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The common c chain family of cytokines and their receptors play fundamental roles in the immune sys-
tem. Evolutionary studies of c chain cytokines have elegantly illustrated how the immune system adapts
to ever-changing environmental conditions. Indeed, these studies have revealed the uniqueness of cyto-
kine evolution, which exhibits strong positive selection pressure needed to adapt to rapidly evolving
threats whilst still conserving their receptor binding capabilities. In this review, we summarise the evo-
lutionary mechanisms that gave rise to the characteristically diverse family of c chain cytokines. We also
speculate on the benefits of studying cytokine evolution, which may provide alternative ways to design
novel cytokine therapeutic strategies. Additionally, we discuss current evolutionary models that eluci-
date the emergence of distinct cytokines (IL-4 and IL-13) and cytokine receptors (IL-2Ra and IL-15Ra).
Finally, we address and reflect on the difficulties associated with evolutionary studies of rapidly evolving
genes and describe a variety of computational methods that have revealed numerous aspects of cytokine
evolution.
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Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4747

1.1. Why study the evolution of the c chain cytokines? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4747
1.2. Cytokine homologues as potential therapeutic agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4747
1.3. Cytokine classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4747
2. Evolution of interleukins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4748

2.1. When did interleukins first appear? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4748
2.2. Why do we have so many different cytokines? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4748
2.2.1. Several rounds of whole genome duplication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4748
2.2.2. Host-pathogen interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4748

3. Molecular evolution of cc cytokines and their receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4748

3.1. Sites of positive selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4748
3.2. Challenges in comparative cytokine studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4749
3.3. Methods for studying molecular evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4749
3.4. Comparative evolution studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4749
3.4.1. IL-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4749
3.4.2. IL-2, IL-15 & IL-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4749
chnology

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.08.050&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2022.08.050
http://creativecommons.org/licenses/by/4.0/
mailto:m.antczak@uq.edu.au
mailto:di.yu@uq.edu.au
https://doi.org/10.1016/j.csbj.2022.08.050
http://www.elsevier.com/locate/csbj


M. Antczak, P.F. Cañete, Z. Chen et al. Computational and Structural Biotechnology Journal 20 (2022) 4746–4755
3.4.3. IL-2Ra vs IL-15Ra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4750
3.4.4. IL-4 vs IL-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4750

4. Conclusions and future perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4752
CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4752
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4752
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4752
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4752
1. Introduction

In 1973, evolutionary biologist Theodosius Dobzhansky pub-
lished a seminal essay titled ‘‘Nothing in biology makes sense except
in the light of evolution” [1]. While the purpose of his words may
have been to refute those arguing against evolution, this statement
undeniably reconciles the many unifying biochemical features
shared by all forms of life [2]. Since then, the field of molecular
evolution has strived to understand the evolutionary trajectories
of genes and proteins of interest. While highly conserved genes
may reveal molecular pathways that, even if slightly altered, are
simply unable to sustain life, divergent proteins often illustrate
dynamic systems that require continuous adaptation to environ-
mental triggers, such as the immune system [3].
1.1. Why study the evolution of the c chain cytokines?

The immune system is an intricate network of organs, cells and
molecules dedicated to protecting the host from foreign invaders
and maintaining homeostasis. Given the complex and diverse enti-
ties that comprise it, this system must rely on effective communi-
cation mechanisms. Consequently, the body has evolved a large
arsenal of soluble factors that mediate immune crosstalk and allow
the immune system to fine-tune its functions [4]. These mediators,
known as cytokines, utilise matching cytokine receptors that initi-
ate downstream signalling cascades in target cells. Subsequent
activation of signalling pathways ultimately promotes the expres-
sion of genes required for specific cellular processes. Cytokines per-
form diverse roles and virtually control most physiological
processes, from embryonic development to haematopoiesis [5–
10]. This is possible due to their pleiotropic nature (i.e. ability for
single cytokines to carry out multiple biological processes) as well
as redundancy (i.e. the ability of multiple cytokines to exert similar
actions). Therefore, tight control mechanisms that maintain cyto-
kine balance are needed to fine-tune immune coordination and
homeostasis. Indeed, dysregulation of cytokine signalling results
in a wide range of pathological conditions, including primary
immunodeficiencies, allergies, autoimmunity, cancers and cyto-
kine storms characteristic of certain infectious diseases (e.g.
SARS-CoV-2) [11–14]. Interestingly, cytokine receptor deficiencies
seem more detrimental than individual cytokine defects [15–19].
This is not surprising given the relatively large number of cytokines
that share common cytokine receptors. Therefore, cytokines and
their receptors are important determinants of health and disease
and thus represent attractive therapeutic targets for a wide range
of diseases [20].

Here we summarise and integrate investigations related to the
evolutionary origins of the common c chain family of cytokines.
We highlight cytokines and receptors that have taken the spotlight
in the scientific community, such as IL-2, IL-15, IL-2Ra, IL-15Ra,
IL-21, IL-4 and IL-13. We illustrate various mechanisms that have
shaped the manner and the extent to which these cytokines have
evolved (e.g. host-pathogen arms races, whole genome duplication
events). Furthermore, we present popular in silico tools used to
interrogate molecular evolution hypotheses and assess cytokine
4747
evolutionary trajectories. Lastly, we speculate that gathering evo-
lutionary insight into a family of proteins present in virtually all
organisms whose immune system relies on adaptive immunity
may reveal novel approaches to design cytokine-based
immunotherapies.

1.2. Cytokine homologues as potential therapeutic agents

Cytokine administration is arguably the therapeutic approach
that pioneered the field of immunotherapy. Seminal studies
reported that treatments with TNF-a and IL-2 provided favourable
outcomes in a variety of cancer settings [21–24]. Such discoveries
have laid the foundation for tweaking the immune system towards
a pro-inflammatory state with the hope of achieving tumour
regression. While animal studies have generated compelling and
promising data, clinical translation has been slow and hampered
by, at least in part, the toxicity of these regimes [22,23,25]. Thus,
efforts to modify cytokine structure have been proposed to help
mitigate toxicity and potentiate beneficial outcomes [26–30]. Most
synthetic cytokine approaches involve the use of additional macro-
molecules linked to the cytokine itself [31–35]. However, very few
studies report on the use of synthesising mutated cytokine ver-
sions that might be superior in providing favourable therapeutic
outcomes. Given that generating and screening randomly mutated
cytokines may be labour intensive and costly, it is tempting to
speculate that testing cytokine orthologues might be a useful
approach to reveal the principles of receptor-ligand co-evolution,
which will help design cytokine modifications with beneficial
properties.

1.3. Cytokine classification

Cytokine classification methods by either function or structure
have revealed a myriad of cytokine families, such as chemokines,
interferons, lymphokines, tumour necrosis factors and interleukins
[4,36,37]. Interleukins are a group of cytokines that are foremost
modulators of immune and inflammatory responses [37–43]. Even
though they were once thought to be secreted by white blood cells
only, interleukins have later been shown to be produced by numer-
ous cell types other than the hematopoietic lineage. To date, more
than sixty cytokines have been classified as interleukins [44], and
six of them (i.e. IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21) comprise
the common c chain family of cytokines, named after the c chain
(cc) receptor they all bind [20,45,46]. The common cc cytokine
receptor is essential for innate and adaptive immunity [20].
Loss-of-function mutations in humans result in X-linked severe
combined immunodeficiency (X-SCID), an immune disorder with
dysfunctional B cells and near absent T cells and natural killer
(NK) cells [19]. Mice deficient for cc recapitulate human X-SCID
with underdeveloped thymus and diminished B, T, and NK cells
[47]. Likewise, the common cc family of cytokines play pivotal
roles throughout the lifetime of various immune cell lineages, such
as IL-7, which is fundamental for T cell development and function
[48]. Similarly, IL-4 is key in mediating anti-parasitic and allergic
responses [49,50], whilst IL-2 controls T cell proliferation [51],
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and IL-21 is fundamental for orchestrating humoral responses [52].
Therefore, common cc cytokines are essential in mediating unique
and diverse facets of the adaptive immune system.
2. Evolution of interleukins

2.1. When did interleukins first appear?

Given the pivotal role of interleukins in lymphocyte biology, the
origin of interleukins is often attributed to the emergence of adap-
tive immunity. Adaptive immunity is often considered to have
originated in the common ancestor that preceded early jawed ver-
tebrates [39,53,54]. This ancestor gave rise to two distinct clades,
cartilaginous fish (i.e. sharks) and bony vertebrates. Within the lat-
ter clade, the teleost family of fish (a large group of fish represent-
ing 96 % of all current fish) is often referred to as the oldest living
fish containing an adaptive immune system similar to that of
mammals [55,56]. Thus, comparative analyses using these organ-
isms are commonly used to illustrate the evolutionary timeline
of cytokines. Whilst the emergence of interleukins coincides with
that of the adaptive immune system [39,57], evidence indicates
their presence in jawless vertebrates (IL-13Ra1, IL-17) and even
invertebrates (IL-6, IL-17) [39,57–59]. Interestingly, the common
cc family of cytokines are only found in jawed vertebrates
[39,53,60,61], suggesting they may have originated and evolved
hand in hand with adaptive immunity.

2.2. Why do we have so many different cytokines?

2.2.1. Several rounds of whole genome duplication
It is now widely accepted that the vertebrates’ common ances-

tor went through two rounds of whole genome duplication (WGD)
[62,63]. In humans, the majority of genes encoding short-chain
type I cytokines (family containing cc cytokines) are located on
chromosome arms 4q and 5q, which are paralogues dating back
to the bifurcation of fish and tetrapods [63–67]. Consequently, a
release of selective pressure rendered duplicated genes prone to
accumulate mutations, which eventually led to divergent
sequences and functions [53,68,69]. In addition, teleosts experi-
enced a third round of WGD and salmonids (a family of teleosts)
– a fourth one [56,62,70,71]. These two fish-specific WGD rounds
resulted in multiple paralogues of several common cc cytokines,
such as IL-2 or IL-4/13 [64,72,73].

2.2.2. Host-pathogen interactions
Cytokines (including the common cc family of cytokines) are

among the fastest evolving genes. Indeed, seven out of the 25 fast-
est evolving genes with the highest degree of evolutionary diver-
gence in mouse vs human orthologues code for cytokines or their
receptors [54]. Such rapid evolution may be explained by gene
duplication events and host-pathogen co-evolution. This is not sur-
prising given the breakneck speed at which pathogens evolve and
the relatively shorter generation times that allow them to rapidly
adapt to the host. Additional clever adaptation strategies employed
by pathogens include molecular mimicry, allowing the invader to
remain unnoticed and to evade immune defence mechanisms
[74–76]. Therefore, the host’s immune genes must evolve to coun-
teract these adaptation strategies [74–76]. Several instances of
such co-evolution have been reported. For example, some immun-
odeficiency viruses can copy several exact sites of IL-2 into the
transmembrane envelope of their glycoproteins [76,77], which
confers them an ability to redirect antibody responses towards
IL-2 instead. As a result, auto-IL-2 antibodies are typically detected
in HIV patients. Additionally, recent COVID-19 studies have
revealed that the SARS-CoV-2 open reading frame 8 (ORF8) glyco-
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protein resembles IL-17A [78]. Indeed, this viral protein has been
demonstrated to bind the IL-17 receptor, which results in a more
powerful inflammatory reaction than that induced by IL-17. There-
fore, host-pathogen interactions have played a major role in paint-
ing the evolutionary canvas of many immune-related genes,
including the cc family of cytokines. Gathering evolutionary insight
of the latter may reveal novel sequences that can better modulate
the immune response and thus may offer innovative and attractive
therapeutic approaches.
3. Molecular evolution of cc cytokines and their receptors

Molecular evolution is the field of study that aims to delineate
evolutionary trajectories of the biochemistry of life. A major theme
in the field investigates whether mutations that confer evolution-
ary advantages sweep a population of interest [79–81]. Such infer-
ences can be reached via studying the conservation of homologous
gene sequences and interrogating whether a common ancestor
sequence might be present. For example, in order to elucidate
whether the common cc family of cytokines experience positive
selection pressure, several studies compared the rates of non-
synonymous vs synonymous substitutions in the sequences of cc
cytokines across species [39,62,74,75,82–87]. Whereas a higher
incidence of non-synonymous mutations indicates adaptational
positive selection pressures, a higher rate of synonymous muta-
tions is indicative of the opposite. Not surprisingly, the abundance
of non-synonymous variants in many sequences of cc cytokines
across species suggest that this group of cytokines have evolved
under positive selection pressure [82,83].
3.1. Sites of positive selection

Identification of positive selection sites, which are likely corre-
lated with sites of significant biological activity, can effectively
determine the acquisition of mutations associated with competi-
tive fitness [76,84]. Several lines of evidence have identified posi-
tive selection sites in all six cc cytokines [82,84]. The majority
were found to be at or near the receptor-binding domains, suggest-
ing that such sites may have granted these cytokines a competitive
advantage in recruiting their receptor chains [82]. Indeed, studies
that have identified extensive positive selection sites in IL4, which
is paramount in mediating immunity to extracellular pathogens,
illustrate the need for this pathway to keep up with recurrent
exposure to parasitic worms [75,85]. Nevertheless, conflicting evi-
dence that contradicts this notion was generated by Kubick et al. in
2021, who suggested that both the IL-2 family (encompassing IL-2,
IL-7, IL-9, IL-15 and IL-21) and IL-4 family (comprising IL-4 and IL-
13) evolved under negative selective pressure [39]. In contrast to
the high variability and genetic diversity observed across all cc
cytokines, evolution has selected against diversity in the cc, which
is at the core of all the common cc family of cytokines and their
receptors. Indeed, an abundance of negative selection sites at this
locus suggests that cc is under strong pressure to remain
unchanged, and not surprisingly, loss of function mutations in
humans lead to one of the most severe immunodeficiency syn-
dromes [82].

Even though most cc cytokines contain positive selection sites
[74,83] an ancestral gene that shares properties with IL2 and
IL15, thus termed IL15-like (IL15L), appears to exhibit characteris-
tics of negative selection in most mammals [61]. IL-15L was firstly
identified in fish as an IL-15Ra-binding cytokine, and while its
presence in mammals remained elusive for decades, a genomic
locus corresponding to fish IL15L was later confirmed in several
mammalian species, such as cattle, pigs and horses [61]. This sug-
gests that not only might IL15L mediate important functions in
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those species but also that conservation of this gene might have
played beneficial roles throughout natural selection. It is interest-
ing, however, that only remnants of this gene have been found in
rodents and higher primates, and given its impaired open reading
frame, a putative function for IL15L is highly unlikely in these spe-
cies [61,88–90]. Given the stark difference in evolutionary out-
comes of IL15L in a single class of closely related vertebrates, it is
tempting to speculate that pathogen and disease tropismmay have
been key drivers for such opposing evolutionary trajectories.
3.2. Challenges in comparative cytokine studies

Cytokine genetic divergence resulting from i) the many duplica-
tion events and ii) rapid accumulation of mutations due to host-
parasite co-evolution makes comparative cytokine (and their
receptors) studies troublesome. This is further hampered by the
difficulty of designing PCR primers to isolate putative cytokines
in new species. For example, it took seven years to identify IL-2
in chickens due to having only one reference sequence derived
frommammals [91]. Efforts to isolate cytokines in marsupials were
also initially unsuccessful and resulted in a long-standing notion
that depicted the marsupial immune system to be rather primitive
[91]. Furthermore, the lack of high sequence similarity across cyto-
kine homologues and orthologues hinders bioinformatic algo-
rithms that automate genome annotation. For example,
Ensembl’s annotation pipeline (primarily using similarity of pro-
tein/RNA/DNA sequence and search/alignment tools that allow
detection of only close homologues) has been able to detect only
a handful of cytokines in marsupial genomes [91,92]. Thus, alterna-
tive study methodologies and experimental designs are needed to
evaluate the evolutionary history of cc cytokines.
3.3. Methods for studying molecular evolution

A variety of bioinformatic tools have been employed to draw
parallels between the conservation of the common cc family of
cytokines and their evolutionary trajectories across species. These
exercises rely on the overall premise that proteins exhibiting sim-
ilar sequences evolved from a common ancestor. Comparative
multiple sequence alignments (MSAs), which essentially measure
amino acid sequence conservation, have effectively revealed
close/distant homologues and common protein ancestors. For
example, conservation of cysteine residues and WSXWS motifs
were used to classify some proteins as class I cytokine receptors
[62,93,94]. Additionally, much of our understanding of the molec-
ular evolution of cytokines has been aided by protein topology
assessment (domains and motifs) as well as phylogenetic analyses
[39,53,60–62,64,73,75,76,93–103]. Indeed, phylogenetic trees con-
structed from mammalian IL-2Ras and IL-15Ras and fish IL-
2/15Ras allowed for clustering of close homologues and shed more
light on which of the two mammalian sushi receptors originated
from the primordial IL-2/15Ra [60,104].

Phylogenetic relationships within the common cc family of
cytokines are typically constructed by either rapid clustering
methods, such as a neighbour-joining (NJ) algorithm, or by elabo-
rate statistical algorithms like the maximum likelihood (ML)
method [105,106]. ML technique assumes an underlying substitu-
tion model of evolution, evaluates the probability of this model
driving the evolution of the proteins in question and generally
allows for detection of a more robust and accurate phylogeny. In
addition, the reliability of a phylogenetic tree is often estimated
via bootstrapping – a method that resamples and rebuilds a tree
repeatedly [107]. The confidence value of a branch is calculated
based on how many times the exact branch was reconstructed
throughout the bootstrapping process.
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Furthermore, next-generation sequencing methodologies,
becoming increasingly affordable and practicable, have opened
new research avenues to evolutionary molecular biologists. Identi-
fying protein homologues across highly conserved sequences is rel-
atively uncomplicated, and simple methods such as BLAST can
typically produce meaningful data [108,109]. However, for identi-
fication of homologues amongst more divergent sequences, tools
that employ position-specific scoring matrices (PSSMs) or hidden
Markov models (HMMs) may be more suitable [110–112]. These
algorithms are built from multiple sequences using a specific fam-
ily and incorporate the probability of amino acids being present at
different positions for that family. In contrast, BLOSUM matrices,
which are used by BLAST when comparing sequences across spe-
cies, are based on overall amino acid frequencies and substitution
probability [113]. Consequently, they allow less flexibility when
searching for homologues than HMMs and PSSMs. In addition, gene
synteny, which describes the physical co-localisation of genetic
loci within a chromosome and across species, has revealed further
conservation of the cc cytokines across several vertebrates [60,73].
Integrating HMMs with gene synteny has been a fruitful approach,
as many cytokines in the opossum genome initially missed by
Ensembl’s automated annotation pipeline have been elucidated
through this methodology [91,114]. Moreover, gene synteny has
significantly improved identification of IL-2 and IL-15 in many tet-
rapod and teleost species of fish [61,64,76,88–90,100,115].

Finally, an alternative approach that may reveal molecular evo-
lutionary insight utilises protein tertiary structure. It has been
shown that some cc cytokines fold into similar structures, and
despite abundant genetic sequence dissimilarities, their tertiary
structure appears to be conserved throughout evolution [116].
However, although structural analysis is an attractive tool to reveal
molecular evolutionary insight, its use has remained relatively
scarce. This is partly due to the lack of experimentally-validated
protein structures of the common cc family in many species but
also the impracticality of elucidating all crystal structures for all
the known cc receptors. Furthermore, until 2018, computational
methods predicting protein’s structure were not highly conclusive
or reliable [117,118]. Nonetheless, the advent of novel algorithms
that can predict tertiary and quaternary protein structures reliably,
together with emerging machine learning tools, will certainly pave
the way for a new era of molecular evolution.

3.4. Comparative evolution studies

3.4.1. IL-7
IL-7 is arguably-one of the most important common cc chain

cytokines in mammals and higher vertebrates. IL-7-deficient mice
exhibit a 20-fold decrease in T cell numbers, and abrogating the IL-
7 receptor (IL-7Ra) leads to virtually no T cells and B cells [119–
121]. In contrast, both IL-7 and IL-7Ra deficiencies in humans
result in severe T cell lymphopenia while retaining normal B cell
numbers [122]. Despite the central roles of IL-7 in mammalian T
cell development and function, IL-7 appears redundant in more
distant vertebrates [48,123]. Indeed, IL-7-deficient zebrafish only
display a moderate decrease in thymocytes [119,120,123,124],
suggesting an evolutionary trajectory from degenerate to non-
redundant roles of IL-7 in T cell development and function in
higher vertebrates [123]. Nevertheless, the IL-7 signalling axis
has remained fundamental throughout evolution, and despite the
differing roles of IL-7 across species, IL-7Ra deficiency leads to
equally catastrophic consequences in most organisms
[48,121,122].

3.4.2. IL-2, IL-15 & IL-21
Homologues of human IL-2, IL-15 and IL-21 have been success-

fully identified across mammals, birds, reptiles, amphibians and
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fish (both cartilaginous and bony fish species)
[60,61,72,76,83,91,99,100,114,125–127]. In addition, elegant stud-
ies have revealed the existence of another IL-15Ra-binding cyto-
kine, IL-15L. While originally identified in fish, this cytokine is
also present in several mammalian species. Despite the lack of evi-
dence for an immunological function of IL-15L in mice and humans
[61,88–90], it may have contributed to the evolution of mam-
malian IL-2 and IL-15 [61].

IL-2, IL-15 and IL-21 exhibit a high degree of homology [125],
and they all share a sequence motif absent in other short-chain
helical cytokines [61]. Notwithstanding, some residues that are
well conserved throughout IL-2, IL-15 and IL-15L seem absent in
IL-21. Such residues mediate IL-15:IL-15Ra binding, thus providing
a plausible explanation as to why IL-21 does not bind a sushi
domain-containing receptor [61,128]. Furthermore, human and
mouse phylogenetic trees depicting the common cc family of
cytokines identified close relationships between IL-15 and IL-2,
which in turn share the closest common ancestor with IL-21
[129,125]. Similar approaches have revealed distinct clusters for
each of these cytokines [60], with the exception of teleost fish IL-
2 proteins. The latter appears to be in closer proximity to other tel-
eost fish IL-15 proteins than to mammalian IL-2 sequences. This
phenomenon is also present in grass carp IL-2, which, compared
to human cc cytokines, is revealed to be closer to human IL-15 than
with IL-2 [60]. It is worth noting that others have produced contra-
dicting results, proposing that carp IL-2 and IL-15 sequences are
clustered with mammalian IL-2s, whereas IL-15 orthologues are
more similar to IL-21 than to IL-2 [72].

Genomic co-localisation of IL2 and IL21 is well conserved across
all vertebrates. They are tandemly clustered in fish, amphibians,
reptiles, birds and mammals [60,61,72,76], suggesting that they
likely originated from a duplicated ancestor gene [76,130,131].
However, duplicated genes are not necessarily maintained in close
proximity throughout evolution. For instance, IL15 and IL15L do not
physically co-localise, even if IL15 sits on the same chromosome as
IL2 and IL21 in many species (for example, humans, cattle, opos-
sum or gar) [61,125]. The fact that IL2 and IL21 are adjacent in spe-
cies that bifurcated 500 million years ago poses an interesting yet
puzzling question. Whilst conservation of this genomic arrange-
ment may suggest an evolutionary advantage, it is difficult to
envisage one given that these cytokines 1) exert diverse and often
opposing functions, 2) co-expression is uncommon, and 3) they are
differentially regulated [132–134].

Much debate regarding the origins of these three cytokines has
resulted in several plausible scenarios. Bird et al. have suggested
that there may have been an IL2/IL15/IL21 primordial gene which,
upon some duplication event with subsequent gene speciation
mechanisms, gave rise to the three distinct cytokines [76]. Alterna-
tively, Dijkstra et al. have proposed alternative origins for the IL2/
IL15 ancestral gene based on the conservation of cysteine residues.
All vertebrates appear to harbour four key cysteine residues in IL-
15. In contrast, IL-2 has four cysteine residues only in pufferfish
and chicken, while mammalian IL-2s possess only two conserved
cysteine positions. This led the authors to speculate that the pre-
cursor for IL-2 and IL-15 may have duplicated even before bony
fish evolution [61]. Additionally, co-localisation of IL2 and IL21
across vertebrates from bony and cartilaginous fish to humans
advocates for an IL2 and IL21 precursor that was also duplicated
in early-jawed vertebrates.

3.4.3. IL-2Ra vs IL-15Ra
Genomic co-localisation of IL2RA and IL15RA can give us clues

about their evolutionary history. These two genes are tandemly
clustered in a syntenic region containing ANKRD16, FBH1, IL2RA,
IL15RA and RBM17 in humans and birds [60]. This arrangement is
also conserved in various tetrapod genomes such as mice or Afri-
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can clawed frogs [60–62,135]. However, only a single copy of this
receptor is found in the corresponding locus of fish. This suggests
three possible scenarios for a putative common ancestor: IL-2Ra,
IL-15Ra or a protein with a high degree of similarity to both,
named IL-2/15Ra [60–62,72,99]. Elegant modelling has demon-
strated the presence of IL-2Ra in the West Indian Ocean coelacanth
(a lobe-finned fish) and IL-2/15Ra in several species of ray-finned
fish and the Australian ghostshark (cartilaginous fish) [60].
Whether it is IL-2Ra or IL-15Ra that occupies the locus mentioned
above varies and seems to depend on which receptor the research
group attempts to identify. In 2007, IL-15Ra was cloned for the
first time in a rainbow trout [104]. In 2011, attempts to isolate a
homologue of IL-2Ra in a tetraodon (a teleost) resulted in the
unprecedented discovery of a receptor that binds both IL-2 and
IL-15 [136]. Further research on IL-15Ra and IL-2Ra identified
homologues of IL-15Ra in gar (a ray-finned fish) and Australian
ghostshark [61]. However, homologues for both receptors were
ultimately identified in mammals, reptiles, amphibians, and fish
– specifically ray-finned fish [39].

In summary, the evolutionary trajectory of IL-2Ra and IL-15Ra
in tetrapods eludes to a model where they originated from the IL-
2/15Ra receptor found in fish (Fig. 1) [60,136]. Advocates for this
model have formulated this hypothesis under the premise that a
duplication event of IL-2/15Ra must have occurred in tetrapods
after these two clades bifurcated. Consequently, the duplicated
receptor was relieved from selective pressure and gained an addi-
tional sushi domain to facilitate binding to IL-2.

3.4.4. IL-4 vs IL-13
Both IL-4 and IL-13 are primarily secreted by T helper 2 (Th2)

cells, and in mammals, they play a major role in allergic reactions
and immune responses against extracellular parasites [50,73,98].
They do so by promoting Th2 differentiation of CD4 + T cells, driv-
ing the production of high-affinity immunoglobulins of class E (IgE)
and enhancing macrophage activation [49,73,98,138,139]. These
cytokines also mediate repressive functions of other major
immune responses, such as Th1 and Th17 effector functions. For
instance, in mice infected with intracellular pathogens such as
Leishmania major, IL-4 was shown to antagonise Th1-mediated
inflammatory responses [138]. Similarly, in mouse models of
Delayed-Type Hypersensitivity Reactions (DTHR) and human
patients with psoriasis, systemic IL-4 administration curtailed dif-
ferentiation and maintenance of Th17 cells [139]. Interestingly,
lymphocytes are usually desensitised to IL-13 due to the low level
of IL-13Ra1 expression [140], while in vitro polarised mouse Th17
cells exhibit elevated Il13ra1 transcription compared to Th1 and
Th2 cells [141]. IL-13 represses IL-17 and IL-21 production in
in vitro-polarised Th17 cells, suggesting that IL-13 signalling sup-
presses Th17 responses [141]. The immunomodulatory effects of
IL-4 and IL-13 also comprise repression of inflammatory innate
immune cells, particularly neutrophils. For example, neutrophil
infiltration in mouse skin upon cutaneous infection of bacteria is
inhibited by administration of IL-4 and increased by IL-4-
blocking agents [142].

While many roles of IL-4 and IL-13 overlap, they still exhibit dif-
ferential functions [98]. Even though IL-4 and IL-13 are typically
observed in many mammalian species as separate cytokines
[64,73,98,102,125], only one homologue of IL-4/13 has been iden-
tified in many bony fish species (including teleosts and spotted
gar) and cartilaginous fish (elephant shark). This may be due to
the lack of IgE in fish. IgE mediates such potent inflammatory cas-
cades [140–142] that perhaps a bifurcation of IL-4 and IL-13 was
needed in order to serve as a tight regulatory layer in mammals.
Interestingly, multiple copies of il4/13 were found on different
chromosomes in various teleost fish species, likely due to the addi-
tional WGD event in teleosts [73].



Fig. 1. Evolutionary models of IL-15Ra vs IL-2Ra and IL-4 vs IL-13. Both models hypothesise that primordial genes coding for IL-2/15Ra and IL-4/13 underwent a tandem
duplication event followed by acquiring overlapping yet distinct functions after fish and tetrapods separated. These models were presented by Wen et al., Wang et al. and
Heeb et al., respectively [53,60,136]. The phylogeny of vertebrates shown here is adapted from a figure provided by Yamamoto et al. [137]. Darker background emphasises the
presence of separated IL-15Ra, IL-2Ra, IL-4 and IL-13 in tetrapods only (according to the current evidence). Created with BioRender.com.
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IL4, IL13 and IL4/13 are located in the Th2 locus control region,
specifically in KIF3A/IL4/IL13/RAD50 locus [73,98]. This region is
well conserved across many jawed vertebrates, including bony
and cartilaginous fish. In humans and chickens, IL4 and IL13 lie side
by side between the KIF3A and RAD50 genes [73]. Similarly, il4/13
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(either single or multiple copies tandemly duplicated) lies in the
well-conserved kif3a/il4/il13/rad50 locus in frogs and two non-
teleost fish species, spotted gar (bony) and elephant shark (carti-
laginous) [98]. In addition, evolution seems to have conserved
the genetic structure of all three Th2 cytokines discussed herein
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(IL4, IL13 and IL4/13). They all harbour an intron/exon organisation
typical for the short-helix type I cytokine family [64,102], which
suggests that this specific gene composition may be crucial for per-
forming similar biological roles [143,144].

The prevailing model of IL4 and IL13 evolution resembles the
one suggested for an IL2/15RA primordial gene that bifurcated into
IL15RA and IL2RA (Fig. 1) [53,60,64]. This model entails that the
ancestral IL4/13 gene present in early jawed vertebrates duplicated
in tandem during vertebrate evolution and gave rise to distinct IL4
and IL13 loci [53,64]. More studies in cartilaginous fish, bony non-
teleost fish, amphibians and reptiles will have to be performed to
identify when this duplication occurred.
4. Conclusions and future perspectives

Despite the lower cost and increasing affordability of genome
sequencing, which together with gene synteny arguments have
opened new avenues for studying molecular evolution, many ques-
tions regarding evolutionary trajectories of the common c chain
family of cytokines still remain elusive. Furthermore, the lack of
characterisation of these cytokines in many species that originated
from the vertebrate clade (apart from teleost fish and mammals)
warrants further research to fill the gaps and enrich the evolution-
ary hypotheses presented in this review. In addition, most studies
have only included a mere handful of organisms in their multiple
sequence analyses and phylogenetic trees to draw conclusions,
albeit the necessity to incorporate as many species as possible to
unveil more reliable relationships between these cytokines and
their receptors. We also postulate that the field would benefit from
efforts that integrate state-of-the-art algorithms able to predict
tertiary and quaternary protein structures when conducting com-
parative cc sequence analyses. This approach could potentially
allow the scientific community to explore evolutionary mecha-
nisms that simultaneously enable i) conservation of key interac-
tions between cytokines and their receptors across vertebrates
and ii) acquisition of changes needed to adapt to host-pathogen
arms races. Finally, we propose the need to address nomenclature
issues associated with newly identified proteins, which are partic-
ularly notable for rapidly evolving proteins with highly divergent
sequences across organisms, such as cc cytokines. In such
instances, we recommend discarding sequence similarity as a
guideline to name novel proteins and consider a combination of
protein topology and functional properties where possible.
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