al., 2011; Sperling et al., 2011). Also, although 

these abnormalities tend to present specific profiles according to different types of dementia, 
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several works have shown a more heterogeneous scenario. In this way, despite that executive 

functions are a target for bvFTD (Piguet et al., 2011a), such deficits may prove subtle and 

they are nosologically unspecific –in fact, they are frequently observed in AD (Seelaar et al., 

2011). The same is true for other cognitive functions, such as memory skills, which is 

compromised in both AD and bvFTD (Ye et al., 2015; Yew et al., 2013). A similar scenario 

concerns atrophy patterns, as bvFTD patients might present anatomical alterations similar to 

those of AD (e.g., a posterior pattern comprising temporofrontoparietal regions), while AD 

may involve subtle frontal alterations overlapping with those of bvFTD (Noh et al., 2014; 

Ossenkoppele et al., 2015). Although future research is needed, the integration of 

neuropsychological and neuroanatomical measures may prove critical to address this 

variability (Arbabshirani et al., 2017; Dottori et al., 2017) and provide useful insights for 

clinical settings. Our findings represent the first demonstration of the feasibility of this 

approach both within and across centers.

4.1. Contribution of cognitive screenings

To our knowledge, this is the first study showing the high reliability and predictive power of 

the ACE and IFS –two instruments greatly sensitive to AD and bvFTD, respectively 

(Crawford et al., 2012; Galton et al., 2005; Velayudhan et al., 2014)–, based on machine-

learning methods with a cross-country validation. In the within-country analysis, the IFS 

was distinctively relevant for the classification of bvFTD patients than the ACE –

classification rates decreased more upon exclusion of IFS results (Table 2). This was 

expected given that the IFS was specially designed to target executive function deficits (a 

domain poorly assessed by the ACE (Torralva et al., 2009a)), which are characteristically 

affected in bvFTD (Piguet et al., 2011a). Moreover, previous studies have shown that relative 

to the ACE, the Mini-Mental State Examination, and even other frontal screenings such as 

the Frontal Assessment Battery, the IFS proves better to discriminate bvFTD patients from 

controls and other pathologies (Moreira et al., 2017; Torralva et al., 2009a; Gleichgerrcht et 

al., 2011). Regarding AD, although we expected a greater contribution from the ACE given 

its proven sensitivity for this condition (Larner and Mitchell, 2014; Crawford et al., 2012; 

Galton et al., 2005; Hsieh et al., 2013), it was again the IFS that afforded the greatest 

discriminatory contribution. This might partially reflect the heterogeneity in cognitive and 

atrophy profiles of dementias, as discussed above (Palop et al., 2006; Piguet et al., 2011a; 

Seelaar et al., 2011; Sperling et al., 2011). Indeed, AD patients can also present with deficits 

in executive function (Seelaar et al., 2011) (even in early stages and previous to global 

cognition alterations (Amieva et al., 2004; Sgaramella et al., 2001)), as well as frontal 

atrophy (Noh et al., 2014; Ossenkoppele et al., 2015) (which is more common with disease 

progression (Noh et al., 2014)). Furthermore, the IFS has systematically differentiated and 

discriminated AD patients from healthy controls (Torralva et al., 2009a; Bahia et al., 2018; 

Custodio et al., 2016; Moreira et al., 2014; Gleichgerrcht et al., 2011). Thus, though 

unexpected, the relevance of this instrument for identifying AD patients aligns with previous 

evidence. Moreover, the classification rates obtained when the ACE was considered with 

other features but not the IFS were high (0.86), and similar to previous studies that tested its 

(isolated) discriminative power (Larner and Mitchell, 2014; Crawford et al., 2012; Galton et 

al., 2005; Hsieh et al., 2013).
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Despite the partial missing data of these cognitive measures in the two independent cohorts, 

the cross-country validation approach showed that classification of bvFTD from Country-2 

was mainly driven by the IFS, whereas classification of both bvFTD and AD from 

Country-3 was mainly informed by the ACE. These findings constitute the first 

demonstration of the reliability and predictive power of these cognitive screenings to novel 

and unseen data from socio-culturally diverse contexts. Since cognitive screenings are 

standardized instruments, they rely on predefined procedures, norms, and scoring rules that 

help reducing bias and discrepancies in administration and interpretation (Hsieh et al., 2013; 

Torralva et al., 2009a). This may explain the consistency of our results with both tools across 

countries. Additionally, these instruments were specially designed to target specific 

cognitive domains affected in each disease and provide useful information in clinical 

settings. Moreover, their psychometric properties have been further evaluated and validated 

in several works (Larner and Mitchell, 2014; Crawford et al., 2012; Galton et al., 2005; 

Hsieh et al., 2013; Torralva et al., 2009a). Finally, these screenings have yielded large 

differences between dementia patients and controls from different origins (including both 

Anglo-Saxon and Latin America participants) (Hsieh et al., 2013; Bahia et al., 2018; 

Custodio et al., 2016; Jory et al., 2013), which underscores their reliability and consistency 

in the face of socio-cultural diversity.

Briefly, our findings validated for the first time the application of the ACE and IFS as robust 

and reliable markers to discriminate both bvFTD and AD patients from healthy controls 

based on machine-learning algorithms. Their combination allows covering, in a very short 

time, a large number of cognitive domains, even despite the complexity and variability found 

across dementia subtypes.

4.2. Contribution of anatomical metrics

The contribution of brain atrophy measures to patient discrimination proved inconsistent. 

Although they were not as informative as cognitive screenings in the within-country 

analyses, classification of bvFTD reached its peak upon their inclusion as a feature (0.92, 

when age was not considered). The same was true for these patients from Country-2 in the 

cross-country analysis, in which the combination of atrophy values and IFS scores yielded 

the highest discrimination accuracy (0.91). However, these data proved mostly irrelevant in 

every other analysis, especially for identifying AD patients in the within-country analysis 

and both pathological groups in the cross-country analyses. In all of these, exclusion of 

atrophy values did not affect the discrimination of patients from controls. In the case of the 

within-country analysis, this may be due to the large association found between atrophy 

values and the cognitive screening scores in AD (see Fig. 2), which is in line with previous 

findings in these patients (Canu et al., 2017; Sorensen et al., 2016). Thus, given their co-

linear association, the novel information afforded by atrophy values might, in some cases, 

prove marginal for classification compared to the cognitive tools.

Even though this explanation might also apply to the cross-country findings, inter-center 

variability in MRI equipment and acquisition parameters needs to be considered, too. 

Between the training (Country-1) and the testing (Country-2, and −3) samples, there are 

several differences regarding scanner models of the equipment (Philip Intera in Country-1, 
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and Philip Achieva in Country –2 and –3), magnetic field intensity (1.5 T for Country-1, and 

3 T for Country-2 and −3), and the parameters used in each center for the 3D T1 sequence. 

As previously shown, these differences may affect the consistency of MRI sequences across 

centers for classification analysis (Abdulkadir et al., 2011) –however, there are studies 

showing that variability across centers is relatively low and comparable (Sedeno et al., 2017; 

Biswal et al., 2010). Thus, the higher variance of neuroimaging data compared to cognitive 

screenings may have undermined its predictive power for independent and unseen cohorts. 

Hence, the standardized nature of cognitive instruments (Hsieh et al., 2013; Torralva et al., 

2009a) may thus represent a clear advantage for cross-country validation protocols. Yet, 

despite the mixed neuroanatomical results, these features yielded discrimination values 

similar to previous reports based on MRI images when cognitive values were not included in 

the cross-country analysis (Kloppel et al., 2008a; Abdulkadir et al., 2011; Dukart et al., 

2013; Gerardin et al., 2009; Varol et al., 2012; Yang et al., 2011). Moreover, the contribution 

of atrophy results was highlighted by specificity outcomes, which showed that its removal 

affects these values the most, especially for bvFTD patients from the cross-country analysis. 

Therefore, this highlights the relevance of neuroanatomical features for discriminating 

dementia patients, underscoring the inclusion of neuroimaging automatized methods as 

potential complementary tools for clinical settings.

4.3. Relevance of multimodal machine-learning approach

Although further studies comparing our machine-learning approach with other data-driven 

and automatic strategies are needed, our findings represent a potential milestone regarding 

the clinical implementation of machine-learning algorithms. Currently, timely detection of 

bvFTD and AD involves several challenges: varying levels of expertise and training from 

clinicians, non-systematic confirmation from clinical routine-MRI via visual inspection 

(Kloppel et al., 2008b, 2012; Koikkalainen et al., 2016), variability of clinical and atrophy 

patterns, a certain degree of subjective interpretation and evaluation of signs and symptoms 

(Parra et al., 2018; Forman et al., 2006b), and strong variability of these factors across 

countries and centers. Against this framework, our approach underscores the reliability and 

predictive power of cognitive screenings and quantitative anatomical measures. Their 

combination yielded high classification rates for both conditions (bvFTD and AD). In 

addition, these measures showed great generalization power, indicating that they were able 

to precisely identify whether a new and unseen participant belongs to a given pathological 

group. Given the complexity and multi-level nature of alterations on the neurodegenerative 

process (Palop et al., 2006; Piguet et al., 2011a; Seelaar et al., 2011; Sperling et al., 2011), it 

is not expected that only one type of biomarker could be enough to highly discriminate 

patients (Dukart et al., 2013; McMillan et al., 2014). Our findings support this view, as they 

testify to the relevance of combining cognitive screening and atrophy measures for the 

discrimination of these dementias.

On the other hand, these features also showed consistency to face within- and cross-country 

variability. The socio-cultural heterogeneity of our Latin American and Anglo-Saxon 

participants was further marked by divergences in equipment and acquisition parameters. 

Thus, our high classification results suggest that cognitive screening and atrophy measures 

are robust against the variability that characterized individualized clinical assessments. This 
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is an essential characteristic of a potential early biomarker (Henley et al., 2005; Humpel, 

2011), as it might reflect sensitivity to potentially universal properties of each condition.

Regarding the machine-learning algorithm applied, we used a very simple but powerful one 

(namely, logistic regression) to test the validity of the cognitive screenings and MRI 

information, which yielded high discrimination rates (>90) that were consistent and reliable 

in the context of a cross-center validation approach. We did not attempt any regularization 

procedure (we used the default parameters of the model) because we did not face any 

overfitting problem. Moreover, given our findings, we did not perform a direct comparison 

with other machine-learning algorithms because using a simple and fast one with its default 

parameters helps to promote its generalization and highlight its potential scalability. Further 

studies might compare the performance of different algorithms, and test their generalization 

power but considering a trade-off between the cost and benefit of each model.

Biomarkers should be low-cost, affordable, and massively applicable (Henley et al., 2005; 

Humpel, 2011), which is especially relevant for developing countries given their minimal 

mental health infrastructure, and lack of standardized diagnostic procedures (Parra et al., 

2018). Against this background, cognitive screenings emerge as potential candidates given 

that they are cost-effective, quick (they are completed in 10–15 min), easy to implement and 

learn for clinicians, and, hence, broadly applicable in primary care levels (Crawford et al., 

2012; Galton et al., 2005; Hsieh et al., 2013; Torralva et al., 2009a). Moreover, the 

application of similar digital version of these tasks, such as the Cambridge 

Neuropsychological Test Automated Battery (CANTAB, https://

www.cambridgecognition.com/cantab) (Barnett et al., 2016; Giedraitiene and Kaubrys, 

2019; Janssen et al., 2014; Smith et al., 2013) (offering an automatized platform for 

administration and scoring) would allow for more efficient and faster transferring of clinical 

data to a machine-learning model already implemented, leading to a comprehensive report 

with the results of the model. Also, structural MRI is a non-invasive method, usually 

included as a routine exam for dementias, and it proves less time-consuming than other 

neuroimaging modalities (such as positron emission tomography, functional, and diffusion-

weighted MR imaging (Kloppel et al., 2008a; Dukart et al., 2011; Dukart et al., 2013; 

McMillan et al., 2014; Moller et al., 2016)). Although its availability in developing countries 

is limited compared to high-income countries (Parra et al., 2018), the implementation of 

quantitative analysis of MRI data can be beneficial for patients who have access to a more 

complete medical coverage, and especially for those whose cognitive screenings and clinical 

evaluation yield inconclusive results.

Finally, our study showed the potential translational relevance of automatic image 

quantification methods that are sensitive to subtle brain alterations which escape the naked 

eye or even traditional univariate methods (Orru et al., 2012). In addition, our results also 

underscore the potential clinical implementation of computerized decision-support 

approaches (such as machine-learning algorithms) given that they allow characterizations at 

the individual level, which could be useful for diagnosis and treatment decisions (Orru et al., 

2012).
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4.4. Limitations and future directions

First, each sample had a moderate size; yet, similar (and smaller) sizes have been used in 

previous works (Crawford et al., 2012; Sedeno et al., 2017; Salvatore et al., 2016), and the 

consistency of our results suggests that they were not biased by power issues. Second, the 

patients’ diagnosis was based on clinical evaluations without pathological/genetic 

confirmation. However, this approach is similar to previous studies (Bron et al., 2017; Zhang 

et al., 2013; Dukart et al., 2011; Kuceyeski et al., 2012; Tahmasian et al., 2016; Zhou et al., 

2010; Salvatore et al., 2016) yielding compatible results. Moreover, the research centers 

from this work are specialized in the diagnosis, treatment and study of dementia, and they 

followed validated protocols and diagnostic guidelines (combining clinical information, 

neuroimaging data, and neuropsychological assessments). Third, from a technical viewpoint, 

our hypothesis-driven approach for estimating atrophy metrics could miss relevant 

information that is outside the predefined mask –especially compared to a whole-brain data 

driven approach. Yet, atrophy regions were selected based on robust evidence (Piguet et al., 

2011a; Rascovsky et al., 2011; Ibanez and Manes, 2012; Schroeter et al., 2007; Du et al., 

2007; Whitwell et al., 2011; Pini et al., 2016), and our procedure avoids bias regarding 

feature selection and allows testing the generalization power of atrophy levels in 

independent cohorts (Dukart et al., 2013). Future studies should compare the performance of 

our machine-learning pipeline with one employing a data-driven feature selection strategy. 

Fourth, given the absence of AD patients from Country-2, we were not able to perform a 

cross-validation analysis between dementia subtypes. However, given that our study was 

based on cognitive screenings and main atrophy areas of AD and bvFTD, our goal was to 

test their generalization power to discriminate patients from healthy controls given its 

feasibility to be implemented in different contexts (for example, both high- or low-income 

countries). Nevertheless, future research should test whether this and similar features could 

be used to discriminate different dementia subtypes based on a cross-center validation 

approach. In this sense, regarding the potential clinical application of our approach, future 

studies should: (i) check for inter-relations between classification results and each patient’s 

functional severity, progression, and response to rehabilitation therapy; (ii) include 

functional connectivity measures, which have been proposed as potential biomarkers for 

dementia (Pievani et al., 2011, 2014); (iii) evaluate whether digital cognitive tasks (such as 

the CANTAB) also afford robust and reliable markers that generalize to new and unseen data 

given their advantages over traditional pen-and-paper screening tasks (automatization of 

administration and scoring); and (iv) be tested in pre-symptomatic patients to search for 

markers in prodromal disease stages, and also in the comparison between different subtypes 

of dementias.

5. Conclusion

Our study is the first to use machine-learning algorithms to show the high classification rates 

(>0.91) obtained from the combination of cognitive screenings and quantitative 

neuroanatomical measures for identifying bvFTD and AD patients across three countries. 

Moreover, our results presented a robust generalization power (>0.91), validated with two 

independent samples from different countries, which underscores the reliability of these 

measures to new, unseen data from heterogeneous contexts. Therefore, although further 
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research is needed, our work supports the implementation of computer-based methods 

combining these measures as a potential affordable and complementary tool with clinical 

value for individual diagnosis and treatment decisions.
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Abbreviations

AD Alzheimer Disease

bvFTD behavioral variant Frontotemporal Dementia

ACE Addenbrooke’s cognitive examination

IFS INECO Frontal Screening

HC Healthy controls

TR repetition time

VBM voxel-based morphometry

SPM12 Statistical Parametric Mapping software

WM white matter

GM grey matter

CSF cerebrospinal fluid

ACC anterior cingulate cortex

AAL-atlas Automated Anatomical Labeling (AAL)-Atlas
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Fig. 1. 
Standardize (grey box): data were standardized by converting them to z-scores, so that each 

feature in the control group had a zero mean and standard deviation of one. Data exploration 

(light orange boxes): these procedures were used only to explore and obtain knowledge 

about the behavior of the data. Clustering: we used a k-means algorithm with k = 2 to 

separate groups in two clusters to explore data distribution, and evaluate the presence of 

potential sub-groups of participants (details in section 2.4.1). Visualization and inspection: 

the hypothetically most informative features (cognitive screenings and atrophy) were 

inspected by graphing pairs of dimensions for the reference dataset (Country-1) (details in 

section 2.4). Principal component analysis (PCA): We used MATLAB’s default 

implementation of PCA to explore the most informative combination of features as 

measured by the explained variance of the data. Classification (light green boxes): Within-

country classification: we implemented a logistic regression classifier with cognitive and 

brain atrophy features within the Country-1 dataset, given that it was the largest one with full 

completion of cognitive screenings. To evaluate the performance of this model, we used a 

leave-two-out cross-validation scheme. Cross-country classification: this was performed to 

further validate the generalization and prediction power of our findings. The logistic 

regression classifier was trained with Country-1 subjects and tested on participants from 

Country-2 or Country-3. Finally, to evaluate the relevance of each feature, after performing 

the classification with the whole feature set, the procedure was repeated but one-by-one each 

of the features was omitted in the classification (details in sections 2.4.2 and 2.4.3).
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Fig. 2. Atrophy measures and cognitive data distribution.
A. Real distribution of IFS and atrophy data. The degree of brain atrophy and the IFS 

score are standardized in z-scores. B. Real distribution of ACE and atrophy data. The 

degree of brain atrophy and the IFS score are standardized in z-scores. C. Clustering of IFS 
and atrophy results from panel A. Red-white circles represent patients wrongly identified 

as controls, and red diamonds represent controls who were mistaken with patients. D. 
Clustering of ACE and atrophy results from panel B. Red-white circles represent patients 

wrongly identified as controls, and red diamonds represent controls who were mistaken with 

patients.
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Fig. 3. Within-country classification.
The two top panels depict the histograms of the probability of belonging to the patient 

group, as revealed by logistic regression. The bottom panels correspond to ROC curves 

obtained for the groups’ data from the first row. Different curves show the ROC calculation 

omitting the feature denoted in the legend on a one-by-one basis.
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Fig. 4. Cross-country classification.
The three top panels depict the real data distribution in z-score values. The three middle 

panels show the histograms of the probability of belonging to the diseased group, as revealed 

by logistic regression. The graphs in the three bottom panels correspond to the ROC curves 

obtained for each condition, by considering all the features (“All”) or by omitting the single 

features indicated in the legends. The fourth row illustrate the effect of removing a single 
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feature from classification. Removing IFS or ACE affects results the most, which indicates 

their high informativeness in distinguishing FTD and AD from controls.
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Table 1

Summary of demographic data for each group.

Country-1

C_1-FTD HC F-value p-value

Age [years] 66.72±9.56 68.73±8.48 0.57 .452

Education [years] 15.05±2.97 15.86±2.92 0.85 .360

IFS 16.30±7.01 25.37±1.84 46.46 <.001

ACE 76.72±15.39 93.76±4.25 33.02 <.001

Chi-square p-value

Gender [M/F] F = 11 (16) F = 21 (24) 0.40 .527

M = 7 (13) M = 9 (10)

C_1-AD HC F-value p-value

Age [years] 75.37±8.72 71.54±6.00 2.57 .117

Education [years] 12.94±4.97 15.13±3.10 2.81 .102

IFS 16.59±4.46 25.07±1.87 64.34 <.001

ACE 69.50±14.11 93.90±4.28 58.89 <.001

Chi-square p-value

Sex [M/F] F = 13 (13) F = 17 (18) 0.08 .766

M = 3 (3) M = 5 (6)

Country-2

C_2-FTD HC F-value p-value

Age [years] 66.55±9.37 61.18±7.74 2.72 .109

Education [years] 15.89±2.31 14.73±5.41 0.38 0.542

IFS 12.78±6.21 22.87±2.97 38.13 <.001

ACE – – – –

Chi-square p-value

Sex [M/F] F = 7 (12) F = 11 (16) 2.03 .155

M = 2 (4) M = 11 (12)

Country-3

C_3-FTD HC F-value p-value

Age [years] 64.90±9.44 69.50±6.43 1.88 .184

Education [years] 12.20±3.47 14.27±2.77 2.50 .128

IFS – – – –

ACE 75.36±14.99 96.25±2.42 22.73 <.001

Chi-square p-value

Sex [M/F] F = 4 (4) F = 5 (7) 0.06 .794

M = 7 (8) M = 7 (8)

C_3-AD HC F-value p-value
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Age [years] 64.00±5.83 69.50±6.43 4.34 .051

Education [years] 12.80±2.89 14.27±2.77 1.47 .238

IFS – – – –

ACE 62.10±11.58 96.25±2.41 100.09 <.001

Chi-square p-value

Sex [M/F] F = 3 (5) F = 7 (8) 1.76 .183

M = 7 (8) M = 5 (7)

Table 1. Subject groups for the two diseases and the three countries. Because of occasional missing data, we indicate for each gender and country, 
first the number of subjects actually used in the current study and then in parentheses the total of recruited subjects. Note also that different 
cognitive tests were used depending on the country. Age, education, IFS and ACE scores are given with the mean± SD. C_1 = Country-1; C_2 = 
Country-2; C_3 = Country-3.
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