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Objective: This study determined the clinical utility of an fMRI classification
algorithm predicting medication-class of response in patients with challenging
mood diagnoses.
Methods: Ninety-nine 16–27-year-olds underwent resting state fMRI scans in
three groups—BD, MDD and healthy controls. A predictive algorithm was
trained and cross-validated on the known-diagnosis patients using maximally
spatially independent components (ICs), constructing a similarity matrix among
subjects, partitioning the matrix in kernel space and optimizing support vector
machine classifiers and IC combinations. This classifier was also applied to each
of 12 new individual patients with unclear mood disorder diagnoses.
Results: Classification within the known-diagnosis group was approximately
92.4% accurate. The five maximally contributory ICs were identified. Applied
to the complicated patients, the algorithm diagnosis was consistent with optimal
medication-class of response to sustained recovery in 11 of 12 cases (i.e., almost
92% accuracy).
Conclusion: This classification algorithm performed well for the know-
diagnosis but also predicted medication-class of response in difficult-to-diagnose
patients. Further research can enhance this approach and extend these findings
to be more clinically accessible.
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Significant outcomes

• The machine learning algorithm described here was robust for classifying the adolescent/young adult
patients in the known major depressive disorder, bipolar disorder, and healthy control groups it was
trained on, with 92.4% accuracy.

• The classification algorithm was then utilized to assess its accuracy for treatment response in a new sam-
ple of 12 complex patients with unknown diagnoses and mapped accurately onto predicting the medica-
tion class of response 91.7% of the time.

• The classification algorithm utilized five independent components for classification, which included
components of classic functional networks. These comprised regions of the default mode network, sal-
ience network, dorsal attention network, and frontoparietal central executive network. The caudate
body, thalamus, and parahippocampal gyrus were also involved in the optimal classification.

Limitations

• In five cases of 12 the medication-class of response in the complex patient group was consistent with
medication used at the time of the scan, leading to questions about whether the algorithm was detecting
this medication itself rather than a trait feature of the patient.

• The scanning, algorithm creation, and algorithm application were all highly technical, time-consuming,
and expensive. Further research is needed to extend these findings to develop an accessible neuro-func-
tional biomarker for the diagnosis of mood and other psychiatric disorders that answers the important
question: “What medication-class is most likely to help my patient attain sustained recovery?”
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Introduction

Differentiating bipolar disorder (BD) from major
depressive disorder (MDD) using the current “gold
standard”, the Diagnostic and Statistical Manual
(DSM), is challenging in patients without obvious
mania. Since patients with BD generally spend
more time in depressive than manic states (1), BD
is often misdiagnosed as MDD. BD patients go
6–10 years without a proper diagnosis (2). And
while the adoption of a spectrum approach to
mood disorder diagnosis is appealing (3), the treat-
ment response of patients to the different medica-
tion classes, antidepressants (AD) vs. mood
stabilizers (MS), suggests that there is a fundamen-
tal difference between MDD and BD in many
cases. MSs often do not effectively treat MDD
while ADs may make BD type I worse (4). Inade-
quately treated BD is costly to the medical system
and adds to human suffering (5). Thus, obtaining
the correct mood diagnosis, or more importantly
the correct medication-class to best support recov-
ery of the patient, is imperative.

Numerous efforts have successfully distin-
guished DSM-diagnosed BD from MDD using
fMRI (6–8), including those of our own group
(9–12). However, these studies involved patients
with diagnoses made according to the DSM or
related criteria, with patients not meeting such
criteria excluded from study. The imaging algo-
rithms were then created to classify those
patients according to this DSM “gold standard”.
The lack of complexity in the patients included
in these studies leads to questions about the util-
ity of such algorithms as a facilitative strategy
in real clinical work.

This same concern about complexity in the
“real world” of clinical care also applies to

randomized clinical trials evaluating medication
(and other) treatment responses within specific
patient populations. The careful selection of
research participants with clear-cut DSM diag-
noses leads to challenges in implementing treat-
ment recommendations in the clinical reality of
multiple comorbid diagnoses, fluctuating time-
courses of illness, uncertain reporting of per-
sonal and family histories, and unclear responses
to past medication trials. In clinical work, diag-
noses are often not as well defined as in research
protocols.

Because our understanding of the brain is such
that psychiatric diagnoses are not based on patho-
physiology, diagnosis in complex patients is often
only imperfectly predictive of the medication-class
of response. The situations most demanding of a
biologically based classification algorithm (bio-
marker) are, in fact, those in which the DSM clas-
sification is unclear and the clinical impression is
confusing. Practicing clinicians need to prescribe
for such complicated patients. Additionally, in
emerging adults without a long personal history of
psychiatric illness clinical presentation is often not
classical (13). Yet emerging adults with mood dis-
orders often face a long future of treatment
responsiveness or refractoriness, making it impera-
tive to choose the right medication-class to opti-
mize recovery. The science of psychiatric diagnosis
must move beyond the DSM when the DSM is
insufficient.

We aimed to use two patient groups, those with
“known” BD and MDD as well as healthy controls
(HC) to create a classification algorithm and then
use that algorithm to retrospectively predict medi-
cation-class of response in individuals from a new
patient sample whose diagnoses were complicated
and unclear. Our hypothesis was that the
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classification algorithm created using known
DSM-based MDD vs. BD, type I patients would
illuminate neurophysiological differences that
could then be used to predict AD vs. MS response,
respectively, in complex patients whose diagnoses
were unclear by the DSM. This approach could
reveal biomarkers of medication-class of response
within mood disorders in the clinical realities of
psychiatric care, an important step beyond the
DSM when that classification is insufficient.

Material and methods

Participants

Data collection was approved by the University of
Western Ontario Research Ethics Board. All par-
ticipants were provided with a written description
of the study and had the opportunity to ask ques-
tions. Written, informed consent was obtained.
When signing consent participants indicated up to
five family members they allowed for contact to
collect corroborative information regarding family
mental health. Consent to participate by family
members was taken verbally over the phone and
verified by completion of the interview.

Participants used in algorithm creation were
aged 16–27, in four categories: 32 with BD, type I
(BD); 34 with MDD; and 33 HCs. BD and MDD
patients were recruited from the First Episode
Mood and Anxiety Program (FEMAP), and other
psychiatric services at London Health Sciences
Centre, London, Ontario, Canada, who had pre-
sented with a primary mood disorder. HCs were
recruited from the general community. The
patients had been treated to euthymia according to
standard psychiatric practice based on their clini-
cal presentations and were then recruited as either
MDD or BD participants. Diagnoses were made
using the Structured Clinical Interview for DSM
disorders-IV, (SCID-IV) (14) or the Diagnostic
Interview for Genetic Studies (DIGS) (15) and
were confirmed by the clinical psychiatric diagnos-
tic assessment (patient groups only). Agreement
between clinical diagnosis and SCID/DIGS diag-
nosis of MDD or BD-type I, in full remission, was
required for these patient groups.

No participant was included in the MDD group
if they had a family history of BD by the Family
Interview for Genetic Studies (FIGS) (16), or if the
patient met screening criteria for BD as per the
CIDI-based BPD screening scale. Participants in
the HC group were excluded if they had a family
history of mood disorders.

Inability to meet the inclusion criteria above led
to creation of an “unknown” (UNK) group of 12

participants. Reasons for classification as UNK
were prospective: disagreement between DIGS (no
UNK participant underwent the SCID-IV) and
psychiatrist diagnosis, first degree relative with
mental illness (recruited as HC), or uncertain diag-
nosis on psychiatrist evaluation. Or retrospective:
change in diagnosis over the course of treatment or
response to a medication-class inconsistent with
DSM diagnosis.

Chart review was used to determine the medica-
tion-class used to help each patient in the UNK
group attain sustained euthymia, as evaluated by
the treating clinician, lasting at least 6 months.
Medication-class was simplified to either an AD or
MS (lithium, lamotrigine, carbamazepine, dival-
proex sodium). Three participants were taking an
atypical antipsychotic (AP) and this was noted.

Medications were unchanged for 3 weeks prior
to scanning. All subjects’ moods were euthymic at
the time of the scan as evaluated with the Mont-
gomery-Asberg Depression Rating Scale and
Young Mania Rating Scale. Some individuals in
the UNK group had relapses following the scan
and underwent a medication change to result in
sustained (over 3 months) euthymia, which was
then considered the medication-class of response.

Imaging data and processing

MRI images were collected using a 3.0 T Siemens
Verio MRI scanner at the Lawson Health Research
Institute using a 32-channel phased-array head coil.
A T1-weighted, 3D magnetization-prepared rapid
gradient echo sequence was used for anatomical
images. Acquisition parameters were: repetition
time (TR) = 3000 ms, echo time (TE) = 2.98 ms,
flip angle = 9°, field of view (FOV) = 256 9
256 mm, matrix size = 256 9 256, 176 sagittal
slices, voxel size = 1 9 1 9 1 mm. Functional
scans were gradient-echo, echo-planar scans with
TR = 2000 ms, TE = 30 ms, flip angle = 90°,
FOV = 240 9 240 mm, matrix size = 80 9 80, 40
axial slices and thickness = 3 mm, with no parallel
acceleration. Scans covered whole brain with an
isotropic spatial resolution of 3 mm for a total time
of approximately 8 min (164 brain volumes). No
participant reported falling asleep during the scan
when asked immediately after scanning.

The fMRI images were preprocessed using sta-
tistical parametric mapping software (SPM12,
http://www.fil.ion.ucl.ac.uk/spm/). To allow for
magnetization equilibrium, the first 10 images were
discarded. The remaining 154 images were first
corrected for the acquisition time delay among dif-
ferent slices, and were realigned to the first volume
for head-motion correction. fMRI images were
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spatially normalized to Montreal Neurological
Institute (MNI) space by diffeomorphic anatomi-
cal registration using exponentiated Lie algebra
(DARTEL) and spatially smoothed with a 6-mm
FWHMGaussian kernel.

Statistical analysis

We extended a previous classification method (17,
18), which our main framework was based on, con-
sisting of four parts: estimating maximally spa-
tially independent components (ICs) from fMRI
data (18), constructing a similarity matrix between
subjects which was combined with sigmoid kernel
to build the final kernel function for classification
(18), partitioning the matrix in kernel space, and
conducting nested cross-validation of the sup-
port vector machine (SVM) classifiers and IC
combinations (Fig. 1).

This approach made use of multiple fMRI ICs
to build linear subspaces that were calculated by
adopting a principal angle-based Riemannian dis-
tance for each individual subject, which facili-
tated a comprehensive characterization of fMRI
data for individuals with known group labels
including BD and MDD. Then, in conjunction
with a SVM classifier, a forward component
selection technique selected optimal ICs for

constructing the most group-discriminative com-
binations and determined the final diagnosis
of UNK by majority voting. Note that the
(cross-validated) training of the known BD/
MDD/HC and the prediction of the UNK indi-
viduals were totally separated from each another.
The prediction of the UNK individuals used the
final group IC-based classifier extracted from the
trained BD/MDD/HC stage. As shown in Fig. 1,
four steps were included in the classification
framework. This methodology is more fully
explained in the supporting materials.

Individual-specific spatial component extraction

Figure 1 shows the schematic flowchart of group
information guided ICA (GIG-ICA) to identify
subject-specific component maps. As an extension
of regular group ICA (19, 20), which incorporates
an initial ICA to identify group spatial maps,
GIG-ICA used the group component map as the
reference to back-reconstruct individual subject
components using spatially constrained ICA. The
advantage of GIG-ICA is that the estimated indi-
vidual IC maps are more accurate and robust (21,
22), and it is able to estimate corresponding-
matched components from new data sets, the
unknown subjects in this case, for classification

Fig. 1. Flowchart of method. (a) Training classifiers and predicting diagnosis of subjects with known group labels. The training stage is
composed of four parts as mentioned. Group independent component analysis (ICA) is computed on temporally concatenated fMRI data
of bipolar disorder (BD) patients, major depressive disorder (MDD) patients, and healthy controls (HCs) resulting in individual subject
maps computed by GIG-ICA (17). Note that the UNK subjects were not involved in the computation of the group-level ICA. For each
cross-validation loop, similarity matrices for BD,MDDwere computed and classified via a kernel support vector machine (SVM) from the
hold-out data using 10-fold cross-validation. Namely, inner loop (dotted line frame) generated 9 SVMmodels, and a whole nested 10-fold
cross-validation generated 90 SVMmodels. After repeating 10 times, 900 SVM classifiers were generated for the majority voting in predic-
tion. (b) Predicting diagnosis of subjects with unknown labels. Following group ICA and individual subject map calculation, a similarity
matrix between the UNK and the BD andMDD individuals was computed. Diagnosis of the UNK group was based on a majority voting
mechanism using an ensemble classifier with a hypothesis supposing each UNK individual were either BD orMDD due to total blind diag-
nosis prediction of our binary classificationmethod. [Colour figure can be viewed at wileyonlinelibrary.com]
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purposes. GIG-ICA was performed for HC, BD,
and MDD, respectively, to build group-specific
individual ICs, while the UNK subjects were not
included, to avoid potential bias. We chose 20 ICs
to reduce computational complexity, similar to
typical ICA based fMRI studies (17, 18, 23).

Subspace similarity between individuals

Because we aimed for the optimal IC combination,
and thereby the highest classification accuracy, a
subspace spanned by a combination of discrimina-
tive ICs was used. This subspace representation of
ICs conveyed richer information in a concise man-
ner, compared with treating ICs as voxel-wise spa-
tial maps (18, 24). A Riemannian similarity/
distance measure (25) was computed based on
principal angles between spatial component maps
of different individuals, representing subspace sim-
ilarities between individuals spanning a subset of
ICs (26) (see supporting materials). As shown in
Fig. 1a, the subspace similarity was represented by
a symmetric matrix, which was computed from ICs
of BD and MDD individuals using the method
mentioned.

Forward component selection using SVM classifiers

The classification process involved the training
and testing stage of known BD and MDD
patients in a 10-fold nested 10-fold cross-valida-
tion (Fig. 1a), and the testing stage (Fig. 1b) for
the additional UNK individuals. We adopted a
step-wise forward selection method (27) such
that, in each training step, a component in the
candidate set was added to the optimizing com-
ponent set and used to build a new component
set. We then performed SVM classification with
sigmoid kernel on test sets of known BD and
MDD individuals using LIBSVM (28), and
selected the component with the highest accu-
racy to add into the optimization set. This pro-
cess continued until the candidate set was empty
(Fig. 1). The classification performance was esti-
mated by averaging the classifiers’ performance
for all testing individuals. Comparing the classi-
fication performance of IC combinations with
different IC numbers used in training identified
the optimal group-discriminative IC combina-
tions. Finally, we constructed an ensemble clas-
sifier of 900 voters (see supporting materials)
based on all known BD and MDD patients
whose base classifier was built with the 100
optimal IC combinations (10 9 10) from the
training sets.

Classifying subjects with unknown labels

Imaging analysts were blind to the medication-
class of response in the UNK patients. The aggre-
gated classifiers were used to vote for the labels of
each UNK patient for individual subject classifica-
tion. We predicted group membership for each
new subject by calculating their spatial compo-
nents via GIG-ICA and entering each indepen-
dently into the subspace representation. Note the
UNK information was not use in either the train-
ing or testing stages, ensuring an unbiased predic-
tion (Fig. 1b). Again, the training stage of known
BD & MDD and the predicting stage of UNK
were totally separated from each other. The pre-
dicting stage relied on the group ICs extracted
from BD&MDD&HC and classifier models and
optimal IC combinations trained from BD&MDD
of the training stage. Thus, each patient classifica-
tion represented an individual test of the classifica-
tion algorithm at the single subject level.
Classification vote was for either BD or MDD, as
per the training set in the algorithm, and this was
compared with medication-class of response.

Results

A summary of known BD, MDD and HC partici-
pants’ demographic information is presented in
Table 1. There were no significant sex differences
across groups; though the BD subjects were signifi-
cantly older than the MDD patients at the time of
scanning. Nevertheless, P-values from a MAN-
COVA showed no difference related to either sex
or age among groups. We ran a cross-validation
after regressing out demographic covariates of
each IC, and the results were the same as those
without this regression.

To confirm the limited role of demographics, we
also ran a classification of BD and MDD based on
only gender and age using SVM with the same
parameters as with the imaging data. The accuracy
was 49.32%, with sensitivity of 89.19%, and speci-
ficity of 8.33%. The classification rates in this
model were all approximately 50%.

Classification of known HC, BD, & MDD

As shown in Fig. 2a, classification accuracies
between known BD and MDD were all above 84%
with different numbers of ICs used. The best classi-
fication rate, of 92.4% (sensitivity 87.5%, speci-
ficity 97.1%), was obtained using five ICs. Using
these five ICs classification accuracy between BD
vs. HC was 91.4% and between MDD vs. HC was
94.2%. This was an improvement over our
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previous approach (10) both in accuracy and time
complexity, taking only 39.8 h for one 10-fold
cross-validation vs. 143.1 h on a CentOS Linux
computer cluster with 19 servers and 188 Intel
Xeon CPUs.

Discriminative components in known BD & MDD groups

There were 100 combinations of ICs yielded from
ten times 10-fold cross-validations. The frequency
of all 20 components in best combination is shown
in Fig. 2(b). Five ICs were selected as the most dis-
criminative functional networks for distinguishing
BD from MDD (components 11,6,16,1,2; Fig. 2c).
The five ICs cover several regions involved in clas-
sic brain networks including the dorsal attention
network (DAN), default mode network (DMN),
frontoparietal central executive network (CEN),
and the salience network (SN),They also included
an IC encompassing caudate, insula, and thala-
mus.

Classification of patients in the “unknown” group

Voting ratios for BD vs. MDD for each of the 12
UNK subjects, as well as the final classification
prediction based on these ratios, clinical diagnoses
and medication-classes both during the scan and at
sustained euthymia, and other variables are listed
in Table 2. Each UNK subject was presumed as
either a BD or MDD patient in our SVM diagnosis
prediction with the proposed binary classification
method.

Details of several cases are noteworthy.
1308: treated as MDD by a psychiatrist in our

clinic, but euthymia not sustained using any
AD. Eventually, patient was stabilized on a
single AP in another treatment setting. (The
patient was never tried on a MS.) Algorithm
voted BD.

1322: had over five trials of ADs from multiple
classes, alone and in combination, in
combinations with APs, MSs and light

therapy as adjuncts; trial of electroconvulsive
therapy (patient truncated after 8 sessions).
Recovered only after all ADs were stopped to
prepare for a monoamine oxidase inhibitor
(MAOI); patient remained on a MS
(carbamazepine) and an AP (quetiapine).
Quickly recovered completely so the MAOI
was never tried; returned to work and school.
Patient spontaneously stopped medication
many months later, when euthymic, and was
scanned. Shortly after, returned to clinic with
a relapse and again recovered completely
with carbamazepine and quetiapine, for a
second full remission. Total time in clinic was
over 4.5 years. Algorithm vote BD,
consistent with medication response. No
clinical symptoms of BD ever by time of
discharge.

1325: “healthy control” with first-degree relative
diagnosed with MDD after a suicide attempt.
Follow-up over 3 years after scan revealed a
depressive episode.

1349: eventually diagnosed with schizoaffective
disorder based on persistent paranoid
ideation mentioned by mother after months
of treatment at clinic. The one clear miss by
the classification algorithm.

1368: like 1322, revealed no clinical evidence of
BD. The patient demonstrated severe
depression and agitated, angry outbursts.
Several ADs trialed but failed. Lithium was
tried as a last effort before deciding that the
patient had challenges beyond a mood
disorder, including possible Asperger’s
syndrome. Lithium led to full recovery and
independence with gainful employment.
Algorithm vote was again consistent with
medication response.

Considering medication response as the “gold
standard”, the algorithm was accurate for individ-
ual classification of 11 of 12 patients. It correctly
categorized five patients as having brain function

Table 1. Demographic and clinical data of participant scans

Group BD MDD HC P value (BD/MDD/HC) P value (BD/MDD) P value MANCOVA

Number 32 34 33 – – –
Age (mean � SD)
Range (years)

21.3 � 2.9
16–27

19.7 � 2.6
16–25

20.2 � 2.0
17–24

0.05* 0.03† 0.85¶

Sex (M/F) 16/16 10/24 13/20 0.23‡ 0.09§ 0.96¶

*The P value was obtained by analysis of variance (ANOVA) of BD&MDD&HC.
†The P value was obtained by two-sample two-tailed t-test of BD&MDD.
‡The P value was obtained by cross-tabulation of BD&MDD&HC.
§The P value was obtained by cross-tabulation of BD&MDD.
¶The P values of age and sex were obtained by a multivariate analysis of covariance (MANCOVA) (Allen et al. (33)).
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Fig. 2. Classification Results. (a) The top line with error bars (1 standard deviation) shows classification rates achieved as a function
of the total IC number used and illustrates that the optimal classification rate was achieved using five ICs. Yet using any number
from 1 to 20 ICs for classification resulted in accuracy above 84%. (b) Frequency of the ICs as they occurred in 100 optimal combi-
nations. We ran 10 times of 10-fold nested cross-validation. Each fold resulted in one optimal IC combination (selection and order
of 20 ICs), yielding 100 combinations. This graph illustrates the ICs that were most contributory to the classification algorithm. (c)
Spatial maps were overlaid with different colors, identical to those in (b). The sorting order of the five top selected ICs from high to
low is 11, 6, 1, 16, and 2. [Colour figure can be viewed at wileyonlinelibrary.com]

478

Osuch et al.



“more like BD” patients who were MS (plus one
AP) responders; it correctly categorized as having
brain function “more like MDD” two patients
who were AD responders; and it conservatively
categorized four individuals who had sustained
euthymia on no medication as having brain func-
tion more like MDD. It miss-categorized the one
patient with schizoaffective disorder as more like
MDD who actually required both an MS and an
AP for response and had not responded to an AD.

Discussion

This classification algorithm demonstrated 92.4%
accuracy between the known participant BD and
MDD groups used to train it. In the group of 12
complex patients, representative of individuals for
whom a medication response prediction algorithm
is most needed, it correctly provided individual
classification of the vast majority (91.7%), judging
those with a sustained medication-class of response
to MS and/or AP medications as more like BD
and those without such a response as more like
MDD. While the use of brain scans and sophisti-
cated classification algorithms is not practical in
routine clinical care due to cost and time at pre-
sent, advances in technology could change this.
These findings also extend our understanding of
the biological basis of medication-class of respon-
siveness in mood disorders. Such knowledge can
improve both diagnostic strategies administered in
the clinic and treatment for patients with complex
presentations of mood disorders who may other-
wise go unsuccessfully treated for years.

Two of the most clinically interesting cases pre-
sented here are 1322 and 1368. There was no clear
symptomatology of BD in either individual before,
during or after treatment. Both patients had non-
response to ADs. Both would likely have been con-
sidered “treatment refractory” over time. In the
case of 1322, it was only the removal of all ADs,
with the retention of the MS and AP, which led to
full remission. He was scanned medication free.
For 1368 his depression was fully resolved with
one medication, a MS (and he was scanned on that
medication). It is unclear how many individuals
categorized as treatment refractory in routine clini-
cal care might exhibit the same brain pathophysiol-
ogy and therefore the same algorithm classification
and medication-class of responsiveness as these
patients.

There were six cases in which the psychiatrist
was unclear of the specific mood diagnosis at the
time of entry (1364, 1368, 1378, 1392, 1395, 1407).
In four of those, the algorithm matched the medi-
cation-class of sustained response, attesting to the
accuracy of the algorithm for predicting medica-
tion responsiveness. In two of them the algorithm
indicated the brain function more like MDD,
which was matched to sustained recovery with no
medication. Since the algorithm was binary for
MDD or BD, this was the correct choice. MDD is
more heterogeneous and more easily treated to
remission without medication.

Taking a closer look at the individuals who were
on no medication for a mood disorder at the time
of sustained response (1325, 1372, 1378, 1395),

Table 2. DIGS Mood and Other Diagnoses, Clinical Mood and other Diagnoses & Medication-Class and Vote of Classifier Algorithm. Shaded cases were scanned on the same
medication-class as that to achieve euthymia; thus, unshaded cases held higher test validity of the classification algorithm

ID Age Sex DIGS Mood Dx
Chart Mood Dx

on Entry Other Chart Dx’s on Entry Rx at Scan Rx of Response*
Days between scan
and final chart review BD (%) MDD (%)

Voting
Results

1308 22 M BD-I MDD MJ dependence; PTSD AD AP 212 63.2 36.8 BD
1310 20 M BD-I MDD MJ dependence; PTSD AD AD 1631 16.4 83.6 MDD
1322 24 M MDD MDD Panic d/o None MS,AP 153 64.9 35.1 BD
1325 18 F None n.a. n.a. None n.a. n.a. 5.6 94.4 MDD
1349† 21 M BD-I BD-I Alcohol dependence MS MS,AP 1348 32.9 67.1 MDD
1364 19 F MDD MDD vs. BD None MS MS 1025 63.6 36.4 BD
1368 19 M MDD MDD vs. BD None MS MS 288 61.2 38.8 BD
1372 19 M BD-II None‡ Alcohol dependence;

MJ dependence
None None 184 23.2 76.8 MDD

1378 26 M MDD MDD vs. BD None AD None 275 45 55 MDD
1392 19 F BD-II MDD vs. BD MJ dependence; PTSD MS,AD MS 667 56.4 43.6 BD
1395 19 F MDD MDD vs. BD MJ dependence; PTSD None None 532 28 72 MDD
1407 19 M BD-II MDD vs. BD MJ dependence; PTSD AD AD 377 17.4 82.6 MDD

Rx, medication; DIGS, Diagnostic Interview for Genetic Studies; Dx, diagnosis; d/o, disorder; PTSD, Posttraumatic Stress Disorder; MJ, Marijuana; AD, antidepressant; MS, mood
stabilizer; AP, antipsychotic; n.a., not applicable.
*The class of medication that was effective at the time the patient was stable, at the last time of evaluation as determined clinically and by chart review, to include only ADs,
MSs, or APs.
†This patient was ultimately diagnosed with schizoaffective disorder due to persistent paranoid ideation.
‡This patient was ultimately diagnosed with ADHD and GAD, but no mood disorder.
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participant 1325 was the “healthy control” with a
first degree relative with MDD. This case had the
lowest rating for BD-like brain function by the
algorithm and, interestingly, at post-study follow-
up had had a depressive episode. Participant 1372
presented with complex symptoms and was diag-
nosed with generalized anxiety disorder and atten-
tion deficit hyperactivity disorder, but no primary
mood disorder by the treating psychiatrist. Partici-
pants 1378 and 1395 were very similar to each
other in having an unclear presentation per the
psychiatrist, a DIGS diagnosis of MDD and an
algorithm vote for brain function more like MDD.
Neither required medication for sustained
response; both had had a MS trial that was discon-
tinued because in neither case was it particularly
helpful. These four individual cases demonstrate
the specificity of the algorithm for BD-like brain
function and the medication responsiveness com-
patible with that, exhibiting the algorithm’s ability
to correctly identify “not like BD” and “no MS
required”.

There were five ICs most salient for classification.
The first, IC11 in the algorithm, contained nodes of
the DAN including the inferior parietal lobule bilat-
erally. The second most discriminatory component
(IC6) involved largely posterior brain regions of the
DMN. The SN node (anterior cingulate cortex)
appeared in IC16, the third most distinguishing
component, which also included frontal portions of
the CEN. Several areas in IC16 have consistently
been associated with BD in structural brain studies
(28). The forth contributing IC (IC1) included cau-
date body, thalamus and parahippocampal gyrus.
The thalamus is the major relay/association struc-
ture for all somatic signals and includes areas con-
trolling arousal and alertness. The caudate is a
dopaminergic region involved in goal-directed
action, emotion, motivation and memory and learn-
ing. Finally, the remainder of the SN, including the
insula, appeared in IC2 (see Fig. 2c and supporting
material).

This combination of ICs, providing a data-driven
grouping of regions, represents an interesting
amalgamation of ‘classic’ large-scale brain network
nodes (30). Three of four ICs identified here had
nodes of these networks that were split between
different ICs. Only the DAN was preserved in one
IC, though the frontal eye field regions were too
small to reach threshold in this analysis (Fig. 2c,
Table S1). Abnormalities in how these nodes
sorted across ICs may pertain to the basic patho-
physiology of mood disorders and may be particu-
larly helpful for medication response prediction.
Further research is needed to evaluate this. There
were also major contributions from autonomic

processing regions—bilateral thalamus and insula.
These regions were identified in a recent meta-ana-
lyses showing lack of specificity of some brain net-
works to the common mental illnesses (31).
Additionally, our third most relevant IC showed
strong connectivity within frontal regions, consis-
tent with results by other researchers as regions of
increase connectivity in BD patients anticipating a
reward (32).

The advantage of our approach is the reduction
of hypothesis-bias so that the data can “draw its
own conclusions” from the scans. The high accu-
racy of this algorithm for the known mood diag-
noses and for the individual classification for
medication responsiveness of the complex patients
was achieved by not being restricted to established
functional networks or theoretical biases.

There are limitations of this study. Although all
patients were scanned in euthymia, most MDD/
BD patients and some of the UNK patients were
on either a MS or AD at the time of scanning. This
raises the possibility that the algorithm was trained
to detect the medication-class that the patient was
taking, rather than brain physiology related to
either MDD or BD. Interestingly, however, three
participants in the UNK group had a change in
medication status from scan to sustained response
(1308, 1322, 1378), and an additional four were on
no medication when scanned. The one case incor-
rectly classified by the algorithm was on a MS, but
the algorithm vote was for non-BD-like brain
function. Sustained euthymia was defined clini-
cally; future studies should define this more sys-
tematically. Additionally, patients were scanned in
euthymia, but the highest need for response predic-
tion is in the depressive state, when decisions about
medication-class are needed. Future studies should
be done in medication-free depressed patients to
further test this approach.

In the group of complex patients presenting with
unclear diagnoses, the algorithm described here
provided correct individual classifications of medi-
cation response for 11 of 12 patients, with the
remaining patient having a diagnosis that the algo-
rithm was not trained to classify. The true test of a
classification algorithm is in characterizing difficult
patients at the individual level, where such a tech-
nique is most needed because the DSM is insuffi-
cient, and the question that any such algorithm
most urgently needs to answer is, “What medica-
tion-class is most likely to help my patient attain
sustained recovery?” The algorithm presented here
makes headway towards these goals. Further
research can extend these findings to develop an
accessible neuro-functional biomarker for the diag-
nosis of mood and other psychiatric disorders.
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Additional Supporting Information may be found in the online
version of this article:
Table S1 Talariach table of the spatial maps of the selected 5
ICs.
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