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Abstract

The Coronavirus disease of 2019 (COVID-19) and measures to curb it created population-level changes in male-dominant impulsive
and risky behaviors such as violent crimes and gambling. One possible explanation for this is that the pandemic has been stressful,
and males, more so than females, tend to respond to stress by altering their focus on immediate versus delayed rewards, as reflected in
their delay discounting rates. Delay discounting rates from healthy undergraduate students were collected twice during the pandemic.
Discounting rates of males (n=190) but not of females (n=493) increased during the pandemic. Using machine learning, we show
that prepandemic functional connectome predict increased discounting rates in males (n=88). Moreover, considering that delay
discounting is associated with multiple psychiatric disorders, we found the same neural pattern that predicted increased discounting
rates in this study, in secondary datasets of patients with major depression and schizophrenia. The findings point to sex-based
differences in maladaptive delay discounting under real-world stress events, and to connectome-based neuromarkers of such effects.
They can explain why there was a population-level increase in several impulsive and risky behaviors during the pandemic and point
to intriguing questions about the shared underlying mechanisms of stress responses, psychiatric disorders and delay discounting.
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Introduction
The coronavirus disease of 2019 (COVID-19) grew to be
a stressful global pandemic. It had many unforeseen
impacts on society, including noticeable changes in
impulsive and risky behaviors, predominantly in males.
For example, although lockdown measures reduced
crime in the USA, the reduction was mostly in minor
offenses committed in peer groups. In contrast, the
pandemic and attempts to curb it (e.g., lockdowns,
curfews) drove an increase in homicide and intimate
partner violence in the USA (Boman and Gallupe 2020),
an increase in gun-violence in major US cities (Suther-
land et al. 2021), elevated levels of drug offenses in
Victoria, Australia (Rmandic et al. 2020), a surge in family
violence in China (Zhang 2020), and an increase in sports
gambling in Sweden (Håkansson 2020) compared with
the prepandemic levels. One common thread in these
behaviors is that they can be considered largely impul-
sive and risky in that they harbor a reasonable chance of
adverse consequences, are often done at the spur of the

moment, and encapsulate a preference for immediate
rewards or a myopic view, combined with some disregard
for potential long-term harms. Another common thread
in these behaviors, is that like many risky behaviors, they
tend to be male-dominant (Wong et al. 2013; Korn and
Bonny-Noach 2018; Magee et al. 2020; Kuo et al. 2021).

In this article, we posit that one possible explanation
for the abovementioned trends is changes in the
impulsivity of males during the pandemic, as reflected in
their delay discounting, that is, the rate of depreciation in
reward value as time passes. When rewards are delayed,
people on average have the tendency to prefer smaller
but immediate rewards (Lv et al. 2019). Delay discounting
is commonly assessed through intertemporal choice
tasks involving choices between immediate and delayed
rewards. Impulsive and risky behaviors are rooted in
unhealthy delay discounting rates that reflect myopic
preferences for immediate rewards, and disregard to
potential future harms (Mishra and Lalumière 2017).
Thus, the first objective of this study is to examine if the
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pandemic has resulted in noticeable changes in delay
discounting, specifically in males; if true, this can serve
as one possible explanation for the abovementioned
population-level behavioral changes.

It is reasonable to expect changes in delay discount-
ing, because the COVID-19 pandemic is a major stressor
(Varma et al. 2021), that can even lead to posttraumatic
stress disorder in postinfection cured people (Janiri et al.
2021). The stress emerges from the unpredictable dura-
tion and magnitude of the effects of the pandemic on life;
these have led to a climate of high uncertainty during
the pandemic, with concerns around health, relation-
ship, finances, and job security (Koffman et al. 2020).
Although correlational studies suggest that stress can be
associated with greater delay discounting during COVID-
19 (Malesza 2019; Lloyd et al. 2021; DeAngelis et al. 2021),
there is limited insight regarding possible changes in
delay discounting that may accrue with ongoing COVID-
19 stress. Such changes are expected because ongoingly
distressed people do not have the cognitive resources to
inhibit impulsive behaviors (Enticott et al. 2006; Raio et al.
2020); their cognitive and neural foci shift to regulating
the stress (Lempert et al. 2012).

Further extending this view, we posit that there may
be important individual difference in brain function-
ing that can alter the effect of the pandemic on one’s
delay discounting. Uncovering such mechanisms can not
only help understating why some people and not others
increase their delay discounting during stressful events,
such as the pandemic, but also provide insights for a
broad range of research disciplines that focus on risky,
impulsive and problematic behaviors, for example, psy-
chology, psychiatry, and criminology. Specifically, delay
discounting has been associated with activations of the
frontal part of the dorsal medial prefrontal cortex and
the right frontal pole (Kable and Glimcher 2007; Luo
et al. 2013; Wang et al. 2014; Wang et al. 2016), and an
intrinsic functional network pattern (Chen et al. 2017;
Johnson et al. 2020) including default-mode, subcorti-
cal, somato-motor, dorsal attention, and visual systems.
However, few studies have addressed the neural basis of
delay discounting under stress (Starcke and Brand 2012),
especially real-world stressful events, and the possible
effects of such events on changes in delay discounting.
Such studies have also typically focused on specific net-
works, and here, we extend this view to focus also on
connectivity among networks.

We further note that although stress has been associ-
ated with steeper discounting rates (Lempert et al. 2012;
Fields et al. 2014; Malesza 2019), females physiological
reactions to stress are typically of a smaller magnitude
than those of males, including the secretion of Cortisol
(Kajantie and Phillips 2006). There is also increased
risk-aversion in males but not in females (Cahlíková
and Cingl 2017). In part, this is because there are sex-
based differences in Cortisol levels and stress responses
(Kajantie and Phillips 2006; Paris et al. 2010). Importantly,
Cortisol levels are associated with delay discounting

(Takahashi 2004; Takahashi et al. 2011; Lempert et al.
2012; Kimura et al. 2013).

Nevertheless, findings on the association between sex
and delay discounting have been inconsistent. Some
studies find that males are higher discounters (Kirby and
Maraković 1996; Wilson and Daly 2004), some find that
females are higher discounters (Reynolds et al. 2006), and
others find no sex-based differences in delay discounting
(Hirsh et al. 2008; Lucas and Koff 2010). One explanation
is that mood and stressors moderate the relationship
between sex and delay discounting (Koff and Lucas 2011).
Stress-induced changes in delay discounting can also
drive sex-based differences in risky decision-making
(Lighthall et al. 2009; Takahashi et al. 2011). Considering
the evidence that females’ psychological reactions to
stress are usually smaller than males’ (Kajantie and
Phillips 2006), and that COVID-19 is a major life stressor
(Varma et al. 2021), we hypothesize that COVID-19 has
greater impact on changes in delay discounting in males
than in females. Considering evidence that stress (Soares
et al. 2013; Zhang et al. 2020) and delay discounting
(Chen et al. 2017; Cai et al. 2020) share a synchronous
activation of a network of brain regions as manifested
in the brain connectome, we also expect that the degree
of resting-state functional connectome would influence
the susceptibility of individuals to change their delay dis-
counting in response to stressors, such as the pandemic.

We test our assertions with a longitudinal design that
involves capturing the brain connectome of individuals
before the pandemic (t0), and delay discounting twice
(t1 and t2), during the pandemic. Lastly, we further
note that delay discounting is associated with multiple
maladaptive behaviors (Alessi and Petry 2003; Hu et al.
2015) and psychiatric disorders (Amlung et al. 2019), such
as drug abuse and problem gambling (Reynolds 2006),
major depression, and schizophrenia (Sanchez-Roige
et al. 2018). Thus, to increase the validity of our results
relating the brain connectome to changes in delay
discounting, we use multiple clinical (schizophrenia and
major depression) datasets and examine whether the
neuromarkers we identified in this study truly represent
a maladaptive delay discounting network that can
distinguish psychiatric patients from normal controls.

Methods
Participants
After obtaining approval from the local institutional
review board, potential participants’ contact information
was retrieved from the Behavioral Brain Research Project
of Chinese Personality (BBP). A total of 901 participants
were invited via text messaging to complete the first
online survey on 22 February 2020 and the second
survey on 24 April 2020. Both surveys were conducted
during the COVID-19 pandemic in mainland China (see
Fig. 1A for details). Responses within 1 week of the
invitation were considered valid. Out of the invitees, 735
responded to both surveys (209 males; 16–22 yeas, mean
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Figure 1. (A) X-axis indicates timeline of the data acquisition of the 2 surveys and 2 important events during the COVID-19 pandemic in China. The Y-axis
indicates new cases per day and total cases of COVID-19 in China. On 23 January 2020, China imposed a strict lockdown in Wuhan. We conducted the
first online survey on 22 February, and the second survey on 24 April 2020. Both surveys completed within a week. (B) The pipeline of brain connectome
prediction framework. Functional connectivity maps (FCs) were extracted by power-264 atlas from preprocessed rs-fMRI data. We conducted 10-fold
cross-validation procedures to predict changes of delay discounting rates during pandemic. (C) Consensus functional connectivity for visualization.
Consensus FCs were defined as overlapping FCs among folds. (D) Applying binarized consensus functional connectivity to external data sets for clinical
extension and increased external validity.

age = 18.907 ± 0.891 years; 2 participants over the age of
26 were excluded to increase age homogeneity). We had
resting-state functional magnetic resonance imaging (rs-
fMRI), collected from October 2019 to December 2019,
for 500 of these participants. Two of these 500 imaging
records were excluded for head motion over 2 mm.
All participants reported no history of neurological or
psychiatric illness and gave written informed consent
that was approved by local IRB prior to the MRI scanning.

To validate and generalize our results and to explore
their clinical relevance, 3 additional samples (secondary
data sources) were obtained. The first one was the REST-
meta-MDD Consortium Data Sharing project (Yan et al.
2019), which contained processed neuroimaging data
of 1300 depressed patients and 1128 normal controls
from 25 research groups. The second one was shared by
the Center for Biomedical Research Excellence (COBRE),
which contained original resting state and structural
imaging data from 72 patients with schizophrenia and
75 healthy controls (Mayer et al. 2013). The last one

was OpenNeuro Dataset ds001461 (Liao and Fan 2020),
containing original resting-state imaging data from 47
patients with schizophrenia and 34 healthy controls. The
characteristics of the 4 samples are given in Table 1.

Delay Discounting Measurement
The 27 items Monetary Choice Questionnaire (MCQ-27)
(Kirby et al. 1999) was used to measure delay discount-
ing. It is easy and feasible to implement in a survey
running during the COVID-19 pandemic. Each MCQ-27
item asked participants to choose between a smaller
immediate reward (e.g., �25 today) and a larger delayed
reward (e.g., �30 in 80 days). The monetary rewards in
choices ranged from �11 to �85. They were divided into
3 sizes: S = small, from 25 to 35; M = medium, from 50
to 60; and L = Large, from 75 to 85 according to the
sizes of delayed rewards. The delays ranged from 1 week
to 186 days (Kirby et al. 1999). We simply replaced the
USD ($) with Yuan (�) because the World Bank data
(https://data.worldbank.org) shows that in 2018, the per

https://data.worldbank.org
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Table 1. Description of samples used in this study

Datasets Data collection period N Male Age (years)

Mean SD

First pandemic survey 22–28 February 2020 901 273 18.91 1.13
Second pandemic survey 24 April–1 May 2020 824 239 18.94 1.02
MRI data September–December 2019 498 139 18.98 0.96
REST-meta-MDD Consortium (Yan et al. 2019)
Depressed group Before pandemic 1225 449 36.15 14.73
Normal control group 1068 444 36.16 15.82
COBRE (Mayer et al. 2013)
Schizophrenia group Before pandemic 43 36 34.49 13.48
Normal control group 60 41 34.90 11.54
OpenNeuro Dataset ds001461 (Liao and Fan 2020)
Schizophrenia group Before pandemic 40 25 31.13 9.59
Normal control group 30 21 35.17 9.67

capita GNI of China and the USA were comparable (60 011
Yuan vs. 60 524 USD, respectively) (constant LCU). The
delay discounting rate (k value) was calculated using
the hyperbolic temporal discounting functions (Mazur
1987): V = A/(1 + kD) where V is the present value of the
delayed reward A at delay D. We used a spreadsheet
application (Kaplan et al. 2014) to compute k value and
choice consistency. Consistency represents the consis-
tency of choices. For example, participants choosing 25
RMB today over 60 RMB in 2 weeks in one trial, but
choosing 30 RMB in 80 days over 25 RMB today in another
trial will impair the consistency indicator. Participants
with choice consistency lower than 0.80 (Gray et al. 2016)
in either survey of any monetary size were excluded
from further analysis (n = 52, about 6.9%) to increase the
accuracy of k estimation. The geometric mean of k value
(geometric mean of 3 sizes) was calculated as the index
of participants’ delay discounting rate. The k difference
(�k) between the second survey (k2) and the first survey
(k1) was calculated as an indicator of delayed discounting
changes during the pandemic. In order to get accurate
�k, the participants whose k exceed the measurement
range (0.00016–0.25) in either survey were excluded from
further analysis on �k.

Functional MRI Data Acquisition
The prepandemic participants underwent an 8-minute
rs-fMRI scanning using a 3T SIEMENS PRISMA scanner
(Erlangen, Germany) at Southwest University Brain Imag-
ing Center. Participants were asked to keep their eyes
open, but not to sleep or think of anything specific, and
to keep their head still as much as possible. A total of
240 functional volumes were obtained with the follow-
ing scanning parameters: repetition time [TR]/echo time
[TE] = 2000/30 ms, field of view [FOV] = 224 × 224 mm2,
and flip angle = 90◦. A cushioned head fixation device
was used to minimize head movements.

Image Preprocessing
Data preprocessing was accomplished with the tool
Data Processing Assistant for resting-state fMRI

(Yan et al. 2016). The first 10 images were discarded
to allow the equilibration of the signal. Slice timing
and realignment were then performed. The resulted
realigned images were normalized using Montreal Neu-
rological Institute echo-planar imaging template, resam-
pled into 3 × 3 × 3 mm3 resolution, and smoothed with
4 mm FWHM Gaussian kernel. The nuisance signals (i.e.,
WM, CFS, Friston 24 parameters) were regressed to con-
trol for potential artifacts. The temporal band-pass filter
(0.01–0.08 Hz) and linear detrending were also applied to
the image. A scrubbing method was used to remove bad
volume caused by head motion (Power et al. 2012).

Brain Network Construction
The preprocessed functional MRI data were parcellated
using a large meta-analysis of whole-brain functional
connectivity (FC) maps (Power-264) (Power et al. 2011),
resulting in 264 regions of interests (ROIs, nodes) for cal-
culating FC coefficients (see Fig. 1B). Time series within
each node was obtained for everyone by averaging fMRI
time series over all voxels in each of the 264 ROIs. Then,
we calculated Pearson correlation coefficients of each
pair of time series and transformed to Fisher’s Z score.
For the fact that matrices are symmetric, after removing
264 diagonal elements, the lower triangle of elements of
the FC matrix was retained for the following prediction.
That is, a total of (264 × 263)/2 = 34 716 edges (FC) were
prepared as whole-brain features for each participants.

Predictive Analysis
We performed elastic-net regression to evaluate whether
the prepandemic functional connectome predicted
changes in delay discounting rates (�k) between the
second and first surveys in males. Elastic-net regression
is a linear sparse kernel multivariate regression method,
essentially a combination of LASSO regression and
ridge regression (Zou and Hastie 2005). Using elastic-net
regression in FC modeling is common, because it reduces
the effect of multicollinearity on feature selection
(Trzepacz et al. 2014; Teipel et al. 2015; de Vos et al.
2016; Schouten et al. 2016). The MATALB built-in LASSO
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algorithm with 2 main parameters was implemented
in this study. The regularization coefficients lambda (λ)
was optimized by nested 10-fold cross-validation (CV)
with minimal mean-squared error within a training set.
The identical optimal lambda was applied to the testing
sets. The parameter alpha (α) that controls the weight
of LASSO (L1) versus ridge (L2) optimization is a positive
scalar value in the interval [0, 1]. It was chosen from
11 values, that is, [0.1−7 0.1 0.2 0.3 . . . 1] outside of the
CV loop. When alpha value equals 1, the process is
equivalent to a LASSO regression. When the value is
close to 0, the process resembles a ridge regression.

The procedure mainly includes the following steps
(He et al. 2021): (1) divide participants into training and
testing sets, (2) feature selection, (3) model building, (4)
assessment of prediction performance, and (5) permu-
tation test (see Fig. 1B). First, participants were divided
into 10 subsets by using 10-fold CV. Nine-folds were ran-
domly selected to build the predictive model (training)
and 1-fold to evaluate the predictive power (testing).
The process was repeated 9 more times to complete
the CV procedure. Features were selected in training
set by the statistical significance of correlation coeffi-
cients between FCs and �k (P values: 0.05, 0.01, 0.005,
and 0.001. P values were defined out of the CV loop).
Confound variables (age, head motion) were controlled
for by partial correlation during feature selection. The
elastic-net regression model was built to fit the selected
features and �k. The test sets were fed into the model to
get predicted �k. After the CV was completed, the pre-
dicted score for each participant was obtained. The CV
procedure was repeated 100 times for stability. We then
calculated the mean of all the predicted scores. Pearson
correlation coefficients between true and predicted �k
were calculated to evaluate the prediction performance.
Lastly, 2000 times permutation tests were conducted to
evaluate the significance of the correlation coefficients.
Permutation test calculated possible models and statis-
tical values by randomly rearranging the labels (�k) for
the data (FCs). The significance of the permutation test
(ppt) was calculated as the proportion of sampled permu-
tations that are greater or equal to the true predicted
correlation. To further validate, we also tried to replace
�k with a series of random numbers, and see if the model
will report a false positive result.

Internal Validation with Connectome-Based
Predictive Modeling
Connectome-based predictive modeling (CPM) is a data-
driven protocol based on linear relationships typically
with a slope and an intercept (i.e., y = mx + b) for brain-
behavior prediction (Shen et al. 2017). CPM may not be
optimal for capturing brain–behavior relationships but
is advantageous in that it provides a more interpretable
model and improves the rejection rate of false positives
(Shen et al. 2017). Features were selected by significance
of correlation coefficients (r) between brain and behavior.
They were split into positive (r > 0) and negative (r < 0)

features. Then the selected features were summed to fit
the model separately. Other steps followed the above-
mentioned CV process. We also conducted CPM based on
the commonly used shen-268 atlas (Shen et al. 2017), to
increase the reliability of prediction results. We also tried
to predict k1 and k2 separately, to explore differences and
communalities between �k and k.

Clinical Relevance
Consensus FC among folds were selected for the clinical
extension of our study. Consensus FC would have small
changes due to different splits of folds. We repeated
the CV process 1000 times (10 folds × 100 repetitions)
to get more stable results. The 95% overlapping FCs in
repetitions were binarized as feature selection masks
that applied to external clinical rs-fMRI data. The REST-
meta-MDD Consortium Data contains processed ROI sig-
nals based on Power-264 atlas. We compared the con-
sensus features of normal controls and MDD patients
on the data share by REST-meta-MDD (Yan et al. 2019).
The consensus masks were also applied to the COBRE
schizophrenia data (Mayer et al. 2013) and external data
provided by Liao (Liao and Fan 2020), to compare normal
controls and schizophrenia patients (see Fig. 1D). These 2
secondary datasets were processed in the same pipeline
as the BBP data we collected.

Code and Data Availability
The MATALB built-in LASSO algorithm was used to
implement elastic-net regression. The connectome pre-
dictive model scripts was used to implement linear-based
prediction model (Shen et al. 2017). Feature visualization
uses NeuroMArVL (https://immersive.erc.monash.edu/
neuromarvl/). The REST-meta-MDD Consortium Data
Sharing project (Yan et al. 2019), COBRE (Mayer et al.
2013), and OpenNeuro Dataset ds001461 (Liao and Fan
2020) are available online. The code used in this study is
available on github (https://github.com/gbShaw/DDTco
nnectome), and the behavioral data and ROI signals data
are available from the authors upon request.

RESULTS
Behavioral Data
From the invitees, 683 participants (190 males) com-
pleted both surveys with valid geometric k values
(consistency > 0.80). A mixed-design ANOVA (2 × 2)
was used to examine differences in delay discounting
rate (natural log transformed geometric k; view the
distributions in Fig. 2), with time of assessment (t1 vs. t2)
as repeated-measures variable, and sex (male vs. female)
as a between-subjects variable. There was a significant
time × sex interaction (F(1, 681) = 3.956, P = 0.047, partial
η2 = 0.006, 95% CI = [3.82 × 10−5 0.02], see Fig. 2C). The
main effects of sex (F(1, 681) = 1.071, P = 0.302) and time
(F(1, 681) = 3.127, P = 0.077) were nonsignificant. Simple
main effect analysis revealed that males’ delay discount-
ing rate increased during the pandemic (F(1,681) = 4.889,

https://immersive.erc.monash.edu/neuromarvl/
https://immersive.erc.monash.edu/neuromarvl/
https://github.com/gbShaw/DDTconnectome
https://github.com/gbShaw/DDTconnectome
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Figure 2. (A) Distributions of discounting rates of first survey and second survey. (B) Distributions of natural log transformed k. (C) Interaction between
time of assessment and sexes. The plot and the error bar show mean ± 95% CI of log transformed k.

P = 0.027, partial η2 = 0.007, 95% CI = [4.14 × 10−4 0.02]),
but females’ did not (F(1,681) = 0.044, P = 0.834, partial
η2 = 0.000, 95% CI = [0 2.80 × 10−3]). ANOVA conducted
on samples in the predictive analysis (n = 335; 88 males)
showed the same result (Supplementary Table S1). These
finding indicated increased delay discounting rates
in males during the pandemic; males increased their
preference for small immediate rewards compared
with larger delayed rewards. The results can be inter-
preted as showing that males responded to the stress-
induced by the pandemic differently than females
did.

Prediction of Male’s Increased Discounting Rates
The prepandemic functional connectome predicted
increased discounting rate in males from the first
survey to the second survey (88 males) using elastic-net

regression (optimal prediction performance: r = 0.380,
ppt < 0.01, α = 0.5. See Fig. 3B and Supplementary Table S2
for details) after controlling for head motion and age. The
parameter alpha (α) that controls the weight of LASSO
(L1) versus ridge (L2) optimization slightly impacted
prediction performance (see Fig. 3A for details). This
result has been verified with additional method (CPM:
r = 0.234, ppt < 0.01, optimal performance). Consensus
features extracted by CPM (see Fig. 4) and elastic-
net were almost the same (Supplementary Fig. S1).
The summed strength of selected consensus features
showed significant negative correlation with increased
discounting (�k) in males (highest correlation: r = −0.719,
P < 0.001, feature selection threshold = 0.01. See Fig. 3C
and D and Supplementary Table S3 for details). In
other words, decreased overall strength of the network
was related to the increase in delayed discounting.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
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Figure 3. (A) Prediction performance of elastic regression. Numeric labels over the heat map indicate the correlation coefficients between predicted �k
and true �k. Colors indicates significance (2000 times permutation test) of correlation coefficients. X-axis indicates feature selection threshold. Y-axis
indicates value of parameter α in elastic regression. (B) Correlation between predicted �k and true �k (optimal prediction performance). (C) Correlation
coefficients between summed FC strength within consensus connectivity and �k for both sexes (n = 335). (D) Correlation coefficients between summed
FC strength within consensus connectivity and �k in males (n = 88).

Except for the 2 connections within the DMN, the other
connections are internetwork connections (Fig. 4). All
of these internetwork connections showed consistent
negative correlation with �k (Supplementary Table S5).
The CPM results mainly based on negative correlated
features, except for when feature selection is set
by 0.001 (Supplementary Table S2). The CPM meth-
ods conducted with shen-268 atlas largely supported
this view, it showed slight prediction power (r = 0.154,
ppt = 0.054). The FCs that predicted �k showed slight
predictive performance on k1 (optimal performance:
r = 0.148, ppt = 0.024) and k2 (r = 0.137, ppt = 0.031), but
was not stable across feature selection thresholds
(Supplementary Table S4). The whole-brain analysis
showed better performance on k1 (optimal performance:
r = 0.182, ppt = 0.030) and k2 (r = 0.158, ppt = 0.080) across
thresholds (Supplementary Table S2). The FCs that
predicted k and �k involve many of the same networks.
However, they are very different at the node level
(Supplementary Fig. S2). Randomly generated behavioral
changes could not be predicted by the whole-brain
(r = −0.02 ± 0.11 SD, 1000 iterations) and the discovered
connectome (r = −0.10 ± 0.13 SD, 1000 iterations).

Clinical Extension
Due to missing power264 atlas ROI signals, only 2293
imaging records (1225 patients and 1068 normal controls)
in the MDD dataset (2428 in total) were included
in our analysis. The MDD patients showed signifi-
cantly lower FC strength within the consensus fea-
ture mask compared with healthy controls (t = 2.007,
P < 0.05, 95% CI = [0.000 0.013], Cohen’s d = 0.084, fea-
ture selection thresh = 0.01). The feature selection
threshold slightly affected the result (see Fig. 5A and
Supplementary Table S6 for details).

The COBRE dataset had relatively large head motions.
It resulted in including 103 participants after exclusion
by head motion (i.e., >2 mm) and scrubbing (i.e., >30% of
the acquired volumes, 45 volumes were scrubbed). The
schizophrenia patients (n = 43) in the remaining COBRE
imaging records showed significantly lower FC strength
than normal controls (n = 60) within the consensus
feature mask (t = 2.678, P < 0.01, 95% CI = [0.018 0.132],
Cohen’s d = 0.535, feature selection thresh = 0.01; see
Fig. 5B and Supplementary Table S7). The patients (n = 40)
in Liao’s study dataset also showed significantly lower FC
strength (t = 2.509, P < 0.05, 95% CI = [0.012 0.109], Cohen’s

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data


8 | Cerebral Cortex, 2022, Vol. 00, No. 00

Figure 4. Consensus function connectivity pattern extracted by CPM. Features were selected by correlation coefficients which under selection threshold
(P < 0.01) and valence of correlation (negative). Functional connectivity points to overlapping functional connections in iterations (10 × 100 iterations;
95% occurrence).

d = 0.606; see Fig. 5C and Supplementary Table S8) than
normal controls (n = 30).

Discussion
In this longitudinal study, we first, found sex-based
difference in changes in delay discounting during COVID-
19. Second, we conducted a rs-fMRI analysis to reveal the
FC patterns that underlie increased delay discounting
rates in males during the pandemic (i.e., in response to
stress). Third, we increased the validity and the potential
practical implications of our findings by showing that
the observed FC issues that underlie maladaptive delay
discounting responses also explain differences between
healthy samples and people with psychiatric disorders
that involve elevated delayed discounting, specifically,
major depression disorder and schizophrenia. To obtain
these results, we implemented elastic-net regression to
predict increased discounting rate in males with prepan-
demic FC. Further, to gain an intuitive understanding of
the connectivity pattern, we illustrated a linear relation-
ship between FC and increased delay discounting rate by
CPM. We found robust predictive patterns under distinct
parameters: increased discounting rates of males were
positively correlated with the decrease of FC strength
within the consensus features. The major depression
disorder patients and schizophrenia patients also
showed deficit in the strength of FC within the consensus

features. These findings ultimately suggest that the delay
discounting of males was susceptible to increases during
the COVID-19 pandemic and point to neural markers that
can explain individual differences in such responses to
presumed stress in males. The observed neural markers
of maladaptive delay discounting responses also showed
clinical relevance and generalizability beyond our study
and beyond healthy populations.

Delay Discounting of Males Increased during the
Pandemic
Delay discounting of males increased between the two
surveys during COVID-19 pandemic, whereas females’
delay discounting did not. Delay discounting has been
associated with stress (Malesza 2019), including during
the pandemic, (Craft et al. 2021; DeAngelis et al. 2021),
which has been a source of stress (Charles et al. 2021; Liu
et al. 2021). To illustrate, participants’ anxiety increased
from the first survey period (February 2019) to the second
survey period (April 2019) during the pandemic (He et al.
2021), even though the pandemic was under more control
in China during the second survey. Lifting restrictions
may be assumed to reduce pressure. However, we have
found various studies demonstrating that the progress
of the pandemic and its detrimental psychological
consequence are not synchronized (i.e., there is often
a lag). Detrimental psychological consequences of the
COVID-19 pandemic persisted for several months after

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab505#supplementary-data
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Figure 5. (A) the differences of summed FCs strength within consensus features between MDD patients and normal controls in the REST-meta-MDD
Consortium data set. (B) Differences between schizophrenia patients and normal controls in the COBRE dataset. (C) Differences between schizophrenia
patients and normal controls in the OpenNeuro Dataset ds001461. The plot and the error bar show mean ± 95% CI.

the end of the lockdown measures in Austria (Pieh et al.
2021). People in Italy showed higher stress levels at
the end of lockdown compared with the start of the
lockdown (Roma et al. 2020). Anxiety, depression, and
stress levels were higher during remission than during
lockdown in Spain (Planchuelo-Gómez et al. 2020). This
continuous impact may be caused by complex reasons.
In China mainland, researchers found stress, anxiety,
and depression growth in the postlockdown period (Li
et al. 2020). Many studies have shown the delayed
effects of the pandemic or lockdown on psychological
distress (Gan et al. 2020; Muehlschlegel et al. 2021). A
systematic review found that the pandemic or lockdown
have persistent impacts on symptoms of depression,
anxiety, and trauma and stressor related disorders even
1–6 months after the end of lockdown. Psychological
distress, alcohol abuse/dependence, and financial con-
cerns have been described to persist over 6 months after
relief in pandemic pressures (Muehlschlegel et al. 2021).
This can be problematic, as individuals are inclined to
engage in impulsive and sometimes risky behaviors in
order to reduce stress or because they lack self-control
resources that have been consumed by the ongoing
stress coping (Lempert et al. 2012). This is in line with
our findings that show changes in delay discounting

that reflect greater impulsivity at t2 in males, compared
with t1.

Further in line with our findings, patients with COVID-
19 also showed significant sex-based differences in cor-
tisol levels (Etoga et al. 2021), which is consistent with
previous results that cortisol responses to stress were
higher in males compared with females (Kirschbaum
et al. 1992; Kajantie and Phillips 2006). The sex-based
differences in stress response can explain why males
and not females experienced maladaptive changes in
delay discounting during the pandemic. In turn, changes
in delay discounting in males can explain the increase
in risky and deviant male-dominant behaviors during
the pandemic, for example, some violent crimes, though
the nuances of this association require further research.
This idea is conceptually supported, though, by findings
showing that exposure to a stressor and exogenously
induced psychosocial stress significantly increase risk-
aversion in males (Cahlíková and Cingl 2017).

Importantly, prior research typically used experi-
ments to induce stress and to establish the asso-
ciation between preferences for immediate rewards
and risk (Mishra and Lalumière 2017; Johnson et al.
2020). We extend this idea to a real-world setting by
focusing on a natural stressful event (i.e., COVID-19)
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that resulted in population-level behavioral changes
in impulsive and risky behaviors (Håkansson 2020;
Rmandic et al. 2020; Zhang 2020; Sutherland et al.
2021).

There is a tradition in some strands of stress research
to use only male participants as a way to avoid female
confounds such as hormonal contraceptives and men-
strual cycle (Kirschbaum et al. 1999). Our findings sug-
gest that this practice is unhealthy, beyond its inclusiv-
ity ramifications, as it can lead to an incomplete and
inaccurate picture. This is because our findings point to
sex-based differences in responses to stress in form of
changes in delay discounting under stress. The inclusion
of both sexes in such studies is especially important due
to the robust association between delay discounting and
many psychiatric disorders (Amlung et al. 2019).

Prepandemic Connectome Predicted Changes of
Discounting Rates
The prepandemic FC predicted the increased delay
discounting in males via multiple methods: elastic-
net regression, LASSO regression, and CPM. The linear
relationship between FC and increased delay discount-
ing were clarified by CPM, which suggested that the
increased delay discounting may be related to the
declined strength of the consensus FC network. The
CPM result was also largely validated by the shen-268
atlas. These findings suggest that the intrinsic functional
connectivity serves as a neural marker of discounting
preference changes under stressful events. The decision
impulsivity under stressful events came from a highly
integrated brain connections involving multiple internal
networks, including salience (SN), default-mode (DMN),
frontal parietal (FPN), dorsal attention (DAN), somato-
motor (SMN), and visual network (VN). The pattern
showed commonalities and differences compared with
the pattern of delay discounting (Cai et al. 2020). We
found the 5 of the 6 networks are shared: SN, DMN,
DAN, SMN, and VN. The FPN is unique to stress-
related discounting changes as it mediates cognitive
control (Martín-Signes et al. 2021; Nee 2021), which was
considered to be an important factor affecting delay
discounting (Kim et al. 2012; Steinbeis and Crone 2016)
and was found as an important factor affecting COVID-
19-related stress (Khoo et al. 2021) and anxiety (Demlrtas
2021). The subcortical network was not found to be
significant in our study. Because our results are based
on Power-264 atlas which did not contain enough nodes
within the subcortical network, conclusions about the
subcortical network, for example, that it is unique to
delay discounting, should be interpreted with caution.

Although the functional connectome we found as a
neuromarker may be helpful for diagnosis and regulation
(Yang and Zuo 2015), machine learning models have lim-
ited interpretability. However, the CPM method is based
on a unary linear model, which simply sums strength of
all selected connectivities. It therefore provides a way to
explore the linear relationship between the strength of

the connectome and the behavioral change (Shen et al.
2017). We found that negatively correlated features can
accurately predict behavior under various thresholds,
but only a small number of positively correlated connec-
tivities can predict behavior changes. This means that
maladaptive behavior changes are related to the reduc-
tion of a wide range of functional connections, except
for a small number of connections that are enhanced.
Many studies have found association between higher
discounting and diminished engagement of prefrontal
cortex related connectivity (Peper et al. 2012; Stanger
et al. 2013; Zhang et al. 2021). However, our results point
to the reduction of a more extensive functional connec-
tivity that drives increased discounting. Moreover, there
is another important feature of this pattern. Except for
the 2 connections within the DMN, the other connections
are internetwork connections (Fig. 4). That is, the weak-
ened communication between networks is an important
reason for this maladaptive behavior. This is in addition
to the existing evidence of impulse-related change in
connectivity between networks (Zhu et al. 2017; Chen
et al. 2018).We used multiple thresholds to extract fea-
tures, which is useful for in-depth understanding of con-
nectome features. We found that from a broader perspec-
tive, the FCs are all reduced in maladaptive DDT, but only
when the focus is small, some enhanced connections
can be found in maladaptive DDT. This prompts us to
be cautious in choosing a specific threshold and inter-
preting the results. Specifically, the large-scale decline
in this comprehensive internetwork communication is
importantly related to the increase in delay discounting
during the pandemic. We also found that, in addition to
changes in delay discounting, discounting can also be
predicted by brain connectome. They involve many com-
mon networks, but are still different at the node level.
These results indicated that the change of k may have
unique brain mechanisms, beyond those that explain k.

Our Observed Neuromarkers Distinguish
Psychiatric Patients from Controls
We extended the neural pattern to external clinical
data, including major depression and schizophrenia
patients and healthy controls. The results found that
the patient’s functional connectivity strength, as iden-
tified in our study to be consistent with elevated
delay discounting changes, showed deficit within the
consensus functional connectivity. These results sug-
gested that, in addition to the reported association
between delay discounting and psychiatric disorders
at the behavioral level (Amlung et al. 2019), there
could be some shared intrinsic neural substrates
between increased and maladaptive delay discounting
under stressful events and psychiatric disorders (at
least in major depression and schizophrenia). The
consensus features contained elements of the default-
mode network, which is typically deficient in major
depression patients (Yan et al. 2019). Disrupted activity
and connectivity of the default-mode network also
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characterizes schizophrenia patients (Hu et al. 2017).
It is worth noting that patterns in our study are
almost all internetwork connections (Fig. 4), and this
is different from the research on the internal strength
of a single or multiple networks. The connectivity
strength between networks in the connectome declined.
This points to possible alteration in the connectivity
between networks in patients (Lancaster and Hall 2015;
Li et al. 2017), and it also supplements the whole-
brain connectome perspective. Thus, our findings can
serve as a basis for studying the ability of our neural
markers to detect the risk for MDD and/or schizophrenia.
These findings further show that the link between the
identified connectome issues and maladaptive delay
discounting changes likely extend from normal and
healthy populations, to populations with psychiatric
disorders.

Limitation and Direction
Several limitations of this study are noteworthy. First,
delay discounting shows changes along the lifespan
(Blakemore and Robbins 2012; Anandakumar et al. 2018).
Here, we collected data from undergraduate students,
with limited age variability. Thus, our results do not
capture the developmental characteristics of delay
discounting. Further work should employ samples with
larger variation in ages. Second, although we employed
multiple machine learning methods to uncover the
neural substrates of delay discounting, further studies
can explore a classifier that can provide early warning for
steep discounting rates to provide a deeper understand-
ing of potential health risk caused by steep discounting
rates.

Conclusion
This longitudinal study demonstrates that there is a
difference between the sexes in maladaptive changes
in delay discounting under stressful events. Our find-
ings further show that the prepandemic functional
connectome predicts increased delay discounting in
males in response to stressful events. In addition, we
show that this functional connectivity could effectively
separate major depression disorder and schizophrenia
patients from healthy controls. These finding contribute
to understanding the sex-based differences and neural
substrates of maladaptive changes in delay discounting
under stressful events. They can explain the association
between delay discounting and psychiatric disorders, and
the population-level increase in various male-dominant
impulsive and risky behaviors during the pandemic. As
such, our findings have important implications for soci-
ety, healthcare providers, criminologists, psychologists,
and psychiatrists.
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