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Introduction: Lactate is an important signaling molecule with autocrine, paracrine and

endocrine properties involved in multiple biological processes including regulation of

gene expression and metabolism. Levels of lactate are increased chronically in diseases

associated with cardiometabolic disease such as heart failure, type 2 diabetes, and

cancer. Using neonatal ventricular myocytes, we tested the hypothesis that chronic

lactate exposure could decrease the activity of cardiac mitochondria that could lead to

metabolic inflexibility in the heart and other tissues.

Methods: Neonatal rat ventricular myocytes (NRVMs) were treated for 48 h with 5,

10, or 20mM lactate and CPT I and II activities were tested using radiolabelled assays.

The molecular species profile of the major mitochondrial phospholipid, cardiolipin, was

determined using electrospray ionization mass spectrometry along with reactive oxygen

species (ROS) levels measured by Amplex Red and mitochondrial oxygen consumption

using the Seahorse analyzer.

Results: CPT I activity trended downward (p = 0.07) and CPT II activity significantly

decreased with lactate exposure (p < 0.001). Cardiolipin molecular species containing

four 18 carbon chains (72 carbons total) increased with lactate exposure, but species of

other sizes decreased significantly. Furthermore, ROS production was strongly enhanced

with lactate (p < 0.001) and mitochondrial ATP production and maximal respiration

were both significantly down regulated with lactate exposure (p < 0.05 and p <

0.01 respectively).

Conclusions: Chronic lactate exposure in cardiomyocytes leads to a decrease in fatty

acid transport, alterations of cardiolipin remodeling, increases in ROS production and
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decreases in mitochondrial oxygen consumption that could have implications for both

metabolic health and flexibility. The possibility that both intra-, or extracellular lactate

levels play roles in cardiometabolic disease, heart failure, and other forms of metabolic

inflexibility needs to be assessed in vivo.

Keywords: lactate, mitochondrial dysfunction, fatty acid metabolism, metabolic flexibility, fatty acids transport

INTRODUCTION

Despite observations that lactate is a favored over glucose as
energy substrate at the whole body (1–5) and tissues levels in
skeletal muscle (2, 3), heart (6–8) and brain (9), and that in
isolated mitochondrial preparations lactate is readily oxidized
(10–12), it has been observed that ROS production has been
observed in myocytes incubated with prolonged high lactate
levels (13). Such procedures result in upregulation of hundreds
of genes associated with adaption to physical exercise including
those of the Mitochondrial Lactate Oxidation Complex mLOC
(14). However, in aggregate such observations give rise to the
idea that while acute, but intermittent lactate exposure as occurs
in physical exercise is adaptive, prolonged cellular exposure to
lactate, as occurs in chronic inflammatory diseases, may be
maladaptive particularly with regard to fatty acid oxidation,
leading to metabolic reprograming and disease state.

Fatty acids in their CoA form are transported
across mitochondrial inner membranes by carnitine
palmitoyltransferase I and II (CPT I and CPT II). Under
postprandial conditions, especially after carbohydrate ingestion,
Acetyl-CoA levels increase due increase glycolysis and pyruvate
formation increasing the level of Malonyl-CoA, which, besides
promoting fatty acid synthesis, also inhibits CPT I, and therefore,
fatty acid oxidation (15, 16).

Cardiolipin is a structurally unique dimeric phospholipid
localized in the inner mitochondrial membrane where it is
required for optimal mitochondrial function and biogenesis (17,
18). Cardiolipin is known to provide essential structural and
functional support to several proteins involved in mitochondrial
bioenergetics (19). A loss of cardiolipin content, alterations in
its acyl chain composition, and/or CL peroxidation have been
associated with mitochondrial dysfunction in multiple tissues
in a variety of pathological conditions, including ischemia,
hypothyroidism, aging, and heart failure (17). Aberrations in
cardiolipin molecular species are a primary causative factor in
the cardio-skeletal myopathy known as Barth syndrome, which
is accompanied by a decrease in fatty acid oxidation in Barth
mice and hearts from Barth patients (20–22). These observations
underscore the important role of the cardiolipin molecular
species profile in regulation of fatty acid oxidation.

Unlike previous studies of acute lactate exposure, to our

knowledge, this study is the first to determine the effects of
chronic lactate exposure for 48 h (hr) in cultured neonatal

heart cardiomyocytes. Neonatal rat cardiomyocytes are the

most frequently used cell culture models for research in
cardiomyocytes and have been recognized as a valid cell culture
model (23). In mice, at the beginning of embryonic phase the
mitochondrial reticulum is immature containing few cristae and

no matrix. However, by day 13.5 (E13.5), mitochondria, ETC and
OXPHOS activities are indistinguishable from those in the adult
(24–26). From work of Lopaschuk and colleagues (27) we know
that in cardiomyocytes during the embryonic phase, almost the
entire ATP synthesis is obtained through glycolysis which is key
in the growth and differentiation of any proliferating cells. At
birth there is a significant switch from almost 100% glycolysis to
OXPHOS where 44% of ATP is derived from glycolysis and the
reminding 56% from OXPHOS derived from lactate oxidation
(25%), fatty acid oxidation (13%) and pyruvate oxidation (18%).
In the Neonatal phase (7-days postnatal), the shift is significantly
pronounced where OXPHOS accounts for 95% of ATP synthesis
derived from lactate oxidation (49%), fatty acid oxidation (41%)
and pyruvate oxidation (5%). At 21 days postnatal fatty oxidation
accounts for 80%, pyruvate oxidation for 12%, glycolysis for 7%
and lactate for 1% (27).

In the study herein, we show that in neonatal rat ventricular
myocytes, chronic (continuous 48 Hr) exposure to high lactate
decreases the activity of CPT II, and to a lesser extent, CPT I. The
cardiolipin profile is also altered by lactate leading to an increase
in species having 72 carbon fatty acyl chains. Furthermore,
we show that lactate exposure increases reactive oxidative
species (ROS) which have been linked to mitochondrial damage
and dysfunction (28, 29), and lastly, chronic lactate exposure
downregulates mitochondrial oxygen coupling efficiency and
consumption rate.

Hence, in addition to the known inhibition of fatty acyl
transport into the mitochondria by the malonyl-CoAmechanism
(30), we sought to interrogate the hypothesis that there
existed another mechanism regulating mitochondrial fatty acid
uptake. Specifically, in extension of previous research (13) we
hypothesized that chronic lactate exposure effects metabolic rate
and energy substrate partitioning by downregulating activities of
CPT I and II and causing structural changes in the cardiolipin
scaffold. These results could be relevant to metabolic dysfunction
in cardiometabolic disease (CMD), heart failure, and other forms
of metabolic inflexibility.

MATERIALS AND METHODS

Chemicals and Reagents
All chemicals were from Sigma Aldrich (St. Louis, MO, US)
unless otherwise stated. A BCA protein assay (ThermoFisher,
Waltham, MA) was used for protein quantification.

Neonatal Rat Ventricular Myocyte (NRVM)
Treatment
Neonatal rat ventricular myocytes (NRVMs) were isolated
from the ventricles of 1- to 2-day–old Sprague Dawley rats
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(Charles River, Wilmington, MA US) by enzymatic digestions as
previously described (31). Cells were plated for 16 hr in MEM-
Hanks Salts medium with 5% fetal bovine calf serum including
1 g/L of glucose, 0.2X Penicillin G, and 2 ug/mL Vitamin
B12. After 16 hr, Cells were then washed withMinimum Essential
Medium (MEM)-Hanks Salts medium with L-glutamine (Gibco)
containing transferrin (2 ug/mL), bovine serum albumin (0.1%),
insulin (2 ug/mL), bromodeoxyuridine (10 ug/mL), HEPES
(0.2M), Penicillin G (0.2X) and Vitamin B12 (2 ug/mL) with
0mM, 5, 10, or 20mM L-lactate treatments added. Cells were
harvested or measurements taken after 48 hr of lactate treatment.
All animal protocols are in accordance with Public Health
Service Animal Welfare Assurance, ID A3269-01, and approved
by the University of Colorado, Denver—Animal Care and
Use Committee.

Seahorse Assay
VMs were plated on a gelatin coated Seahorse 96-well plate
at a density of 50,000 cells/well. Lactate was added after 24 h
and mitochondrial function assessed by the Seahorse after
48 hr of lactate treatment in medium containing 1mM of
pyruvate, 2mM of glutamate and 10mM of glucose according
to manufacturer suggestions. The Mito Stress Test kit was
used with a XFe96 Seahorse Analyzer (Agilent, Santa Clara,
CA US). Three separate NRVM preparations were used to
collect Seahorse data. After the Seahorse assay, differences in
live cell density for each well were normalized by incubating
with the dye CyQuant (ThermoFisher, Waltham, MA, US) to
image live cells, incubating for an hr and imaging with a
fluorescent plate reader (iD5, Molecular Devices) according to
manufacturer directions.

Reactive Oxygen Species (ROS)
Measurements
AmplexTM UltraRed Reagent (Life technologies) was used to
measure superoxide plus hydrogen peroxide in cells. Briefly,
NRVMs were plated on black 96-well microplates. Forty-
eight hours post lactate treatment, cells were rinsed one time
with phosphate-buffered saline (PBS). A solution containing
Amplex Red dye (final concentration: 50 microM), hydrogen
peroxide (0.0015% final) and superoxide dismutase (SOD,
final concentration: 5 units/mL) was added to each well to
a final volume of 200 microL and incubated in the dark at
37◦C for 30 mins. Sample fluorescence was measured using a
fluorescence platereader (iD5, Molecular Devices) at excitation
and emission wavelengths of 540 and 600 nm, respectively.
The cells were washed twice with 100 microL PBS and cell
number was assessed using CyQuant cell proliferation assay kit
according to the manufacturer’s instructions (ThermoFisher).
Sample fluorescence was measured using the same plate reader
at excitation and emission wavelengths of 580 and 527 nm,
respectively. Each condition was examined in 15 wells per plate
in 4 different NRVM preparations leaving the edges free of cells.
Data shown is from a single representative experiment.

Carnitine Palmitoyltranferase I and II
Activity Assays
Carnitine Palmitoyltranferase (CPT) I and CPT II activities were
quantified in NRVMs using a 14C carnitine-based radioactivity
assay previously described in detail elsewhere (32). The assay
measures CPT I activity by permeabilizing the plasma membrane
and measuring the production of palmitoylcarnitine from
palmitoyl-CoA. The activity of CPT II was measured by
permeabilizing the mitochondrial inner membrane and adding
malonyl CoA to inhibit CPT I.

Cardiolipin Quantification
Cardiolipin was quantified in NRVMs using previously published
methods with liquid chromatography coupled to electrospray
ionization mass spectrometry in an API 4000 mass spectrometer
(Sciex, Framingham, MA) (33). After 48 hr of lactate treatment,
cells were washed and scraped off plates using PBS. Lipids were
extracted according to previously published methods with 1
mmol tetramyristoyl-cardiolipin as an internal standard (Avanti
Polar Lipids, Alabaster, AL, US) (33, 34). Cardiolipin species were
expressed as a percentage of the following cardiolipin species
having a mass/charge (m/z) ratio of 1422, 1424, 1426, 1448. 1450.
1452, 1454, 1456, 1472, 1474, 1476, 1496, 1498, 1500. These
percentages were summed for the species having side chains of
70 carbons (m/z 1422–1426), 72 carbons (m/z 1448–1456), 74
carbons (m/z 1472–1476) and 76 carbons (m/z 1496–1500). The
fatty acyl side chains of the dominant form of these species are
listed in Table 1.

Determination of Intracellular and
Extracellular Lactate Concentrations
Media for 0, 5, 10, and 20mM lactate was made and 1ml saved
at −80◦C until further processing for measurement of initial
extracellular lactate. The remainder of the media was added to
three 60mm plates per condition. After 48 h of incubation with
lactate treatments, 1mL of spent growth media was collected
from each of three NRVM plates per condition and frozen
at −80◦C until further processing for measurement of 48 hr
extracellular lactate. Following aspiration of all spent media, cells
were washed three times with cold PBS, 300 uL of cold PBS was
added to each plate, and NRVMs were scraped and frozen at
−80◦C until further processing for measurement of intracellular
lactate. Upon thawing, cells were kept on ice throughout the
entire protocol. Cell suspensions were sonicated for 8 secs
at 50% amplitude with a pencil-type sonicator (model 450,
Branson, Danbury, CT) and 100 uL of each sample aliquoted
into a clean microcentrifuge tube and protein concentrations
determined using the Quick StartTM Bradford Colorimetric
Protein Assay (#5000201, Bio-Rad, Hercules, CA) as per
manufacturer’s protocol. The remaining lysed-cell suspensions
were spun at maximum speed in a microcentrifuge at 4◦C
for 15 mins (model PrismR, Labnet International, Edison, NJ).
Following centrifugation, supernatants were transferred into
new microcentrifuge tubes. Spent and initial growth media
and intracellular (lysed-cell supernatant) lactate concentrations
were determined via the L-lactate Colorimetric Assay Kit I
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TABLE 1 | Number of each fatty acyl substituent on major species of individual cardiolipins.

m/z Total # Carbons 16:1 18:1 18:2 20:4 22:6

palmitoleate oleate linoleate arachidonate docosahexanoate

1422 70 1 3

1424 1 1 2

1426 1 2 1

1448 72 4

1450 1 3

1452 2 2

1454 3 1

1456 4

1472 74 3 1

1474 1 2 1

1476 2 1 1

1496 76 3 1

1498 1 2 1

1500 2 1 1

m/z, mass to charge ratio; fatty acid side chains are defined by number of carbons:number of double bonds.

from Eton Biosciences (#120001400A, San Diego, CA) as
per the manufacturer’s protocol. Colorimetry as measured
via a Synergy 2 plate reader (BioTek, Winooski, VT) was
employed to determine protein and lactate concentrations.
Intracellular and spent media lactate concentrations were
normalized to respective protein concentrations prior to further
calculations/data analysis.

Statistical Analyses
All data with the exception of reactive oxygen species
measurements and intracellular/extracellular lactate
measurements are graphed from multiple preparations on
different days of primary cultured NRVMs and therefore for
each preparation day, the data were normalized to untreated
cells having a value of 1. Data analysis used Prism version
8.0 (GraphPad Software, La Jolla California USA). Treatment
effects were analyzed using a 1-way ANOVA with corrections
for multiple comparisons; the level of statistical confidence
was set at p < 0.05. Data sets were tested for Gaussian
distribution with D’Agostino & Pearson omnibus or the Shapiro-
Wilk normality test. All data in this study conformed to a
Gaussian distribution.

RESULTS

Internal Concentrations of Lactate Reflect
External Lactate in Neonatal
Cardiomyocytes
Chronic lactate exposure results in the uptake of L-lactate in
NRVMs and a resulting decrease in the media concentration
of lactate (Figure 1A). Intracellular lactate in the NRVMs
increases with increasing concentration of lactate treatment
(Figure 1B). On one hand, NRVMs take lactate added to the
media for ATP production. Further, in NRVMs, cytosolic
glycolysis and lactate account for ∼44 and ∼25% respectively

for ATP synthesis (27). Fetal bovine calf serum (FBS) contains
1 g/L of glucose needed for NRVMs survival. Due to their
high glycolytic and lactate metabolism, it is expected that
over time, intracellular lactate is increased. Moreover, it
is known that lactate transport kinetics obey a gradient
pattern through monocarboxylate transporters (MCT1/4)
(35). Therefore, if there is a higher lactate concentration
extracellularly compared to the intracellular one, the exportation
of intracellular lactate could be compromise leading to
intracellular lactate accumulation as could be the case of the 20
mM exposure.

Lactate Exposure Decreases CPT I and II
Activities
After 48 hr chronic exposure of NRVMs to 0, 5, 10, or
20mM L-lactate, CPT activities decreased with increasing lactate
concentration (Figure 2). There was a trend (p = 0.07) for a
decrease of CPT I with 20mM lactate exposure (Figure 2A). The
effect was more pronounced for CPT II where 48 hr of lactate
exposure of 10 and 20mM significantly decreased CPT II activity
(p < 0.001 p < 0.01, respectively, Figure 2B).

Lactate Exposure Alters the Cardiolipin
Profile
Chronic lactate exposure alters the cardiolipin molecular species
profile in NRVMs in a concentration-related manner. Lactate
causes a percentage increase in cardiolipin having a total side
chain length of 72 carbons which are comprised of oleate and
linoleate side chains p < 0.01 and p < 0.001 for 10 and 20mM
respectively) (Figure 3B), but decreases in cardiolipins having
either smaller (70 carbon) or longer (74 or 76 carbon side chains)
(p < 0.05-p < 0.0001) (Figures 3A,C,D). Interestingly, there is
no significant alterations in the ratio of L4CL (m/z 1448 having
four linoleate side chains) to either O4CL (m/z 1456 having four
oleates) or LO3CL (m/z 1454). This indicates that the side chain
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FIGURE 1 | Uptake of Lactate into NRVMs (A) Extracellular media concentrations of lactate before (white bars) and after (gray bars) 48 h of lactate treatment.

Numbers above bars indicate average of each measurement. (B) Intracellular lactate concentrations in NRVMs treated for 48 h with various concentrations of lactate.

N = 3 plates, n = 1 solution (A white bars); error bars show standard error of the mean. *Intracellular lactate concentration is measured by mM of lactate per mg/ml of

protein [mM/mg/ml protein).

FIGURE 2 | Carnitine palmitoyl transferase (CPT) activity with chronic lactate treatment. NRVMs were treated for 48 h with various concentrations of lactate and CPT I

(A) or CPT II (B) assessed. Results are normalized to untreated cells with values for CPT I of 64.8 to 317.8 nmol/min/mg and for CPT II of 45.9 to 103.8 nmol/min/mg.

n = average of 5–6 cell preparations; error bars show standard error of the mean, **p < 0.01, ***p < 0.001.

composition is not changing within the 72 carbon grouping (data
not shown).

Lactate Exposure Increases Reactive
Oxygen Species Production
Chronic lactate exposure causes an increase in the level of

mitochondrial reactive oxygen species (both superoxide and

hydrogen peroxide) production in NRVMs (p < 0.5) as shown

in Figure 4.

Lactate Exposure Decreases Oxygen
Consumption Rate and Maximal
Respiration
Through Seahorse system analysis, NRVMs with chronic
exposure to lactate had decreased oxygen consumption rate
(OCR) due to decreased ATP production (p < 0.05) (Figure 5A)
and decreased maximal respiration (p < 0.05) (Figure 5B).
Representative Seahorse Analyzer trace for one cell preparation
day is shown in Figure 5C.
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FIGURE 3 | Cardiolipin molecular species profile with chronic lactate treatment. NRVMs were treated for 48 h with various concentrations of lactate and cardiolipin

molecular profile assessed. Molecular species are expressed as a percent and size groups are normalized to the untreated sample from the same cell preparation day.

Graphs show cardiolipin having total side chains lengths of (A) 70 carbons (untreated range from 9.5 to 10.0%), (B) 72 carbons (untreated range 40.2–49.3%), (C) 74

carbons (untreated range 27.2–29.2%) or (D) 76 carbons (untreated range 13.7–20.6%). n = average of 3 cell preparations; error bars show standard error of the

mean, *p < 0.5, **p < 0.01, ***p < 0.001, ****p < 0.0001.

DISCUSSION

In this study we addressed the seemingly paradoxical roles of

lactate in metabolism. Namely that intermittent exposure can
be adaptive, while chronic exposure can be maladaptive. This

concept has been long known in physiology and evidenced
in this investigation (36). In sequence we discuss the chronic,
maladaptive, and acute, adaptive effects of lactate exposure on
metabolism. As a model system noted for metabolic flexibility,

we employed a neonatal rat ventricular cardiomyocyte (NRVM)
model to study the effects of chronic lactate.

As shown in Figure 1, lactate in the media decreases by
∼30% as it is taken by cardiomyocytes and disposed of,
likely through oxidation. Neonatal cardiomyocytes have already
matured mitochondria capable of oxidizing lactate that enters
mitochondria for oxidation via monocarboxylate transporter,
MCT1 (37–39).While neonatal cardiomyocytes are quite efficient
at oxidizing lactate (27), chronic hyper lactate elicits cellular
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FIGURE 4 | Reactive Oxygen Species (ROS) production with chronic lactate

treatment. NRVMs were treated for 48 h with various concentrations of lactate

and reactive oxygen species0 (total cellular superoxide plus hydrogen

peroxide) assessed. Data shows a representative result from a single NRVM

preparation. N = average of 15 wells on a 96-well plate. error bars show

standard error of the mean, ***p < 0.001, ****p < 0.0001.

disruptions in the activity of CPT1/2, cardiolipin, bioenergetics
as well as cellular ROS production as shown herein.

Effects of Chronic Lactate Exposure on
CPT-I and –II
As a model system noted for the cellular oxidation of fatty
acids, a major component of metabolic flexibility, we employed
a neonatal rat ventricular myocyte (NRVM) model. Beyond
autocrine and endocrine roles of lactate on regulation of lipolysis
via covalent binding to GPR-81 (HCAR-1) (40), effects of
lactatemia on depressing lipid oxidation as well as lipolysis
have long been known (37). Furthermore, an impaired ability
to clear pyruvate and lactate by oxidation (the enzymes of
gluconeogenesis are not expressed in cardiomyocytes) leads to
accumulation of malonyl-CoA, which is an inhibitor of CPT1
and mitochondrial fatty acid uptake and oxidation as previously
shown by Saddik and colleagues (30). In the present study we
show that lactate inhibits the activities of both CPT I and CPT
II, especially the latter. Such effects would limit cellular lipid
oxidation by downregulating mitochondrial uptake of carnitine-
fatty acid derivatives. Those metabolic limitations are involved in
the pathogenesis of insulin resistance and T2D (41, 42) and heart
failure (43).We believe that our results showing effects of chronic
lactate exposure on CPT I and II may explain in whole, or in part

the relationship between chronic lactate exposure and metabolic
inflexibility in vivo.

Cardiolipin Effects of Chronic Lactate
Exposure
In this study, results also show a unique perturbation of
cardiolipin, the phospholipid that is highly integrated into
the electron transport chain and other enzymes of fatty acid
oxidation. These changes involve the enrichment of cardiolipins
having oleate (18:1n9) or lineoleate (18:2n6) side chains,
and a dramatic decrease in those cardiolipins having either
smaller (palmitoleate, 16:1) or larger (arachidonate, 20:4n6 or
docosahexaenoate, 22:6n3) fatty acyl side chains. This may be a
direct effect of the inhibition of fatty acid transport via CPT since
oleate and lineoleate are the most abundant unsaturated fatty
acids and may already exist within the mitochondria to be put
onto cardiolipin. Alterations to the cardiolipin molecular species
profile of this sort have not been described before and further
investigation is needed to determine the effect of these cardiolipin
changes on mitochondrial function. However, the pattern of size
shift in cardiolipin to four 18 carbon side chains is also seen
in rat heart tissue during the developmental transition from the
neonatal to the adult heart (Genevieve C. Sparagna and Kathryn
C. Chatfield unpublished). What we do know from our studies
with Barth Syndrome, where the cardiolipin profile is greatly
altered, is that CPT function does not appear to be dependent
on cardiolipin profile (22), making the cardiolipin alterations in
this study not responsible for CPT activity decreases.

ROS Generation and Chronic Lactate
Exposure
Lactate exposure increases mitochondrial ROS generation, which
may be a direct effect of the alteration of cardiolipin profile in the
electron transport chain. There are multiple studies associating
increased ROS with mitochondrial and cellular damage (28, 29,
44) and evidence supporting the involvement of ROS in the
pathogenesis of T2D (45).

Mitochondrial and Electron Transport
Effects of Chronic Lactate Exposure
Lastly, while acute lactate exposure results in tightly coupled
mitochondrial lactate oxidation (10, 12), prolonged exposure of
NRVMs to lactate negatively affects mitochondrial respiratory
control and coupling efficiency as well as the uncoupled maximal
respiration rate. The mechanism by which chronic lactate
exposure affects mitochondrial respiratory capacity and coupling
efficiency may be associated with ROS production (Figure 4) or
alterations in the cardiolipin profile (Figure 3). The response of
NRVMs to chronic hyper-lactate exposure in culturemay serve as
a model of what happens in vivo where deficits in mitochondrial
respiratory capacity may be behind the pathogenesis of multiple
diseases including insulin-resistance, T2D and even cancer as
mentioned vide supra. Decreases in mitochondrial function
affected by acute and chronic lactate exposure may serve to
decrease muscle mitochondrial fatty acid transport and oxidation
in vivo resulting in metabolic inflexibility.
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FIGURE 5 | Mitochondrial oxygen consumption rate with chronic lactate treatment. NRVMs were treated for 48 h with various concentrations of lactate and oxygen

consumption rate assessed using the Seahorse analyzer. (A) Rate of ATP production normalized to untreated cells (untreated range 8.5 to 16.3 pmol/min/cell), (B)

Rate of maximal respiration normalized to untreated cells (untreated range 132.5 to 386.4 pmol/min/cell). (C) Seahorse trace for a representative NRVM preparation

day. n = average of 3 cell preparations; error bars show standard error of the mean, *p < 0.05, **p < 0.01.

Further, decrease in maximal respiration might be attributed
to cardiolipins modifications. The work done by Chatfield
and Sparagna on mice and human heart show that in
Barth Syndrome when cardiolipin is dramatically altered,
there is decreased fatty acid utilization, increased ROS and
decreased mitochondrial function (20) and (Genevieve
C. Sparagna and Kathryn C. Chatfield unpublished).
Thus, cardiolipin alterations can also contribute alone to
changes in cellular bioenergetics. Moreover, herein we
show that lactate plays an important role in regulating
cardiolipin configuration.

Lactate Metabolism in the Twenty-First
Century
For nearly a century lactate has been considered as a “waste
product” of anaerobic metabolism. However, we now know that
lactate is formed under fully aerobic conditions, is a major
energy source (1, 46–48), the major gluconeogenic precursor
(46), a signaling molecule, a “lactormone” (37, 38) responsible
for diverse actions such as gene expression (13, 49), and possibly
a master regulator of carcinogenesis (50, 51). In the process of
shuttling between sites of production and removal, lactate exerts
profound effects on fat and carbohydrate (CHO) metabolism.
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Lactate is a preferred fuel over glucose in the beating heart
(7, 52) working muscle (5, 46) and brain (9). Regarding fat
metabolism, it is known that lactate binds G-protein coupled
receptor (GPR81) that inhibits lipolysis in adipocytes (40, 53).

Lactate is oxidized in vivo in the mitochondrial reticulum
via the mitochondrial lactate oxidation complex (mLOC)
comprising a MCT1, its chaperone (CD147/Basigin), a
mitochondrial LDH (mLDH), and cyclooxygenase enzyme
(COX) (39, 54). It is well known that mitochondrial dysfunction
is a hallmark in metabolic diseases like type 2 diabetes and
cardiometabolic disease (CMD) characterized by poor fatty acid,
carbohydrate oxidation andmetabolic inflexibility (55–60). Thus,
because lactate is a mitochondrial substrate, lactate oxidation
is highly dependent on proper mitochondrial function as is
demonstrated in individuals after exercise training (3, 61, 62). As
early as 1962, Issekutz and colleagues observed the relationships
between lactatemia and fatty acid oxidation (63). Recently,
we have shown high inverse correlations (r > 0.9) between
blood lactate levels and fatty acid oxidation rates. The inverse
correlations hold on a wide range so human subjects ranging
from those with metabolic syndrome to elite athletes (64).

Finally, the mechanisms by which chronic lactate exposure
could elicit biological responses shown herein are not known
and worth exploring in further studies. We believe that while
acute, short-term lactate exposure, as occurs in physical exercise,
is beneficial to skeletal muscle and other organ systems, chronic
lactate exposure associated with lack of clearance could lead to
metabolic dysregulation, and probably to disease. For example,
Hashimoto et al. in the Brooks Lab showed that acute lactate
exposure regulates 630 genes in mononucleated myotubes
and striated L6 cells (13). Moreover, after studying MCF-7
breast cancer cells in culture we recently made a case that
lactate accumulation from chronic aerobic lactate production
(i.e., the Warburg Effect) in the absence of disposal, was an
oncometabolite in cultured MCF-7 breast cancer cells (51).
Although it may seem a paradox that acute lactate exposure,
like in the case of exercise, could have beneficial effects, chronic
lactate exposure, like in the case of cancer could be “detrimental.”
The mechanisms behind acute vs. chronic lactate exposure must
be further explored.

In summary, results of our study add to the current and
emerging effects of lactate on acute and long-term regulation of
metabolic rate and energy substrate partitioning. While hardly
definitive or representative of metabolic regulation in humans
and other mammals in vivo, a reasonable interpretation of
the present results on cardiomyocytes is that they provide a
partial explanation of the effect of lactatemia in downregulating
mitochondrial lipid oxidation as might occur in heart failure
and CMD (6, 43). On one hand, as reviewed above, lactate
can be a preferred energy substrate when lactatemia is acute
(37, 65, 66) including acute heart failure (67). However,
on the other hand chronic intracellular and extracellular
lactate exposure may negatively affect cellular bioenergetics by
decreasing mitochondrial function, thus eliciting changes in fatty
acid oxidation leading to metabolic inflexibility. Further research
is needed to determine the mechanisms involved in decreased
lactate clearance capacity that are involved in pathological
conditions involving metabolic dysfunction in conditions and
diseases associated with lactatemia.
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