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Abstract

Single-point incremental forming (SPIF) is a technology that allows incremental manufactur-

ing of complex parts from a flat sheet using simple tools; further, this technology is flexible

and economical. Measuring the forming force using this technology helps in preventing fail-

ures, determining the optimal processes, and implementing on-line control. In this paper, an

experimental study using SPIF is described. This study focuses on the influence of four dif-

ferent process parameters, namely, step size, tool diameter, sheet thickness, and feed rate,

on the maximum forming force. For an efficient force predictive model based on an adaptive

neuro-fuzzy inference system (ANFIS), an artificial neural network (ANN) and a regressions

model were applied. The predicted forces exhibited relatively good agreement with the

experimental results. The results indicate that the performance of the ANFIS model realizes

the full potential of the ANN model.

Introduction

Incremental sheet forming (ISF) is a flexible manufacturing technology that does not require

special dies and uses a single tool to produce a variety of regular and multifaceted shapes. Fur-

ther, it is economical when employed in the manufacturing of complex parts using simple

tools as compared with other conventional sheet metal forming technologies (e.g., extrusion,

hydroforming [1], and deep drawing [2]) because it does not require expensive dies or

punches. In addition, it is used as a simple tool to incrementally develop the desired parts from

sheets. However, it is time-consuming and thus not useful for mass production.

The ISF technique can be separated into two classes: two-point incremental forming

(TPIF), which requires a partial die as a support for the sheet during the process [3], and sin-

gle-point incremental forming (SPIF), which does not require any specific die [4]. Currently,

focus is on SPIF, in which a small hemispherical tool is used to mold the sheet into the desired

shapes; the tool is driven using a computer numerical control (CNC) machine along a prede-

fined toolpath generated through computer-aided manufacturing software. The peripheral of

the sheet is clamped using a fixture. Through this technique, complex parts can be manufac-

tured in small batches and prototypes can be economically obtained.
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ISF is used in many applications, such as the manufacturing of automotive parts [5] and the

standardization of void nucleation models for automotive aluminum sheets [6]. Furthermore,

it can be used to produce parts such as a palate or knee implants [7] or an ankle prosthesis [8]

[9]. The forming force in SPIF is essential while utilizing machines adapted for processes such

as robots and milling centers [3]. It helps determine the optimal process parameters and equip-

ment suitable for sheet forming [10]. The forming force has characteristics that are essential in

predicting the power of a machine; in addition, it helps with the design of tools and improves

the understanding of the deformation mechanics of several processes [11]. Iseki [12] was

among the first few researchers to determine the forming forces for a pyramid based on a

plane–strain deformation using a simple approximated deformation analysis. Later, Jeswiet

et al. [13] measured the force magnitudes of SPIF and TPIF pyramids and truncated cones.

Filice et al. [14] worked on a force analysis and categorized the force trends of a tangential

force into three categories, namely, monotonically reducing, polynomial, and steady-state

force trends. Dabwan [15] showed that the sheet thickness is the main factor in estimating the

forming force, followed by the tool diameter and step size. The feed rate has proven to be insig-

nificant in estimating the forming force. Duflou et al. [16] found that the forming forces

increase with the sheet thickness, wall angle, and step size. Kumar and Gulati [17] investigated

and optimized the effects of input factors on the forming forces using the Taguchi approach

and analysis of variance. They showed that the force trend after the peak values depends on the

instant input factors, which can be categorized into sets of parameters such as safe, severe, and

crucial. Bagudanch et al. [18] concluded that the forming force is influenced by the bending

condition. They also found that the forming force decreases as the spindle speed increases.

Arfa et al. [19] and Henrard et al. [20] used a finite element analysis to predict the SPIF forces

with satisfactory precision. Ingarao et al. [21] calculated and estimated the energy consump-

tion for the SPIF process based on the recorded force data. Petek et al. [22] studied and local-

ized the fracture by analyzing the response force using a skewness function. Fiorentino [23]

presented another failure criterion according to the force detected during the forming process.

Moreover, Ambrogio et al. [24] proposed that the incremental increase in force required to

reach its maximum value can be effectually used as a predecessor to failure in SPIF.

Therefore, it is essential to model and quantify the relationship between the forming force

and the input process parameter affecting its value. Further, empirical models developed using

traditional methods may not describe the nonlinear complex relationship between the input

and output variables. Fuzzy logic (FL), an artificial neural network (ANN), and a genetic algo-

rithm are unconventional methods used to develop models for a nonlinear complex system.

An adaptive neuro-fuzzy inference system (ANFIS) can be used in numerous fields such as

manufacturing technologies, machining, and economic systems [25]. ANFIS is a type of ANN

developed based on a Takagi–Sugeno FIS. This approach was developed during the 1990s.

ANFIS is a combination of neural networks and FL principles, and can capture the benefits of

both in a single framework [26]. The inference system corresponding to the set of fuzzy

IF-THEN rules can approximate nonlinear functions [27]. Therefore, ANFIS is considered a

comprehensive estimator.

An investigation into the forming forces in SPIF is particularly important for selecting the

appropriate hardware and optimizing the process parameters to assure the precision of a pro-

cess. The efficient prediction of the forming forces is desirable in order to monitor the forming

process, prevent failures, and implement on-line process control. The characterization of the

forming forces is essential in order to estimate the needed power of the machine. The expected

forming force has consequences regarding the design of the tooling and fixtures, as well as on

the selected machine. There has recently been an increasing interest in the development of

models that can help investigate the effects of input variables on the performance outputs
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using artificial intelligence methods as an alternative to traditional approaches [28]–[31]. This

paper proposes an intelligent process model, founded on the concept of data mining, for pre-

dicting the forming forces in SPIF. Several researchers have addressed the limitations of this

process, resulting in low-quality profile products. The predictive model for the forming forces

described in this paper is based on an adaptive-neuro fuzzy inference system (ANFIS) and an

artificial neural network (ANN), which have not been considered in previous studies to the

best of our knowledge. An accurate model used to predict the forming forces in SPIF is essen-

tial in order to control the process quality.

The rest of this paper is organized as follows: The experiments are presented in Section 2.

The ANFIS, ANN, and regression models are presented in Sections 3 and 4. The results and

discussions are detailed in Section 5. Finally, the conclusions are presented in Section 6.

Experiments

A vertical CNC milling machine, a specially designed fixture, forming tools, and a piezoelectric

dynamometer were used to conduct the experiments. The sheet material selected for this study

was a commercial aluminum alloy, AA1050-H14, which is a popular grade of aluminum for

general sheet metal work owing to its excellent corrosion resistance, high ductility, and highly

reflective finish. Further, the material composition, extracted using a SPECTRO machine, is

presented in Table 1. Tensile tests were conducted on the specimens using a Zwick/Roell uni-

versal testing machine, the results of which are presented in Table 2. The sheet was clamped

using the designed fixture in a working area of 200 mm × 200 mm. The tool used during this

process was cylindrical with a hemispherical head. In this study, the tool motion was con-

trolled numerically. Therefore, the required part was designed using SOLIDWORK software,

and the design was then transferred to MASTERCAM software to generate the toolpath. The

numerical control (NC) codes were obtained from the generated toolpath and transferred to

the CNC machine. For the accurate formation of parts, it is important to select the best tool-

path, which in this case is a spiral toolpath. A truncated conical geometry was built with a base

diameter of 100 mm and a height of 50 mm. Important parameters considered for the incre-

mental sheet metal forming are tool diameter, sheet thickness, feed rate, and step size, the val-

ues of which are listed in Table 3.

Measuring the forming force during this process is extremely important to prevent failure,

determine the optimal process, and implement on-line control. Forming force tests were con-

ducted using a KISTLER 2825A1 with eight freely selectable measuring signal-component

force dynamometer controllers, which helped measure the force components in three direc-

tions (x, y, and z). In addition, the measuring system included charge amplifiers (a comple-

mentary KISTLER 5019B three-channel charge amplifier) and data acquisition cards to record

Table 1. Chemical composition of AA1050-H14 sheets used in this study.

Sample Al % Fe % Si % Ti % Other

1 99.5 0.368 0.0480 0.0216 0.0624

2 99.5 0.360 0.0496 0.0205 0.0007

https://doi.org/10.1371/journal.pone.0221341.t001

Table 2. Measured mechanical properties of aluminum alloy AA1050-H14.

Material code Yield

Strength σy (MPa)

Ultimate Tensile

Strength σUTS (MPa)

Elongation at Break A (mm) Young Modulus

E (MPa)

AA1050-H14 128 117.5 8.45 67648

https://doi.org/10.1371/journal.pone.0221341.t002
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the measured forces on a PC. The sampling rate of the force measurement was 50 Hz. Fig 1

shows the experimental system and procedure used to measure the performance of the form-

ing forces. The workpiece fixture was mounted on top of a piezoelectric load cell. The experi-

mental results for all responses that were used as training and testing data for both the ANN

and ANFIS models are listed in Table 4.

Development of predictive models for forming force

Adaptive neuro-fuzzy inference system

ANFIS is an effective approach to building models of complex nonlinear systems. Here, a

hybrid learning process is used to structure an input–output mapping based on human knowl-

edge and training data pairs. The ANFIS is applied in the framework of adaptive networks. It

consists of five network layers. Each layer is described by several node functions. The informa-

tion is moved unidirectionally. A diagram of the ANFIS structure with three inputs and two

membership functions for each input and one output is shown in Fig 2. The objective of the

current work is to investigate the potential of ANFIS in SPIF.

ANFIS consist of five layers to achieve the following fuzzy inference [32]:

Table 3. Process parameters and their levels.

Input process parameters Level 1 Level 2

Tool diameter (d) 10 mm 20 mm

Feed rate (f) 500 mm/min 1000 mm/min

Step size (s) 0.5 mm 1 mm

Sheet thickness (t) 1 mm 2 mm

https://doi.org/10.1371/journal.pone.0221341.t003

Fig 1. Experimental setup and forming force measurement.

https://doi.org/10.1371/journal.pone.0221341.g001
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Layer 1: Fuzzy layer

In this layer, the membership value is calculated using the following equation:

mAi xð Þ ¼
1

1þ ½
x� ci
ai

� �2

�
bi
; ð1Þ

where μ Ai(x) is an appropriate parameterized membership function, and ai, bi, and ci form

a parameter set that changes the forms of the functional movement screen () with a value

between 1 and 0.

Layer 2: Multiplies the incoming signals and sends the product out.

i ¼ mAiðxÞ � m BiðyÞ � m CiðzÞ; i ¼ 1; 2; ð2Þ

Table 4. Process parameters used with the corresponding experimental results of forming forces and predicted results.

Input Parameters Experiment forming force Predicted by ANFIS Predicted by Regression Predicted by ANN

D f S t Fx (N) Fy (N) Fz (N) Fx (N) Fy (N) Fz (N) Fx (N) Fy (N) Fz (N) Fx (N) Fy (N) Fz (N)

10 500 1 1 318.16 331.69 529.75 313 288 528 305.1563 313.846 393.83 133.6167 682.762 535.5682

20 1000 0.5 2 680.92 705.17 1636.29 681 692 1600 679.9625 718.428 1701.837 325.2577 305.312 1617.228

20 1000 0.5 1 313.98 304.99 525.67 318 305 562 316.9325 347.377 558.8969 177.1499 777.368 570.9501

20 500 0.5 2 779.79 770.42 1637.1 668 779 1600 751.625 709.889 1554.133 177.4208 200.635 1644.425

10 500 0.5 1 200.51 202.94 427.65 199 203 451 180.7838 196.024 484.765 194.3887 286.471 532.8672

10 500 0.5 1 197.09 214.55 474.92 199 203 451 180.7838 196.024 484.765 194.3887 239.491 532.8672

10 500 1 1 307.23 288.38 449.73 313 288 528 305.1563 313.846 393.83 133.6167 777.368 1644.425

20 500 0.5 1 323.41 323.65 520.47 372 249 296 388.595 261.341 411.1931 182.1449 168.643 417.5815

20 500 0.5 2 756.54 788.15 1651.34 668 779 1640 751.625 709.889 1554.133 177.1499 682.762 1617.228

10 1000 0.5 1 187.17 186.83 375.34 187 187 375 163.1713 157.298 359.975 202.9756 124.666 1644.413

20 1000 0.5 2 677.69 678.64 1587.21 681 692 1610 679.9625 718.428 1701.837 180.4025 124.666 319.592

10 1000 0.5 1 186.81 188.07 411.57 187 187 375 163.1713 157.298 359.975 134.2937 239.491 566.8363

20 500 1 2 420.7 447.42 873.51 338 365 770 449.615 466.56 934.7656 198.0989 373.817 584.791

20 500 0.5 1 420.7 173.59 295.76 372 249 296 388.595 261.341 411.1931 177.4208 152.6 509.3007

10 500 1 2 377.02 380.88 724.6 352 381 674 359.5638 295.91 685.505 246.7695 241.052 1618.019

20 1000 1 1 140.51 143.01 219.14 148 146 226 201.9425 106.683 304.7819 182.1449 605.412 363.1248

10 500 0.5 2 222.86 262.58 472.52 223 246 558 235.1913 315.321 565.99 180.4025 203.033 412.5591

10 1000 0.5 2 195.17 236.15 469.88 194 215 492 217.5788 199.098 441.2 173.8994 152.6 1618.019

20 1000 1 2 862.29 868.92 1631.76 619 612 1250 564.9725 594.368 1082.469 139.1313 149.039 570.9501

10 1000 1 2 258.35 270.47 564.92 258 292 572 208.5413 298.957 560.715 198.0989 147.722 363.1248

20 1000 1 2 375.95 355.04 863.46 619 612 1250 564.9725 594.368 1082.469 202.9756 277.943 566.8363

20 1000 0.5 1 321.2 329.46 598.28 318 305 532 316.9325 347.377 558.8969 130.9983 147.722 416.6108

10 500 1 2 327.03 331.91 622.96 352 381 674 359.5638 295.91 685.505 139.1313 152.6 251.8233

10 1000 1 2 257.48 292.22 579.96 258 292 572 208.5413 298.957 560.715 173.7338 124.666 584.791

20 500 1 1 157.15 160.28 239.35 157 159 237 86.585 155.244 157.0781 130.9983 241.052 1644.413

20 1000 1 1 155.08 148.48 234.16 148 146 226 201.9425 106.683 304.7819 189.5676 149.039 509.3007

20 500 1 2 338.47 364.73 665.74 338 365 770 449.615 466.56 934.7656 246.7695 361.18 412.5591

10 1000 0.5 2 192.35 215.09 513.93 194 215 492 217.5788 199.098 441.2 130.5799 305.312 615.1648

10 1000 1 1 112.52 111.6 176.58 113 101 174 154.1338 140.523 269.04 134.2937 373.817 251.8233

20 500 1 1 156.08 157.83 231.07 157 159 237 86.585 155.244 157.0781 130.5799 200.635 412.5591

10 1000 1 1 97 91.32 169.68 113 101 174 154.1338 140.523 269.04 173.7338 203.033 417.5815

10 500 0.5 2 211.49 229.27 558.05 223 246 558 235.1913 315.321 565.99 189.5676 277.943 319.592

https://doi.org/10.1371/journal.pone.0221341.t004
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Each node output represents the firing strength of a rule.

Layer 3: Normalizes the firing strengths

In this layer, the normalized firing strength is computed using the following equation:

�wi ¼
wiP
i wi

; i ¼ 1; 2; ð3Þ

where wi denotes the output of layer i.

Layer 4: Defuzzification

In this layer, each node i is an adaptive node with a node function.

�wi:fi ¼ �wi:ðpi:xþ qi:yþ ri:z þ siÞ; ð4Þ

where pi, qi, ri, and si make up the consequent parameter set of the node, which are identi-

fied during the training process.

Layer 5: Total output layer

In this layer, all incoming signals are added (summation output). The circle node function

Fig 2. ANFIS architecture with five layers and several nodes [32].

https://doi.org/10.1371/journal.pone.0221341.g002
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is fixed whereas the indicated square function is adaptive. This can be calculated as follows:

Overall output ¼
X

i
�wi:fi ¼

P
iwi:fiP
i wi

; i ¼ 1; 2; ð5Þ

Neural network model used for prediction

The ANN computational model involves three layers, output, hidden, and input layers. Each

layer contains neurons and each neuron is related to all the neurons in the next layer. Fig 3

shows the layers in a model of the forming force (Fz).

None of the processes are executed in the input layer, and the input for the neuron is

obtained from the actual setting. The input vector is the weight of a neuron multiplied by the

strength; the result obtained helps create the product. The output from the last neuron can be

interconnected to the input of the next neurons or can be directly interconnected with the

environment. The output comprises an activation function and a summation function. The

activation function takes the weight of a neuron as an input and produces its activation as an

output. The calculation of the net input from the processing neurons is the summation func-

tion. Using the ANN, the nonlinear relationships between the output and input owing to the

contained activation function of the nonlinear and linear algebraic equations can be stored.

After the weight is altered by the activation function, the neurons that have moved to other

neurons make up the next layer. The output of the activation function accepts the results, and

then presents them to either the external network or to the neurons in the next layer. The net-

work output is compared with the target having the applied input, and the difference between

them is then considered an error. Moreover, algorithms of different networks are applied to

decrease the error [33].

Result and discussions

Statistical analysis

An analysis of variance (ANOVA) was used to estimate the effects of all factors and their

interaction on Fz. As a standard practice in ANOVA, terms with a p-value < α = 0.05 are

Fig 3. Neural network model for Fz.

https://doi.org/10.1371/journal.pone.0221341.g003
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considered significant. The ANOVA results, presented in Table 5, indicate that the factors d, s,

and t; the two-way interactions d�f, d�s, and d�t; and the three-way interaction between d, s,

and t have a significant effect on Fz. The value of the adjusted R-squared value shows that the

model can explain 91% of the variations in the data, and that 9% of the variations originate

from unknown nuisance factors.

ANFIS results

The ANFIS model was developed as a function of SPIF for the forming force using training

and testing data. The ANFIS tool that already exists in MATLAB was applied, which tests the

relationship of the process parameters used to execute the perfect training and maximizes the

prediction model accuracy for the selected responses (forming force). To obtain the results,

the ANFIS algorithm was designed using the initial parameters. Table 6 lists the parameters

used to help build the ANFIS model.

The training process was applied using 100 epochs for the forming force on three axes (Fx,

Fy, and Fz). A training curve was obtained after the training process was complete, as shown

in Fig 4. The figure shows the relationship between the number of epochs and the errors in the

responses.

Table 5. ANOVA results for Fz.

Source DF Adj SS Adj MS F-Value P-Value

Model 9 6002399 666933 25.34 0

Linear 4 4071606 1017901 38.67 0

d 1 1083491 1083491 41.16 0

f 1 1050 1050 0.04 0.844

s 1 356930 356930 13.56 0.001

t 1 2630134 2630134 99.92 0

2-Way Interactions 4 1765076 441269 16.76 0

d�f 1 148506 148506 5.64 0.027

d�s 1 406858 406858 15.46 0.001

d�t 1 1197730 1197730 45.5 0

s�t 1 11982 11982 0.46 0.507

3-Way Interactions 1 165717 165717 6.3 0.02

d�s�t 1 165717 165717 6.3 0.02

Error 22 579085 26322

Lack-of-Fit 6 218117 36353 1.61 0.208

Pure Error 16 360968 22561

Total 31 6581484

Model Summary S 162.241 R-sq 91.20% R-sq(adj) 87.60%

https://doi.org/10.1371/journal.pone.0221341.t005

Table 6. Initial parameters for the construction of the ANFIS.

Responses Forming force

Fx Fy Fz

Training method hybrid hybrid hybrid

Membership function for inputs gaussmf trimf psigmf

Number of membership function 3 2 3 1 2 2 2 2 3 3 3 3

Output function constant constant constant

Number of epochs 100 100 100

https://doi.org/10.1371/journal.pone.0221341.t006
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An analysis of the curves shows that, after 35 epochs, the errors become steady, as shown in

Fig 4(a). This occurs because the developed model was trained using limited experimental

data. To obtain the initial predicted values of the outputs, such as the forming force, a set of

fuzzy inference parameters (FIPs) were selected during the training process. The measured val-

ues were compared with the predicted value of the forming force obtained from the developed

ANFIS model. The performance of this model was measured based on the difference between

the measured and predicted values.

During the training process, FIPs were repeated multiple times until the errors were mini-

mized. Different ANFIS parameters were used as the training parameters to validate the accu-

racy of the prediction model. Table 7 shows the different ANFIS architectures for a predictive

Fig 4. ANFIS training curve for forming force: (a) Fx, (b) Fy, and (c) Fz.

https://doi.org/10.1371/journal.pone.0221341.g004

Table 7. Different ANFIS architectures for forming force.

Responses NO. MF Type of MF Output function Errors RMSE

Training error Test error

Forming force (Fx) 3 3 3 3 trimf constant 73.196 31.4218

linear 73.196 31.4166

2 2 2 2 Trapmf constant 73.4195 33.2606

3 3 3 3 constant 73.196 31.4218

3 3 3 3 psigmf constant 73.196 31.4309

Forming force (Fy) 2 2 2 2 trimf constant 108.9255 103.2906

2 2 2 2 linear 108.3141 104.6017

3 3 3 3 trapmf constant 108.3141 104.5998

2 2 2 2 constant 108.3236 104.2812

2 2 2 2 psigmf constant 108.3145 104.5399

3 3 3 3 constant 108.3141 104.5998

Forming force (Fz) 3 3 3 3 psigmf Constant 70.7654 32.4088

3 3 2 1 linear 96.5383 105.72

2 2 2 2 gaussmf constant 70.2728 31.9748

3 3 3 3 constant 71.018 37.5940

3 3 3 3 trapmf constant 71.0169 31.8061

3 2 3 1 gaussmf constant 172.7283 131.9702

https://doi.org/10.1371/journal.pone.0221341.t007
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model of the forming forces obtained for different input membership shapes, numbers of

membership functions, and types of output (linear or constant). For instance, from Table 7,

the trimf function was chosen to train the ANFIS because it achieved the lowest testing error

of 31.4218. In addition, Figs 5 and 6 show a comparison between the measured and predicted

forming forces for the training and testing data.

Artificial neural network results

The results of the developed ANN model are used to predict the forming force based on the

input process parameters in single-point incremental sheet metal forming. The numbers of

training and testing samples are 28 and 6, respectively.

Several training experiments were carried out to identify the optimal network structure and

best training parameters of the neural networks, producing minimum errors during the train-

ing phase. Similarly, several training experiments with different numbers of hidden neurons,

learning rates (0.60), and momentum values (0.80) were checked, as shown in Fig 7. The graph

of the learning progress shows the maximum, average, and minimum training errors. The

average validation error is 0.00138, which was obtained for a maximum of 38,650,000 learning

cycles. The correlation coefficient (R value) can be used to gauge the performance of the estab-

lished network. The R value is between the measured value and the predicted value for the test-

ing (6) and training data (28). The measurement of the closeness of the dissimilarity in the

output clarified by the target is known as the R value, which lies between 1 and 0. When the R

value equals 1, the optimal correlation is observed between the output and target values for the

forming force on the three axes. The R value obtained between the predicted values and the

measured data is 0.981, which indicates a good correlation.

Fig 5. Comparison between the measured and predicted forming forces using the ANFIS training data.

https://doi.org/10.1371/journal.pone.0221341.g005
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Regression model

A regression analysis helps in the development of a mathematical equation to characterize the

relationship between two or more input variables and the response outputs. In this study,

mathematical models are also developed using a regression analysis to fit the measured data

for the three selected responses. Using Minitab software, regressions models for the forming

force were developed, and a full quadratic model was initially selected for all responses. Later,

the insignificant terms were removed based on their p-values and accuracy. The following

equations can be used to predict the forming force as a function of significant factors:

FxðNÞ ¼ � 814þ 70:0dþ 0:981f þ 2009 s � 254:2 t � 0:0749d � f
� 149:4 d � sþ 30:86 d � t � 1:815 f � sþ 0:1282 d � f � s; ð6Þ

FyðNÞ ¼ � 441þ 16:5dþ 0:605 f þ 1735 sþ 259 tþ 0:0250 d � f � 44:8 d � s
þ 32:93 d � t � 32:93 f � s � 0:663 f � t � 782 s � tþ 1:015 f � s � t; ð7Þ

FzðNÞ ¼ 2650þ 182:0 d � 0:795 f þ � 1428 s � 1767 tþ 0:0545 d � f
þ 82:5 d � sþ 163:7 d � tþ 1572 s � t � 115:1 d � s � t; ð8Þ

Comparison of ANFIS with ANN and regressions

To assess the ability of the developed ANFIS model relative to that of a neural network and

regression analysis, an ANN model and a regression algorithm were developed using the same

input variables. Table 4 summarizes the results. For the forming force model along the x-axis,

Fig 8 shows a comparison between the measured and predicted values obtained using the

Fig 6. Comparison between the measured and predicted forming force using the ANFIS test data.

https://doi.org/10.1371/journal.pone.0221341.g006
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Fig 7. ANN training curve for forming force.

https://doi.org/10.1371/journal.pone.0221341.g007
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ANFIS, ANN, and regressions models for the training data. Fig 9 shows the same for the test-

ing data.

Fig 10 shows a comparison between the measured and predicted values obtained using

ANFIS and the regression model for the training data. Fig 11 shows the same for the testing

data.

Fig 8. Comparison between experimental and predicted Fx for training data.

https://doi.org/10.1371/journal.pone.0221341.g008

Fig 9. Comparison between measured and predicted Fx for testing data.

https://doi.org/10.1371/journal.pone.0221341.g009
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Fig 12 shows a comparison between the measured and predicted values obtained using

ANFIS and the regression model for the training data. Fig 13 shows the same for the testing

data.

The results obtained using the ANFIS prediction are very close to the measured values.

Moreover, the absolute mean percentage errors were calculated for each of the developed mod-

els. Tables 8 and 9 present a comparison of the performance between the ANFIS, ANN, and

regression models based on the mean absolute percentage errors (MAPE) for the training and

testing data.

Based on the performances of the ANFIS and ANN models in terms of the average absolute

percentage error for the training and testing data, it was observed that the ANFIS model out-

performs the ANN and regression models, while retaining their full potential.

Fig 10. Comparison between measured and predicted Fy for training data.

https://doi.org/10.1371/journal.pone.0221341.g010

Fig 11. Comparison between measured and predicted Fy for testing data.

https://doi.org/10.1371/journal.pone.0221341.g011
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Fig 12. Comparison between measured and predicted Fz for training data.

https://doi.org/10.1371/journal.pone.0221341.g012

Fig 13. Comparison between experimental and predicted Fz for testing data.

https://doi.org/10.1371/journal.pone.0221341.g013

Table 8. Comparison of the developed models based on the mean absolute percentage errors for training data.

Outputs ANFIS model ANN model Reg. model

MAPE MAPE MAPE

Forming force Fx 7.25 12.04 18.08

Forming force Fy 8.25 55.73 19.55

Forming force Fz 6.42 8.98 16.27

https://doi.org/10.1371/journal.pone.0221341.t008
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Conclusions

This paper proposed ANFIS and ANN models to predict the forming force in the context of

sheet metal forming, particularly SPIF. In addition, the influences of the tool diameter, feed

rate, sheet thickness, and step size on the main forming force were investigated. Considering

the ANOVA for the forming force (Fz), it was concluded that the significant factors are the

tool diameter, step size, and sheet thickness. The results of the ANFIS and ANN models were

compared with both the experimental data and those predicted using a regression model. The

comparison showed that the ANFIS model can accurately predict the forming force for both

training and testing data; in addition, the ANFIS model exhibited a better prediction perfor-

mance for the selected responses. Moreover, the results showed that the ANFIS model can pre-

dict the forming force along the three axes for the training data with a MAPE of 7.25%, 6.42%,

and 8.98%, respectively, and for the testing data with a MAPE of 5.85%, 9.61%, and 15.44%,

respectively. It can therefore be concluded that the developed model using the ANFIS

approach can be effectively used to measure the forming force during ISF and provide more

reliable results than the ANN and regression models.
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