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Abstract

Natural populations experience environmental conditions that vary across space and over time. This variation is often
correlated between localities depending on the geographical separation between them, and different species can respond
to local environmental fluctuations similarly or differently, depending on their adaptation. How this emerging structure in
environmental correlation (between-patches and between-species) affects spatial community dynamics is an open
question. This paper aims at a general understanding of the interactions between the environmental correlation structure
and population dynamics in spatial networks of local communities (metacommunities), by studying simple two-patch, two-
species systems. Three different pairs of interspecific interactions are considered: competition, consumer–resource
interaction, and host–parasitoid interaction. While the results paint a relatively complex picture of the effect of
environmental correlation, the interaction between environmental forcing, dispersal, and local interactions can be
understood via two mechanisms. While increasing between-patch environmental correlation couples immigration and local
densities (destabilising effect), the coupling between local populations under increased between-species environmental
correlation can either amplify or dampen population fluctuations, depending on the patterns in density dependence. This
work provides a unifying framework for modelling stochastic metacommunities, and forms a foundation for a better
understanding of population responses to environmental fluctuations in natural systems.
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Introduction

Natural populations experience fluctuating environmental

conditions (such as temperature and precipitation). This variation

occurs over time in local habitats, but there is also variation in

conditions across space. Temporal variation is often positively

autocorrelated, i.e., consecutive observations tend to be more

similar to each other than those separated by longer time lags [1].

Similarly, more closely located areas tend to be more similar in

their local environmental conditions, implying positive spatial

autocorrelation. That is, environmental variation tends to be

autocorrelated both over time and across space, which is expected

to have both ecological and evolutionary consequences on

biological systems [2]. Understanding how spatio-temporal pat-

terns in environmental fluctuations, and those in species-specific

responses to these fluctuations affect variability in population

densities is an important challenge, when planning sustainable

conservation and exploitation of natural populations. This is

reflected in the recent interest in studying stochastic metacommu-

nities both theoretically and empirically [3–7].

When considering the dynamics of populations and communi-

ties in a spatial context, the influence of local environmental

fluctuations can be extended to other localities via individual

dispersal between habitats. A common pattern is that increased

migration between habitats stabilises local population dynamics

that are not fully synchronised [3,8,9]. However, when the

correlation between local environmental conditions increases (i.e.,

localities become more similar in their environments), the

associated increase in population synchrony increases the extinc-

tion risk of the entire metapopulation [3,6,10,11]. Increasing local

temporal autocorrelation in the environment can either increase

or decrease population variability, depending on the strength of

population density dependence, between-species interaction

strength, and local community structure [12–16].

In general, species can differ in their responses to environmental

fluctuations, e.g., depending on the similarity of their environ-

mental tolerances [17–19]. When two species that are differently

adapted to a common environmental variable come to interact,

the arising between-species environmental correlation (rS) – rS = 1

means that responses are identical,rS = 0 means responses are

independent, and rS = –1 indicates completely opposite responses

– can affect population variability in closed communities

[2,14,15,20]. In simple competitive communities increasing rS

dampens undercompensating population fluctuations, whereas

overcompensating populations tend increase in variability

[14,15,21]. In multi-trophic food webs increased rS can be

associated with lower population variability [22], as well as

increased food web persistence [23].

In the metacommunity context, where local communities are

coupled together via dispersal of one or several species [24], the

relative influence of between-patch (rE) and between-species

environmental correlation (rS) on population variability remains

unknown. This paper aims at filling this gap in ecological theory.
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Here I investigate simple two-patch, two-species stochastic systems

and ask how patterns in local population variability (CV of

population density) are affected by independently varying rE and

rS. To gain a general understanding of how the environmental

correlation structure might affect spatial community dynamics, I

consider three different metacommunity types with different

between-species interaction patterns: (1) competitive, (2) consum-

er–resource, and (3) host–parasitoid metacommunities. When

local dynamics are stable (in the absence of environmental

variation), community dynamics can be analytically approximated

around the equilibrium point for each spatial system (analytical

results are verified by stochastic simulations).

The results show that rE and rS interact in affecting population

variability in simple spatially extended communities (i.e., meta-

communnities). Patterns of population variability are mainly

governed by two mechanisms: (1) the coupling between immigra-

tion and local densities, and (2) the coupling between local

populations under forced synchronisation. The first mechanism

explains why reduced rE is always associated with reduced

population variability. The second mechanism explains why

different communities can have opposite responses to increased

rS. In competitive communities the effect of rS depends on the

strength (or shape) of density-dependence, whereas in exploitative

communities this depends on the importance of top-down versus

bottom-up effects (here also related to patterns in density-

dependence) affecting community dynamics. The effects of the

interaction between different sources of environmental correlation

(rE and rS) have not been fully appreciated before. Thus, the

present paper deepens our understanding of spatio-temporal

variation in species communities under stochastic environmental

conditions, as well as provides a framework for future studies, e.g.,

on more complicated metacommunities, with different spatial

structures and food web topologies.

Methods

Spatial community dynamics
A general model for two-patch, two-species population dynam-

ics in discrete time is given as [3,25]:

X
0
ik,tz1~Xik,tf Xik,t,X2k,tð Þ , ð1aÞ

Xik,tz1~ 1{mikð ÞX 0ik,tz1 exp eik,tð Þ

exp ei(3{k),t

� �
:

ð1bÞ

In this model eqn. (1a) describes local population dynamics and

eqn. (1b) is the dispersal process. Xik,t denotes the density of

population i (i M1,2) in patch k (k M1,2) at time t. Function f stands

for per capita growth rate, which depends on the density of species

1 and 2 in that patch. Before dispersal, populations are forced by

species- and patch-specific environmental stochasticity eik,t, which

can be correlated both between species and between patches.

Dispersal redistributes individuals between the patches such that a

fraction 1 – mik remains in the natal patch (m = 0 no one moves,

m = 1 everyone moves), whereas a proportion mi(3 – k) of individuals

born in patch k move to patch 3– k [3,25,26]. While the order of

events is unlikely to affect results [27], local dynamics are here

assumed to precede dispersal, following earlier work [27,28].

When patches are identical, equilibrium population sizes

become independent of dispersal propensity mik (dispersal does

not need to be symmetric between patches, as the dispersal process

is density-independent, and patches are identical). This simplifying

assumption facilitates analytical treatment of eqn. (1).

The main interest here is to analyse how different environmen-

tal correlation structures affect population variability. For dem-

onstration, three different alternatives for local dynamics (eqn. 1a)

are considered. First, a multi-species theta-Ricker model of

between-species competition:

N
0
ik,tz1~Nik,texp ri 1{

Nik,tzaNjk,t

Ki

� �h
 !" #

, ð2Þ

where Nik,t is the population density of species i in patch k at time t

and ri is it’s intrinsic rate of increase and Ki is it’s carrying capacity.

Parameter a defines the strength of interspecific competition, and

h specifies the shape of density dependence [29]. For simplicity,

parameters are set equal for both species (and patches): r = 1.5,

K = 1, and a = 0.5. For parameter h two cases are considered:

undercompensating population dynamics with h = 0.25 (fig. 1a),

and overcompensating dynamics with h = 1.25 (fig. 1b) (h.1 is

required for overcompensation, as well as a , hr –1). Equilibrium

densities in this system are Ni* = K/(1+a). This equilibrium is

stable, given the value of a, if |1– hr|,1.

A second example considers a consumer-resource model with a

saturating functional response [30]:

R
0
i,tz1~Ri,t exp r 1{

Ri,t

K

� �
{

aCi,t

Ri,tzR0

� �
, ð3aÞ

C
0
i,tz1~Ci,texp

aCi,t

Ri,tzR0
{d

� �
, ð3bÞ

where R and C indicate resource and consumer populations,

respectively. Parameters r and K are as in eqn. (2), a is the

maximum intake rate of the consumer, R0 is the half-saturation

constant, e is the consumers conversion efficiency, and d is

consumer mortality. Again, parameters are chosen such that long-

term population dynamics are stable in the absence of environ-

mental variation: r = 1, K = 1, a = 2, R0 = 1.25, e = 0.5, d = 0.25,

with equilibrium densities: Ri* = R0d/(ae – d) and Ci* = rR0[Kae2

– de(R0 + K)]/K(d – ae)2 (see fig. 1c for an example time series for

consumer–resource dynamics). For the consumer to persist, it is

required that d , Kae/(B0 + K). A general requirement for the

stability of this equilibrium is that d/e . a(B0 – K)/(B0 + K) [31].

The third example considers host-parasitoid dynamics (using

the so-called ‘‘negative-binomial’’ model [32]):

H
0
i,tz1~rHi,t 1z

bPi,t
q

� 	{q

, ð4aÞ

P
0
i,tz1~Hi,t{H

0
i,tz1=r : ð4bÞ

Here H and P stand for the host and the parasitoid, respectively.

When there are no parasitoids, hosts grow exponentially with rate

r. Parasitoids attack hosts with rate b, and the parasitoid attacks are

distributed according to a negative binomial distribution among

hosts, with shape parameter q. Parasitoid density depends on the

proportion of parasitised hosts. Stable coexistence of H and P

requires that r.1 and q,1 [3]. Model parameters are set to r = 2,

b = 0.5, and q = 0.5, which results in a stable equilibrium with

Theory of Stochastic Metacommunities
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population densities of Hi* = qr(r1/q –1)/b(r –1) and Pi* = q(r1/q –

1)/b [32] (an example time series for host–parasitoid dynamics is

given in fig. 1d). This system is globally stable only if the

equilibrium is stable (i.e., there is no stable limit cycle).

Linear analysis
For simplicity, environmental variation eik is assumed to be

serially uncorrelated ‘white’ noise, with a covariance matrix C (see

Appendix S1), describing the correlation in between-patch

environmental fluctuations (between-patch environmental corre-

lation, rE) and how similarly the two species react to these

fluctuations (between-species environmental correlation, rS).

When linearised around the equilibrium point, local population

dynamics in each system can be described by the Jacobian matrix J
(Appendix S1), while dynamics in the global metacommunity are

governed by matrix B = MJ, where M is a dispersal matrix that

describes the way individuals move between the local communities

(Appendix S1). Given that equilibrium dynamics are stable in the

absence of stochasticity (as required above), a linear approxima-

tion of the population variance-covariance matrix V can be

obtained as follows, assuming white noise [12]:

Vec Vð Þ~ I{B6Bð Þ{1
Vec Cð Þ , ð5Þ

where Vec(V) is the vectorised variance-covariance matrix. The fl

symbol indicates the Kronecker tensor product (producing all

possible combinations between the elements in two matrices), I is

an identity matrix (ones on the main diagonal and zeros

elsewhere), and Vec(C) is the vectorised environmental covariance

matrix. The diagonal elements of V contain population variances

Vii, while the off-diagonal elements are between-population

covariances Vij.

While eqn. (5) is a useful tool for obtaining population variances

(and covariances), it is not particularly useful for doing detailed

analysis of the relationship between biological parameters and

environmental characteristics [15]. This can be in principle

achieved via transforming the system described by B to the

coordinates along the eigenvectors of B and back-transforming the

resulting variances to gain variances in population densities

[14,15,17]. For the first scenario, with interspecific competition

(eqn. 2), population variance is readily obtained using this method

(Appendix S1):

Vii~
s2

H2

rEz1ð Þ rS{1ð Þ
l2

1{1
{

rEz1ð Þ rSz1ð Þ
l2

2{1

"

{
rE{1ð Þ rS{1ð Þ

l2
3{1

{
rE{1ð Þ rSz1ð Þ

l2
4{1

#
,

ð6Þ

where s2 is the environmental variance, li are the eigenvalues of B
(Appendix S1), and H is the order of B (here H = 4). Population

variability is then found as CV = (a + 1)(Vii)
1/2/K. From eqn. (6) it

can be seen that the relative magnitude of li affects the way rE and

rS impact on population variance. However, the patterns in which

the eigenvalues interact with environmental correlations are far

more complex than those in isolated systems [14,15]. Eqn. (6) can

be expanded to reveal the influence of model parameters on the

relative importance of the interaction between different sources of

environmental correlation (rErS; Appendix S1, Figure S1, Text

S1). This variance component becomes more important with

increasing h and r, less important with increasing a, and less (more)

important with increasing m (when mik = m) when intrinsic

dynamics are undercompensatory (overcompensatory).

Eqn, (6) gives the variance of local population fluctuations. The

variance of global population variance, i.e., the variance of

summed population densities (across patches) can be found by

summing across the population variance-covariance matrix V for

each species:

Figure 1. Examples of stochastic time series for two-species (species 1 solid, species 2 dashed), two-patch metacommunities (black
lines for patch 1 and gray lines for patch 2). Local communities consist of either competitive communities with (a) undercompensating or (b)
overcompensating populations, a (c) consumer–resource system (resource solid, consumer dashed), or a (d) host–parasitoid system (host solid,
parasitoid dashed). Parameters: (a) r = 1.5, h = 0.25, a= 0.5; (b) r = 1.5, h = 1.25, a= 0.5; (c) r = 1, K = 1, a = 2, R0 = 1.25, e = 0.5, d = 0.25; (d) r = 2, q = 0.5,
b = 0.5. In all cases mik = m = 0.25, and environmental variation is white noise (zero mean and variance s2 = 0.01) affecting population per capita
growth rates, independently between patches and species (i.e., rE = rS = 0).
doi:10.1371/journal.pone.0072325.g001
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VSXi
~2Viiz2Vij~

s2

H2

rEz1ð Þ rS{1ð Þ
l2

1{1
{

rEz1ð Þ rSz1ð Þ
l2

2{1

" #
, ð7Þ

where Vii is local population variance (eqn. 6) and Vij is between-

population covariance. Unlike Vii, VSX is independent of the

magnitude of dispersal, as the eigenvalues l1 and l2 are

independent of mik. The remaining analysis concentrates on Vii ,

which are used to calculate the population coefficient of variation,

CVik = (Vik)
K/Xik* (where Xik* is the equilibrium density of

population i in patch k ), a commonly used statistic for measuring

population variability [33–35].

For systems in eqns. (3, 4) with consumer–resource and host–

parasitoid dynamics, respectively, simple analytical expressions for

population variances cannot be obtained. This is because the

eigenvectors of the metacommunity Jacobian (B) depend on model

parameters, which leads to the covariance matrix for dynamics

along the eigenvectors having non-zero off-diagonal elements. The

interpretation of such values is not straightforward, as the variance

along eigenvectors should be independent by definition [14].

Therefore the remaining analysis utilises eqn. (5) to generate

numerical results for symmetric dispersal. Between-population

synchrony (zero-lag cross-correlation) can be obtained from eqn.

(5) as COR(Xi,Xj)~Vij=
ffiffiffiffiffiffiffiffiffiffiffiffi
ViiVjj

p
:

Stochastic simulations
Depending on the amplitude of environmental stochasticity,

analytical predictions do not necessarily match simulation results

[36]. The reliability of analytical results was evaluated by

simulating spatial community dynamics for tMAX = 25000 time

steps (population densities initiated at random densities between

(0, 1]) for each parameter combination (the first 5000 time steps

were discarded before further analysis). The data was then used

to calculate mean population variability for each species as the

coefficient of variation [CVi = Si(s(Xik)/m(Xik))/2]. Each

parameter combination was replicated 100 times. The procedure

for stochastic simulation of the model communities, particularly

the generation of environmental variables eik, is described in

detail in Text S1.

Results

A general pattern common to all scenarios examined here is

that decreasing between-patch environmental correlation (rE)

decreases (local) population variability. This happens because

increasingly asynchronous population fluctuations between patch-

es become dampened by the act of dispersal; individuals dispersing

from a large population to a small population bring both

populations closer to their long-term means [9]. While varying

rE leads to an intuitive and expected result in all cases, the way rE

and the between-species environmental correlation (rS) interact in

driving population variability is more complicated. The interac-

tion between rE and rS depends on the nature of local between-

species interactions, as well as on the ecological role of the focal

population (fig. 2). This namely boils down to whether forced

synchronisation is amplified or dampened by species interactions.

Symmetric dispersal
In competitive metacommunities increasing rS reduces the

variability of populations with undercompensating dynamics

(fig. 2a), and increases variability in association with overcompen-

sating dynamics (fig. 2b). In addition, the effect of increasing rE

decreases with increasing (decreasing) rS for undercompensating

(overcompensating) populations. These patterns arise because

asynchronous local dynamics are amplified by undercompensating

population responses to perturbations, whereas overcompensation

amplifies synchronous dynamics [12,36].

As with the competitive communities, the species interaction

can either amplify or dampen population fluctuations in exploit-

ative communities (C–R or H–P). In the consumer–resource system

(top-down controlled) population variability increases with in-

creasing rS (fig. 2c, d). Here unstable dynamics are driven by

overconsumption [30], while in the absence of consumption

resources approach their carrying capacities. Negatively correlated

local environmental responses between species (rS,0) lead to

situations where resources are favoured and consumers are pressed

by environmental conditions, which reduces the predation

pressure and dampens population fluctuations. Conversely,

increasingly positive rS between the resource and the consumer

promotes overconsumption, as the consumer is favoured when the

resource is abundant. As in the C–R system, the dynamical stability

of the host–parasitoid system is controlled by the coupling strength

between the two species (bottom-up controlled); in a persistent

system the parasitoid is able to control the exponential growth of

the host. This means that increasingly positive rS will dampen

population fluctuations by promoting this coupling, whereas

increasingly negative rS will increase the size of population

fluctuations by decoupling host and parasitoid densities (fig. 2e, f).

Patterns in population variability are in qualitative agreement

with those in between-patch (within-species) population synchro-

ny (Text S1), which means that patterns in global population

variability reflect those in local population variability. Increasing

rE is always synchronising. Instead, increasing rS desynchronises

(synchronises) populations in undercompensating (overcompen-

sating) competitive systems (Figure S2a, b). In consumer–resource

systems increasing rS synchronises both resource and consumer

dynamics between patches (Figure S2c, d), whereas host and

parasitoid populations tend to become desynchronised (Figur-

e S2e, f).

Asymmetric dispersal
Local population variabilities under asymmetric dispersal

(figs. 3,4) are qualitatively similar to those observed under

symmetric dispersal (fig. 2). While the relative effect of rS depends

on the between-species interaction, the relative effect of rE on each

population depends on its dispersal capacity; limited dispersal

weakens the direct influence of rE on the population variability of

this species. Both of these factors affect the shape of the interaction

between rE and rS. The interaction between mik and rE is clearly

seen in the competitive communities (fig. 3). While population

variability at the species with a relatively high dispersal capacity

(fig. 3b, d) remains practically the same as under symmetric

dispersal (fig. 2a, b) (as the direct effect of rE remains the same),

the effect of rE is weakened relative to rS at the species with

limited dispersal (fig. 3a, c). The same applies also in the

consumer–resource and host–parasitoid systems, when the con-

sumer (fig. 4f) or the host (fig. 4c) is limited in its dispersal capacity.

The relationship between dispersal potential and rE does not

hold in two special cases: under negative rE, when either (1) the

resource (in a C–R system), or (2) the parasitoid (in a H–P

system), is limited in its dispersal. (1) Under these conditions

(rE,0), resource fluctuations are dampened by increasing rS

(fig. 4a), despite of increased population synchrony. Under

negative rS the rErS term specifying the correlation between

consumers and resource between patches is positive. Given that

consumers are relatively well mixed between patches, high

consumer dispersal from one patch coincides with high resource

Theory of Stochastic Metacommunities
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growth in the other patch (immigration and density are coupled

between species), which amplifies resource fluctuations. The same

mechanism applies in the H–P system (fig. 4h); reduced rS can

dampen parasitoid fluctuations when the host is relatively well

mixed as high host immigration is associated with high parasitoid

growth rates.

Figure 2. Population variability in simple two-species two-patch metacommunities depends on an interaction between the
environmental correlation between patches (rE, describing the similarity in environmental conditions across space) and the local
environmental correlation between species (rS, describing how similarly species respond to variation in local environmental
conditions). This interaction further depends on the nature of the between-species interaction, as well as the ecological role of the focal population.
In competitive communities (eqn. 2) species intrinsic dynamics are either (a) undercompensatory (h = 0.25) or (b) overcompensatory (h = 1.25). In
exploitative communities (eqns. 3, 4) the interaction involves either (c, d) consumer–resource dynamics, or (e, f) host–parasitoid dynamics. The
contours represent the logarithm of (local) population CV. Results are based on an intermediate level of symmetric dispersal for both species, mik =
m = 0.25 (note that the effect of varying m is symmetrical around 0.5). Environmental variation is serially uncorrelated white noise, with zero mean
and variance s2 = 0.01.
doi:10.1371/journal.pone.0072325.g002

Theory of Stochastic Metacommunities
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Discussion

While the results presented here might appear complex at first

glance, they can in the end be understood by common underlying

mechanisms. In these symmetric systems (patches are identical),

common environmental forcing between patches synchronises

population dynamics even in the absence of dispersal – the so-

called ‘Moran effect’ [37]. When patches are connected by

dispersal, decreasing the correlation between local environmental

conditions (rE) dampens local population fluctuations due to a

decoupling of immigration and population densities [9]. This

stabilising effect of reduced rE is in agreement with previous

studies on metapopulation dynamics [3], as well as spatially

extended food webs [5], and experimental work on competitive

metacommunities [6,38]. The relative influence of rE on

population variability depends on a species dispersal potential,

which explains why species can differ in their responses to

variation in rE under asymmetric dispersal.

Locally, between-species similarity in their responses to envi-

ronmental fluctuations (rS) affects the synchrony among local

populations. Increasing local synchrony can either amplify or

dampen population fluctuations, depending on the interaction

between species. In competitive communities synchronous dy-

namics are amplified by increased density dependence (overcom-

pensatory dynamics) [12,14,15,36]. A similar logic can be used to

understand why the consumer – resources and host–parasitoid

communities differ qualitatively in their responses to increasing rS.

Instability in the C–R system is driven by overconsumption by the

consumer (top-down control) [30], when resource growth is

density-dependent. Here increasing rS promotes the consumer’s

coupling to the resource, which amplifies population fluctuations.

This differs from the result by Vasseur and Fox [22], who reported

that increasing rS between two intermediate consumers in a

diamond-shaped food web reduces population variability, due

cascading effects on the resource and the top predator.

Contrary to the C–R community, the run-away behaviour of the

H–P model is driven by the host’s lack of density-dependence

Figure 3. The effect of between-patch (rE) and between-species (rS) environmental correlation on population variability (log CV) in
competitive metacommunities with asymmetric dispersal between species. The dispersal propensity is low (m1k = 0.05) for one species (a, c)
and relatively high (m2k = 0.25) for the other (b, d). Populations have either undercompensatory (h = 0.25; a, b) or overcompensatory (h = 1.25; c, d)
intrinsic dynamics. Contour lines represent (log) population CV under asymmetric dispersal, whereas the shading represents log CV under symmetric
dispersal (with the same steps as the thick contour lines). Environmental variation is serially uncorrelated white noise, with zero mean and variance
s2 = 0.01.
doi:10.1371/journal.pone.0072325.g003
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(bottom-up effect). Increasing rS then promotes the parasitoids

ability to track host growth, which reduces population variability.

The importance of top-down control versus bottom-up effects in

affecting the response of exploitative communities to forced

synchronisation can be further highlighted by considering a

host–parasitoid model with density-dependent host growth

[25,39]. In such a case, the C–R and H–P models produce

qualitatively matching results considering the influence of increas-

ing between-species environmental correlation (Figure S3).

Interpreting environmental covariance
The between-patch environmental correlation (rE) could be

interpreted as the degree of spatial autocorrelation, as this measure

is likely to vary, e.g., due to increasing spatial distance between

patches [4,40]. Spatial autocorrelation in environmental condi-

tions has been shown to play an important role, e.g., in population

extinction risk [41–43]. In addition to spatial autocorrelation,

temporal autocorrelation in local environmental conditions can

also have important consequences for population extinction risk

[2]. While this aspect was not considered here for simplicity, it is

likely that temporal autocorrelation further affects the interaction

between spatial correlation (rE) and between-species environmen-

tal correlation (rS), as it is known to interact with rS in driving

population variability in isolated communities [12,14,15], and to

interact with rE in competitive metacommunities in affecting

population persistence [38]. Considering this alternative is beyond

the scope of this paper, but the analytical methods used here are

easily extended to account for temporally (serially) autocorrelated

noise (Appendix S1) [12,14,15].

The magnitude of the between-species environmental correla-

tion is likely to depend on external factors, namely the presence of

other species in the community. Without any adjustment to species

behaviour, varying community composition can affect patterns in

rS(i,j) (the environmental correlation between a pair of species i

and j in a community), if species respond differently to fluctuations

in environmental conditions (such as temperature or precipitation).

However, on top of these intrinsic differences in species

environmental responses, the rS(i,j)’s can be further modified by

individual behaviour. Interspecific competition can lead to

changes in species resource utilization patterns [44–46] and if

these resources are subject to environmental stochasticity, this can

in turn result in variation in the rS(i,j)’s. The presence of predators

can be associated with altered patterns in prey habitat use [47].

This can affect the way prey is influenced by environmental

fluctuations, potentially altering the correlation between environ-

mental responses of the predator and the prey.

Extinction risk
In spatial systems, local population variability and global

extinction risk are intimately related to patterns in population

synchrony [3,8,10]. Extinction risk is generally increased by the

Moran effect due to increased population synchrony [10].

Dispersal on the other hand can either synchronise or desynchro-

nise local populations, depending on, e.g., spatial heterogeneity,

local dynamics, and dispersal strategies [9,48,49].

Recently, Abbott [3] suggested that increasing population

synchrony can either increase or decrease population variability,

depending on the mechanism controlling the level of between-

patch population synchrony; if synchrony varies due to population

dispersal propensity or increased local growth rates, higher

synchrony is stabilising, whereas other synchronising factors (such

as increasing between-patch environmental correlation) tend to be

Figure 4. The effect of between-patch (rE) and between-species (rS) environmental correlation on population variability (log CV) in
consumer–resource (a, b, e, f) and host–parasitoid (c, d, g, h) metacommunities with asymmetric dispersal between species. Contour
lines represent (log) population CV under asymmetric dispersal, whereas the shading represents log CV under symmetric dispersal (with the same
steps as the thick contour lines). Parameter values for C–R system: r = 1, K = 1, a = 2, R0 = 1.25, e = 0.5, d = 0.25. Parameter values for H–P system: r = 2,
q = 0.5, b = 0.5. Environmental variation is serially uncorrelated white noise, with zero mean and variance s2 = 0.01.
doi:10.1371/journal.pone.0072325.g004
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destabilising. This is in agreement of the present results. However,

a previously unconsidered aspect is that local between-species

environmental correlation can also affect population synchrony

between patches. This is simply a statistical consequence of rS

affecting local population variances Vii. When the variances are

increased, while between-population covariances Vij are unaffect-

ed, the between-species cross-correlation (COR(Xi, Xj)) necessarily

decreases (by definition).

Dispersal asymmetry
Here I consider both symmetric and asymmetric dispersal

between species, for completeness. Clearly, it is more realistic to

assume that species differ in their dispersal potential. While

predators are usually more mobile than their prey [50], many

migratory species encounter sedentary predators in different

habitats they visit [51]. Whether hosts or their parasitoids have

higher dispersal capacities is likely to vary among taxa. For

example, the Granville fritillary butterfly (Melitea cinxia) has two

parasitoids that differ in their dispersal capacity in comparison

with their host. Cotesia melitaearum is clearly less dispersive than

the host, whereas Hyposoter horticola is at least as dispersive as the

host [52].

For simplicity, species are here identical in the competitive

communities. Thus, the identity of a dispersal-limited species is

arbitrary. A logical outcome of dispersal limitation is that the

relative influence of between-patch environmental correlation (rE)

on population variance is reduced. In the exploitative communities

this also applies to the species that has more control over the local

dynamics; the consumer in the C–R system and the host in the H–

P system. With the other species (resource or parasitoid) dispersal

limitation can lead to a qualitative change in the effect of

increasing rS under negative rE. In the C–R system, for example,

this arises because the immigration of the consumer is coupled

with resource density. This is inline with the observation that

decoupling between immigration and density (within species)

dampens population fluctuations [9]. These results also support

the finding that the identity of a mobile species in a food web can

be important for food web dynamics in metacommunities [53].

Model assumptions and the robustness of results
I have here assumed that dispersal is a simple density

independent reallocation of individuals [3,25,54]. It is, however,

unlikely that individual dispersal strategies remain independent of

their environments [55–60]. For example, spatial autocorrelation

in environmental conditions can affect the evolution of dispersal

modes [58,60], such that higher spatial autocorrelation selects for

longer dispersal distance [60]. While all dispersal propensities are

equally favoured in perfectly correlated environments, increasingly

negative between-patch environmental correlation selects for

intermediate dispersal propensities [58]. The environmental

correlation structure can also affect acquisition of information

used to make dispersal decision, which could affect the evolution of

dispersal strategies [56]. Thus, incorporating other dispersal

strategies that depend on population densities, local environmental

conditions, or their combination [49] is an import direction for

future research.

The analytical predictions from figure 2 were tested using

extensive numerical simulations (Text S1). These results (Fig-

ure S4) show good qualitative agreement with the analytical model

(fig. 2). This also applies to asymmetric dispersal (not shown).

However, as the models considered here (eqns. 2–4) are all non-

linear, the accuracy of the linearization around the system

equilibrium (eqn. 5) is only accurate when perturbations around

this equilibrium are relatively small. Therefore, increasing the size

of environmental fluctuations can potentially result in discrepan-

cies between simulation and analytical results, as stronger forcing

brings the system increasingly far away from the deterministic

equilibrium [36]. As the environmental variance appears only as a

linear scaling factor in eqn. (5), varying s2 has no qualitative effect

on the analytical results.

An important assumption here is to only consider stable

equilibrium dynamics. This is often assumed either to facilitate

interpretation of resonance patterns between intrinsic dynamics

and environmental forcing [36,61], or to apply linearisation of the

system to generate analytical results [12,13]. However, non-

equilibrium dynamics can have important consequences for spatial

community dynamics under stochastic environments [5]. The

influence of non-equilibrium dynamics was again tested with

stochastic simulations, using the consumer–resource model with

cyclic dynamics in the absence of stochasticity. The results from

this simulation experiment (Figure S5) indicate that analytical

results (fig. 2c, d) are not qualitatively sensitive to the assumption

of stable equilibrium dynamics (at least under relatively weak

noise). This is not very surprising, as the parameters used for stable

dynamics are associated with dampened oscillations to equilibrium

following perturbations. This means that under stochastic varia-

tion the system is constantly undergoing cyclic, transient dynamics,

which is evident from figure 1c.

Implications
The analysis presented here makes predictions about the

behaviour of extremely simple systems under stochastic environ-

mental variation. These predictions, at least those considering

symmetric dispersal, could be tested using existing procedures for

experimental microcosms [38,62–64]. Between-patch environ-

mental correlation would then be manipulated by simply tuning

the correlation in, e.g., temperature [65] or light spectrum [64],

between ‘patches’. Adjusting between-species environmental

correlation would in turn require selecting a pair of species with

desired differences in their adaptation along the focal environ-

mental variable.

Predictions about the dynamics of populations and communities

under spatio-temporal environmental variation are needed, e.g.,

for mitigation of climatic perturbations and planning sustainable

population management across spatial landscapes. The present

analysis is the first step towards a more general understanding of

how metacommunities behave in stochastic environments. Con-

sidering the effect of spatial heterogeneity in patch quality

[29,63,66–68] in association with the environmental covariance

structure is an interesting direction for future research. A recent

study demonstrated how spatial heterogeneity and spatially

restricted harvesting can generate ecological traps, leading to

global population extinction [69]. Although some work has been

done on how exploitation interacts with spatial population

processes in stochastic environments [8], more work is needed to

better understand potential interactions between spatio-temporal

environmental fluctuations and exploitation in spatial systems with

between-patch dispersal. The works by Gouhier et al. [70] –

showing that localised dispersal can generate non-stationary

spatio-temporal patterns in population abundances, and Blowes

and Connoly [40] – showing that the decay of between-patch

environmental correlation with between-patch spatial distance can

affect metapopulation persistence, make a promising step in this

direction, both having direct implications to effective design of

reserve networks.

Theory of Stochastic Metacommunities

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e72325



Supporting Information

Figure S1 The dependency of the combined term rErS in
the environmental covariance matrix C on its compo-
nents rE (between-patch environmental correlation) and
rE (between-species environmental correlation), see
eqn. (A.3) in Appendix S1.
(PDF)

Figure S2 Between–population synchrony in simple
two-species two-patch metacommunities depends on
an interaction between the environmental correlation
between patches (rE) and the local environmental
correlation between species (rS). In competitive communities

species intrinsic dynamics are either (a) undercompensatory or (b)

overcompensatory. In exploitative communities the interaction

involves either (c, d) consumer–resource dynamics, or (e, f) host–

parasitoid dynamics. The contours represent analytical approxi-

mations of the between–patch population cross-correlation for

each species. Results are based on an intermediate level of

symmetric dispersal for both species, mik = m = 0.25. Parameters:

(a) r = 1, h = 0.25, a= 0.5; (b) r = 1, h = 1.25, a= 0.5; (c, d) r = 1,

K = 1, a = 2, R0 = 1.25, e = 0.5, d = 0.25; (e, f) r = 2, q = 0.5, b = 0.5.

Environmental variation is serially uncorrelated white noise, with

zero mean and variance s2 = 0.01.

(PDF)

Figure S3 Population variability (log CV), affected by
between–patch (rE) and between–species environmental
correlation (rS), in a host–parasitoid metacommunity.
The local community dynamics are modelled as (Beddington et al.,

1975; Ranta et al., 2008): Htz1~Htexp r 1{Ht=Kð Þ{bPt½ �,
Ptz1~cPt 1{ exp ({bHt)½ �, where r and K are the intrinsic

growth rate and carrying capacity of the host (H), and b and c are

the attack rate and conversion efficiency of the parasitoid (P).

Parameters: r = 1, K = 1, c = 2, b = 1, mik = m = 0.25. Environ-

mental variation is white noise (zero mean and variance

s2 = 0.01).

(PDF)

Figure S4 Analytically derived population variabilities
(log CV; red contour lines) match qualitatively with
those resulting from stochastic simulations (black
contour lines and shading). In competitive communities

species intrinsic dynamics are either (a) undercompensatory or (b)

overcompensatory. In exploitative communities the interaction

involves either (c, d) consumer–resource dynamics, or (e, f) host–

parasitoid dynamics. The black contours represent the logarithm

of simulated population CV, based on 100 independent replicates.

Results are based on an intermediate level of symmetric dispersal

for both species, mik = m = 0.25. Parameters: (a) r = 1, h = 0.25,

a= 0.5; (b) r = 1, h = 1.25, a= 0.5; (c, d) r = 1, K = 1, a = 2,

R0 = 1.25, e = 0.5, d = 0.25; (e, f) r = 2, q = 0.5, b = 0.5. Environ-

mental variation is serially uncorrelated white noise, with zero

mean and variance s2 = 0.01, for both analytical and simulation

results. Simulation-based CV –values have been scaled arbitrarily

to better coincide with the corresponding analytically derived

values.

(PDF)

Figure S5 Population variability (log CV), affected by
between–patch (rE) and between–species environmental
correlation (rS), in a consumer–resource metacommu-
nity with cyclic local dynamics. Parameters: r = 1, K = 1,

a = 2, R0 = 1.25, e = 0.5, d = 0.1, mik = m = 0.25. The data (shaded

contours) represents means over 100 replicates, while the contour

lines give a smoothing of the original data. Environmental

variation is serially uncorrelated white noise, with zero mean

and variance s2 = 0.01.

(PDF)

Appendix S1 Details on analytical treatment of environ-
mental noise and population variance.
(DOCX)

Text S1 Additional information on the environmental
correlation structure, simulation methods, and addi-
tional results.
(DOCX)
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