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Abstract

Background: Identification of protein-protein interactions (PPIs) is essential for a better understanding of biological
processes, pathways and functions. However, experimental identification of the complete set of PPIs in a cell/organism
(“an interactome”) is still a difficult task. To circumvent limitations of current high-throughput experimental techniques,
it is necessary to develop high-performance computational methods for predicting PPIs.

Results: In this article, we propose a new computational method to predict interaction between a given pair of
protein sequences using features derived from known homologous PPIs. The proposed method is capable of
predicting interaction between two proteins (of unknown structure) using Averaged One-Dependence Estimators
(AODE) and three features calculated for the protein pair: (a) sequence similarities to a known interacting protein pair
(FSeq), (b) statistical propensities of domain pairs observed in interacting proteins (FDom) and (c) a sum of edge weights
along the shortest path between homologous proteins in a PPI network (FNet). Feature vectors were defined to lie in a
half-space of the symmetrical high-dimensional feature space to make them independent of the protein order. The
predictability of the method was assessed by a 10-fold cross validation on a recently created human PPI dataset with
randomly sampled negative data, and the best model achieved an Area Under the Curve of 0.79 (pAUC0.5% = 0.16). In
addition, the AODE trained on all three features (named PSOPIA) showed better prediction performance on a separate
independent data set than a recently reported homology-based method.

Conclusions: Our results suggest that FNet, a feature representing proximity in a known PPI network between two
proteins that are homologous to a target protein pair, contributes to the prediction of whether the target proteins
interact or not. PSOPIA will help identify novel PPIs and estimate complete PPI networks. The method proposed in
this article is freely available on the web at http://mizuguchilab.org/PSOPIA.

Keywords: Prediction of protein-protein interactions, Homology, Machine learning, Averaged One-Dependence
Estimators (AODE)
Background
Many biological processes and pathways are mediated by
protein-protein interactions (PPIs). Identification of indi-
vidual PPIs and the whole set of them in a cell/organism
(“an interactome”) is, therefore, essential for a better under-
standing of biological functions of proteins in living cells and
elucidating biochemical pathways. Various high-throughput
experimental techniques, such as yeast two-hybrid assays
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and methods based on mass spectrometry, have been used
to discover a large number of PPIs in several organisms.
Although the amount of interaction data in public PPI
databases continues to rise, many of them represent an
incomplete interactome, because the available experimen-
tal techniques are expensive and can typically identify only
a small part of the set of PPIs in specific organisms [1,2].
To circumvent such limitations of the experimental

techniques, a number of computational methods have
been developed for predicting PPIs based on prior know-
ledge obtained from known interacting protein sequences
and using machine-learning (ML) techniques [3-14].
Efforts have been made to develop methods based only on
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information about amino acid sequences, for example, by
using the number of amino acid triplets in each sequence
[6,10,13], a product of signatures defined as a set of subse-
quences [7], auto-correlation values of seven different
physicochemical scales [11,15] and normalized counts of
single or pairs of consecutive amino acid residues [12].
These purely sequence-based approaches have reported
prediction accuracies of 70-84% on a human data set and
about 70% on a yeast data set. Furthermore, information
about protein domains has been incorporated in several
other methods [16,17]. Although it has been shown to be
an informative feature for predicting PPIs [14], methods
utilizing domain information alone are not applicable to
proteins without domain assignments.
Identifying proteins homologous to a newly deter-

mined protein is often attempted to infer the biological
functions of the new protein of unknown function, be-
cause homologues tend to have similar functions as well
as similar three-dimensional structures. This deductive
inference has been applied to the identification of PPIs,
on the assumption that homologous proteins share simi-
lar interaction patterns as well as similar functions [18].
A pair of interacting proteins in one species and their
respective orthologs in another species, which are also
known to interact with each other, have been traditio-
nally defined as interaction-orthologs (interologs) [19,20].
However, this idea can be extended to interaction-homologs,
because orthologs and paralogs are not always clearly
distinguished [18,21].
There have been several computational studies about

interologs. For example, Yu et al. found that PPIs can be
transferred when two pairs of proteins have the geometric
mean of the sequence identities >80% or the e-values <10−70

[20]. Wiles et al. predicted PPIs from known inter-
actions in five species and developed InterologFinder, a
web server to search for information about predicted as
well as experimentally determined PPIs for given pro-
teins of interest [22]. Chen et al. developed PPISearch, a
web server to search for homologous PPIs given a single
protein pair of interest against an integrated database of
PPIs in 576 species [18]. Gallone et al. developed a Perl
module to search for putative PPIs and prioritize them
based on interologs [23]. Garcia et al. developed BIPS, a
web server to predict PPIs based on information about
known PPIs in multiple species and additional informa-
tion about domain interactions and GO annotations. It
uses BIANA, an integrated database of PPIs from several
repositories [21,24]. In these prediction approaches,
collecting as many PPIs as possible in multiple species is
an important factor for the reliability of the predicted
interactions.
Furthermore, developing a confidence score for PPIs is

also key to improving the reliability of the prediction.
Most of the previously reported methods used a simple
joint sequence identity or e-value for two pairs of inter-
acting proteins [18,20,21], whereas one unified score
based on the level of homology, conservation of the in-
teractions across multiple species and the number of
supporting experimental types was proposed [22]. These
methods are largely dependent on the existence of
orthologous or homologous PPIs, i.e., it would be very
difficult to detect a novel PPI with no interlogs in an in-
tegrated database.
To improve the discrimination power of the homology-

based PPI prediction, we here apply Averaged One-
Dependence Estimators (AODE; [25]) to this problem.
The AODE is an ML algorithm, a variant of the Naïve
Bayes classifier (NBC) and it weakens NBC’s independ-
ence assumption by allowing a one-dependence. So far,
the AODE has been used to combine the outputs of sev-
eral protein interaction prediction methods; it has been
shown to be useful for extracting distinctive information
from large imbalanced datasets and it can also be
retrained easily and efficiently [26]. Furthermore, it has
been reported to be more accurate than NBC, and it can
efficiently process a large number of training feature
vectors in a high dimensional space without increasing
the computational cost significantly [25,27]. In addition,
the AODE does not need to select a model and to
optimize any parameters. These strengths, therefore,
allowed us to train the AODE on massive PPI data
collected from several repositories without incurring a
large computational cost.
In this study, the AODE is trained using three features:

(a) sequence similarities to known interacting proteins
(FSeq), (b) statistical propensities of domain pairs ob-
served in interacting proteins (FDom) and (c) a sum of
edge weights along the shortest path between homolo-
gous proteins in a PPI network (FNet). The idea of fea-
ture (c) is based on the hypothesis that a target protein
pair would have more potential to interact if their hom-
ologous proteins exist in proximity of each other in a
known PPI network. Such a proximal pair, even if not
known to interact directly, may form a complex with
other proximal proteins or reside in common subcellular
locations, thereby increasing the chances of their homo-
logues interacting directly. In a previous study, the topology
of a PPI network has been used to predict interactions
missing in the network (i.e., those not detected by large-
scale experiments), by searching for defective cliques
(with a few missing edges) in the PPI network graph
[28]. However, this approach can be applied only to pro-
teins with at least one experimentally defined interaction.
In addition, the computational cost of this method has
been reported to be expensive. Our method, in contrast,
searches for a pair of sequences in the graph homolo-
gous to the query proteins, which may be unannotated
and with no known interactions. Then, a sum of edge



Murakami and Mizuguchi BMC Bioinformatics 2014, 15:213 Page 3 of 11
http://www.biomedcentral.com/1471-2105/15/213
weights along the shortest path between them is com-
puted and trained with other features, thus dramatically
reducing the computational cost. We demonstrate high
predictive performance of the AODE on a recently cre-
ated human PPI data set with randomly sampled nega-
tive data [29], which had been used for benchmarking
previously reported sequence-based methods.

Methods
In this section, we first introduce the data set used for
training and testing, and describe three features calculated
for a pair of proteins. Next, we describe how to construct
a feature vector, dealing with symmetry in the protein
order. Then, we describe the AODE for probabilistic clas-
sification of protein pairs into interacting (positive) or
non-interacting (negative) classes, and introduce predic-
tion accuracy measures to assess prediction models devel-
oped and the validation method.

Preparation of a PPI data set
To train and evaluate AODEs for predicting PPIs, we
used two different datasets:

(1) Dset1 is a recently created non-redundant human
PPI data set (ensuring ≤40% pairwise sequence identity
and protein sequence length of >50 amino acids)
obtained from the Human Protein Reference Database
(HPRD; release 7; [30]), created by [29]. This data set
was divided into three independent sets, each of
which contained about 2,000 proteins with about
5,000 positive pairs and 2,000,000 negative pairs,
i.e., 400 times larger number of non-interacting protein
pairs, generated by randomly paring proteins that
appeared in the positive pairs and removing real
positive pairs. This is a highly imbalanced data set and
the classification categories are unequally represented.
Park and Marcotte used these subsets to benchmark
four different sequence-based PPI prediction methods
[29,31] (see Additional file 1: Table S1).

(2) Dset2 was constructed to compare prediction
performance of the AODE trained on Dset1 with
BIPS, a recently developed homology-based
prediction server [21]. First, a set of human physical
PPIs was obtained from the BioGrid dataset (release
3.2.95, December 2012). Then, from this dataset, we
removed PPIs found in the previous BioGrid dataset
(release 3.1.93, on October, 2012) compiled after
BIPS was released, ensuring that Dset2 includes only
recently discovered PPIs. In addition, we used only a
set of interacting proteins, each of which was
annotated in UniProt [32]. This procedure left a set
of 4.430 PPIs. Finally, negative PPI pairs 400 times
larger in number than the positives ones were
generated in a manner similar to that of Dset1.
Homology-based features for a pair of proteins
The following three features were calculated for a pair of
proteins (SA, SB);

(a) Sequence similarities to known interacting
proteins (FSeq): Known interacting pairs with
sequence similarity to a target pair (SA, SB) were
searched by running BLAST (version 2.2.25+; [33])
against the database created from the sequences in
Dset1, with an e-value cutoff of ≤102. (The high
e-value cutoff was chosen to allow for partial
matches). Then, of these pairs, the interacting pair
(TA, TB) with the smallest value of √(e-valueA

2 +
e-valueB

2) was selected, where e-valuex is the BLAST
e-value between Sx and Tx and x is either A or B.
The minimum coverage (mincov) for Sx and Tx was
also calculated as the number of positive matches
(i.e., alignment positions with a positive BLOSUM62
score [34]) divided by the length of the longer
sequence. These two BLAST e-values and two
minimum coverage values, (e-valueA, mincovA) for SA
and (e-valueB, mincovB) for SB, were used as features
for training (Figure 1-a). If no known homologous
interacting pair was found, an e-value of 102 and a
mincov of 0 were assigned to FSeq.

(b) Statistical propensities of domain pairs observed
in interacting proteins (FDom): Each sequence in
Dset1 was scanned against Pfam-A (release 25.0;
Pfam-A.hmm; [35]), and the number of Pfam domain
pairs (dA, dB) that appeared in either positive or
negative pairs was counted. Knowledge-based interaction
propensities for Pfam domain pairs were calculated as:

propensity dA;dBð Þ ¼ log

 
Fðþ; dA; dB=

P
x;y∈DF þ; dx; dy

� �
Fð−; dA; dB=

P
x;y∈DF −; dx; dy

� �
!

where F(c, dA, dB) is the frequency of a domain pair
(dA, dB) observed in protein pairs belonging to class c
(+; positive, −; negative), and D is a set of all Pfam
domains observed in Dset1. For each target protein
pair, a sum of the interaction propensities for all pos-
sible Pfam domain pairs was obtained and divided by
the number of the domain pairs. If no Pfam domain
was found in SA and/or SB, an FDom value of 0 was
given to the target pair (Figure 1-b).

(c)A sum of edge weights along the shortest path
between homologous proteins in the PPI
network (FNet): BLAST hits (with an e-value cutoff
≤10−3) for each sequence in a target pair (SA, SB)
were collected from the database created from
Dset1. Then, for each possible pair of hits (pA, pB),
where pA and pB were among the hits for SA and SB,
respectively, a sum of edge weights along the



Figure 1 Three homology-based features used for training AODEs. (a) A feature set of sequence similarities to known interacting proteins
(FSeq = {e-valueA, mincovA, e-valueB, mincovB}). For a target pair (SA, SB), the interacting pair (TA, TB) with the smallest value of √(e-valueA

2 + e-valueB
2),

where e-valuex is a BLAST e-value between Sx and Tx and x is either A or B, is selected, and then the minimum coverage (mincov) for Sx and Tx is
calculated as (the number of positive matches)/(the length of the longer sequence). If no known homologous interacting pair is found, an e-value
of 102 and a mincov of 0 are assigned to FSeq. (b) Statistical propensities of domain pairs observed in interacting proteins (FDom). A sum of the
interaction propensities for all possible Pfam domain pairs (dA, dB) appeared in Sx and Tx is calculated (see more details in the text). If not Pfam
domain is found, an FDom value of 0 is given to the target pair. (c) A sum of edge weights along the shortest path between homologous
proteins (PA, PB) in the PPI network (FNet). In this study, we set the default edge weight to be 1.0. If no path is found, an FNet of -1 is given to the
target pair.

Murakami and Mizuguchi BMC Bioinformatics 2014, 15:213 Page 4 of 11
http://www.biomedcentral.com/1471-2105/15/213
shortest path (the shortest path weight; SPW) was
calculated. In this study, we set the default edge
weight to be 1.0. The shortest path between pA and
pB was calculated using Dijkstra’s shortest path
algorithm implemented in the Boost::Graph perl
module (version 1.4; downloaded from http://search.
cpan.org/~dburdick/Boost-Graph/), which is a perl
interface to the Boost-Graph C++ libraries (release
1.47.0; downloaded from http://www.boost.org/). The
lowest SPW was used as a feature for training. If no
SPW was defined for any of the pairs (pA, pB), an FNet

value of −1 was given to the target pair (Figure 1-c).

Constructing a feature vector
For each target protein pair, three sequence features de-
scribed above were computed and converted into a fea-
ture vector (FV) = {FSeq, FDom, FNet}. However, at least
two feature vectors can be constructed for FSeq, depending
on the order of the two protein, i.e., FSeq = {e-valueA,
mincovA, e-valueB, mincovB} and FSeq′ = {e-valueB, min-
covB, e-valueA, mincovA}, and in general, FSeq′ ≠ FSeq. To
define a FV uniquely, we first chose an arbitrary pair of
proteins whose FSeq and FSeq′ values corresponded to
points X1 and X2 in the feature space (Figure 2). These
points are symmetrically arranged in the four-dimensional
feature space separated by a hyperplane. Of the two
possible values for any protein pair, we decided to take
the one corresponding to a point on the same side of
the hyperplane as X1 and denoted this value as FSeq".
More precisely, for a given pair of proteins, FSeq" was
defined by the point P1 that had cos θ = rn∙V/|rn||V| >
0, where rn is a reference normal vector from the mid-
point (rp) between X1 and X2 to X1, V is a vector from
rp to P1, rn∙V is the inner product of rn and V and |rn|
and |V| are the lengths of rn and V, respectively. If cos
θ = 0, one of the two possibilities was arbitrarily se-
lected as FSeq". Finally, a unique FV was constructed as
{FSeq", FDom, FNet}.
After the construction of FVs, feature values for i-th

feature of the FVs used for training were discretized
using the entropy-based discretization method [36]. The
optimized intervals (split points), the number of which
varied with each feature, were then applied to the con-
struction of FVs for testing.

http://search.cpan.org/~dburdick/Boost-Graph/
http://search.cpan.org/~dburdick/Boost-Graph/
http://www.boost.org/


Figure 2 Selection of feature vectors in the half-space defined
by X1. To define a FV uniquely, an arbitrary pair of proteins whose
FSeq and FSeq′ values corresponded to points X1 and X2 in the high-
dimensional feature space is first chosen. For a given pair of proteins,
its FV, FSeq′′, was defined by choosing point P1 such that cos θ =
rn⋅V/|rn||V| > 0, where rn is a reference normal vector from the
midpoint between X1 and X2 (rp) to X1, V is a vector from rp to P1,
rn⋅V is the inner product of rn and V and |rn| and |V| are the length
of rn and V, respectively. If cos θ = 0, one of the two possibilities was
arbitrarily selected.

Murakami and Mizuguchi BMC Bioinformatics 2014, 15:213 Page 5 of 11
http://www.biomedcentral.com/1471-2105/15/213
Averaged One-Dependence Estimator (AODE)
The AODE weakens NBC’s independence assumption by
allowing a one-dependence, i.e., allowing each feature to
depend on another single feature (Figure 3), and it aver-
ages the predictions of all one-dependence estimators
(ODEs) in each class [25]. The AODE estimates the
probability of the positive class (+) given a specified set
of features {f1, f2,…, fn}, and is calculated as:

P̂ þjf 1; f 2;…; f nð Þ ¼
Xn

i¼1
P̂ þ; f ið Þ

Yn

j¼1∧i≠j
P̂ f jjþ; f i
� �

X
c∈ þ;−f g

Xn

i¼1
P̂ c; f ið Þ

Yn

j¼1∧i≠j
P̂ f j c; f iÞj
�

Here the base probabilities P̂ c; f ið Þ and P̂ c; f i; f j
� �

were estimated with the Laplace smoothing as:
Figure 3 A probabilistic graphical model of the AODE. The AODE weak

structure is shown in (a), by allowing a one-dependence as shown in (b). P̂ cð Þ is
such as P̂ FNet cÞjð , is the conditional probability of the i-th feature (fi) given c, P̂ cð
such as P̂ FNet c; FDomÞjð , is the conditional probability of the j-th feature (fj) giv
P̂ c; fð Þ ¼ F c; f ið Þ þ 1
mi þ kvi

P̂ c; f i; f j
� �

¼
F c; f i; f j
� �

þ 1

mij þ kvivj

where F(∙) is the frequency with which a combination of
terms appeared in the training FVs, mi is the number of
training FVs for which the i-th feature were known, mij is
the number of training FVs for which the i-th and j-th fea-
tures were known, c is a class label out of a total of k (=2)
classes, and vi and vj are the number of discrete partitions
for the i-th and j-th features, respectively. Then, the con-
ditional probability P̂ f j c; f Þj

�
was estimated as:

P̂ f jjc; f i
� �

¼
P̂ c; f i; f j
� �
P̂ c; f ið Þ

A probabilistic graphical model of the AODE modeled
in this study is shown in Figure 3.
If the probability is greater than or equal to a threshold,

the target pair is predicted to be interacting, otherwise non-
interacting. A schematic diagram of the prediction proce-
dure is summarized in Figure 4.

Evaluation measures and validation
Performances of AODEs were estimated by the Area
Under the Curve (AUC), which gives an AUC = 1.0 for a
perfect model and gives an AUC = 0.5 for a random
model for which a Receiver Operating Characteristic
(ROC) curve is drawn as a diagonal line. A ROC curve
is most often used for model comparison and is repre-
sented by plotting sensitivity (true positive rate; TPR, or
recall) against 1.0 – specificity (false positive rate; FPR).
Sensitivity (recall) measures the proportion of the known
ens the NBC’s independence assumption, of which the dependence

the probability of each class label c ∈ {interaction or non-interaction}, P̂ f i cÞjð ,

; f iÞ, such as P̂ c; FNetð Þ, is the joint probability of c and fj and also P̂ f j c; f iÞj� ,

en c and fi



Figure 4 A schematic diagram to represent the procedure for
the proposed method. (i) Three different homology-based features
(FSeq, FDom and FNet) for a protein sequence pair are calculated and
converted to a FV. (ii) Only the FV that lies in the half-space defined
by a reference feature vector is selected (see Figure 2). (iii) A feature
value in the i-th element of the selected FV is discretized using the
entropy-based discretization method [36]. (iv) The probability of
being in the positive class for the target pair is estimated using the
AODE, and if the probability is greater than or equal to a threshold,
the target pair is predicted to be interacting, otherwise
non-interacting.
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positive pairs that are correctly predicted as interacting
and is defined as TP/(TP + FN), and specificity measures
the proportion of the known negative pairs that are cor-
rectly predicted as non-interacting and is defined as TN/
(TN + FP), where TP is the number of true positives (i.e.,
known positive pairs correctly predicted as interacting),
FP is the number of false positives (i.e., known negative
pairs incorrectly predicted as interacting), TN is the
number of true negatives (i.e., known negative pairs cor-
rectly predicted as non-interacting), and FN is the number
of false negatives (i.e., known positive pair incorrectly pre-
dicted as non-interacting). The AUC is known to be in-
sensitive to imbalanced data [37] and it would be a reliable
measure for the prediction performance. In addition, per-
formances of AODEs were also estimated by a normalized
partial AUC up to the FPR ≤ x% (pAUC x%), following [6]
and [14]. We set x to be 0.5. A prediction model with a
high pAUC can predict more true positives with few FPs,
so such a model is known to be most useful for users to
identify PPIs from the top-ranked predictions [6].
Furthermore, we used two other common measures,

MCC (Mathew’s correlation coefficient; [38]) and the F-
measure [39]. MCC indicates the degree of the correlation
between the actual and predicted classes of the protein
pair, and its values range between 1 where all the predic-
tions are correct, and −1 where none are correct. MCC is
defined as (TP × TN − FP × FN)/√(TP + FP) × (TP + FN) ×
(TN+ FP) × (TN+ FN). The F-measure combines preci-
sion and recall into their harmonic mean, and is defined
as 2 × precision × recall/(precision + recall), where preci-
sion is defined as TP/(TP + FP) and measures the propor-
tion of the positive pairs correctly predicted as interacting.
To evaluate the prediction performance of each

AODE, a 10-fold cross validation (CV) was carried out.
In the 10-fold CV, a data set was divided into 10 subsets,
and each subset was used as a testing set and the remaining
subsets were used as a training set. This process was re-
peated 10 times, and then the prediction performances
were averaged over all the test results.

Results
In this section, we first assess critically the AODE models
based on three homology-based features encoded in a sin-
gle feature vector. We then demonstrate high predictive
performance of our proposed method using a large, human
PPI data set compiling recently identified interactions.

Can proximity between homologous proteins in a PPI
network contribute to predictions?
We hypothesized that two proteins would have more po-
tential to interact, if their homologous proteins exist in
proximity of each other in a known PPI network. Such a
proximal pair, even if not known to interact directly,
may form a complex with other proximal proteins or
reside in common subcellular locations, thereby increas-
ing the chances of their homologues interacting directly.
To confirm our hypothesis, we divided Dset1 into 10
subsets, treated each subset as a test set and constructed
a PPI network from the remaining subsets. For each pair
in the test set, we identified homologous protein pairs
(with a BLAST e-value cut-off ≤10−3) and obtained the
smallest SPW (a sum of edge weights along the shortest
path; see METHODS) in the PPI network. In this study,
an edge weight of 1.0 was used as a default weight value.
This process was repeated 10 times, and the average
number of protein pairs with a given SPW was counted.
Figure 5 shows the percentage of protein pairs with

different SPWs. Note that, in this figure, an SPW of 0
means a known interaction of a homologous protein
with itself and that of 1.0 means a known interaction be-
tween a homologous protein pair. Also, a homologous
protein pair indirectly linked by n proteins has an SPW
of n + 1.0. In consequence, the percentage of positive
pairs with an SPW ≤1.0 was about five times lager than
that of negative pairs (39% vs 7%). That of positive pairs
with an SPW of 2.0 (about 23.2%) was about 10 percent-
age point lager than that of negative pairs (about 13.1%).
Furthermore, a large proportion of positive pairs had
SPWs of ≤2.0 (on average, 62.3%), compared to a rela-
tively small proportion of negative pairs (on average,



Figure 5 The percentage of protein pairs with different SPWs
in the PPI network generated from Dset1. An SPW of 0 means a
known interaction of a homologous protein with itself and that of
1.0 means a known interaction between a homologous protein pair.
Also, a homologous protein pair indirectly linked by n proteins has
an SPW of n + 1.0. NP (No Path) indicates that there was no path
between two homologous proteins.
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20.4%). We, therefore, concluded that proximity between
homologous proteins in a PPI network could contribute
to a discrimination of positive and negative pairs in the
PPI prediction, especially, in SPWs ≤2.0. Then, the SPW
was chosen as a feature for training the AODE and de-
noted by FNet.

Prediction performance of AODEs
The AODE was trained and tested on Dset1, a highly
imbalanced data set [29]. For a pair of proteins, three
different homology-based features, FSeq, FDom and FNet,
were computed (see Methods). The order of two proteins
to define FSeq was determined by selecting its correspond-
ing point in the half-space of the four-dimensional feature
space. Then, a set of FVs was constructed to build the
AODEs. In addition, all the feature values of a FV were dis-
cretized using the entropy-based discretization method
[36]. (See Methods and Figures 1, 2, 3 and 4 for more de-
tails). In order to assess the predictability of each feature
and create the best AODE model, all possible combinations
of the three features were examined, where each AODE
was evaluated in a 10-fold CV on each independent set of
Dset1. In each round of the CV, the AODE was tested on
each subset of the independent set, i.e., about 500 posi-
tive pairs and 200,000 negative pairs, after trained on
the remaining subsets, i.e., about 4,500 positive pairs
and 1,800,000 negative pairs. Table 1 shows the predic-
tion performances of different AODEs and, for com-
parison purposes, those of different NBCs, for different
combinations of heterogeneous features. The probability
model of the NBC has been introduced in our previous
paper [40]. Furthermore, for reference, we included previ-
ously reported performances of four different methods
benchmarked on Dset1 [29] (Additional file 1: Table S1).
While all these methods take protein sequences as input,
a direct comparison of the performance is difficult, be-
cause our proposed method is based on heterogeneous
input features, in contrast to the reported, purely sequence-
based methods of M1~M4, which do not use homologous
protein sequences explicitly (see Additional file 1: Table S1
for more details of these methods).
Of AODEs-I ~ III based on a single feature, AODE-I

achieved the highest pAUC0.5% of 0.15 (AUC = 0.69), and
AODE-III achieved the highest AUC of 0.77 (pAUC0.5% =
0.02). Of AODE-IV ~VI, which were created by integrat-
ing two features, AODE-VI (based on FDom and FNet)
achieved the highest AUC of 0.79. Although AODE-II
(based on only FDom) gave the lowest AUC = 0.57
(pAUC0.5% = 0.07) of all three single-feature-based
AODEs, integrating FDom with FSeq or FNet improved
both AUC and pAUC0.5%, as shown in AODE-IV (AUC=
0.71, pAUC0.5% = 0.16) and AODE-VI (AUC = 0.79,
pAUC0.5% = 0.09). AODE-VII integrated all three fea-
tures and it achieved the highest performance in this
CV, in terms of both AUC (0.79) and pAUC0.5% (0.16).
In comparison with NBC, AODEs-II and III were identi-
cal models to NBCs-II and III, respectively, and no per-
formance difference was observed for methods I and IV.
However, including a single dependency with FNet

achieved small but statistically significant improvements
over NBC. (The p-values from the t-test (assuming equal
variances) for comparison of AUC values of those methods,
i.e., V, VI and VII, were all < 10e-7). While pAUC0.5% values
of AODE-VII and NBC-VII were comparable (p-value =
0.603), pAUC values up to FPR ≤10%, i.e., pAUC10%, were
0.40 for AODE and 0.37 for NBC, respectively (p-value =
6.4e-08). These results indicate that making a weaker de-
pendence between features can contribute to the improve-
ment of performance, also in the higher specificity range.
Furthermore, AODE-VII outperformed all four previously
reported methods in terms of AUC. (As mentioned above,
the comparison should be taken with caution and note that
pAUCs for M1~M4 were not given in [29]). ROC curves
for AODE-VII on Dset1 are shown in Figure 6. In con-
clusion, AODE-VII achieved the highest performance
on Dset1 and thus, it was selected as the best AODE
and named PSOPIA (Prediction Server Of Protein-
protein InterActions).

Evaluation of PSOPIA using an independent data set
In order to evaluate our proposed method further, we
compared PSOPIA (AODE-VII) with BIPS, a recently
developed prediction server based on homologues of
two interacting proteins [21]. Because BIPS is based on
large, up-to-date PPI data, integrated from several PPI
databases by using the BIANA software framework
[24], it is considered to have advantages over other
similar methods in retrieving homologous PPIs [18,22].



Table 1 Performances of AODEs and NBCs trained on Dset1

Method AODE NBC p-value

Performance measure AUC pAUC0.5% AUC pAUC0.5%

I FSeq 0.69 ± 0.01 0.15 0.69 ± 0.01 0.15 0.734

II FDom 0.57 ± 0.01 0.07 0.57 ± 0.01 0.07 1.0

III FNet 0.77 ± 0.01 0.02 0.77 ± 0.01 0.02 1.0

IV FSeq + FDom 0.71 ± 0.01 0.16 0.70 ± 0.01 0.16 0.077

V FSeq + FNet 0.79 ± 0.01 0.15 0.77 ± 0.01 0.15 2.8e-08

VI FDom + FNet 0.79 ± 0.01 0.09 0.77 ± 0.01 0.09 2.7e-08

VII FSeq + FDom + FNet 0.79 ± 0.01 0.16 0.77 ± 0.01 0.16 3.9e-14

The AUC and the pAUC0.5% values calculated with 10-fold CV on Dset1 are shown. AUC values given are the mean ± standard deviation. P-values are calculated.
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In addition, BIPS can use heterogeneous information simi-
lar to PSOPIA for filtering out prediction results, such as
information about domain-domain interactions (DDIs) in
iPfam [41] and 3DID [42] and annotations from UniProt
[32] and GO [43], as well as BLAST-based sequence simi-
larities to a known interacting protein pair. For these rea-
sons, we evaluated the predictability of both PSOPIA and
BIPS on Dset2, a data set, which was compiled from a re-
cent release of the BioGrid database and which included
only the PPIs identified after BIPS was developed and
Dset1 was created (see Methods).
PSOPIA was retrained on the whole of Dset1 and a se-

quence database used for BLAST was formatted with all
the sequences in Dset1. A threshold value of 0.293 was
chosen, because it gave the highest F-measure (0.160) in
the 10-fold CV on Dset1 (recall = 15.5%, precision = 17.0%,
specificity = 99.8%, MCC =0.160). For BIPS, since we were
Figure 6 ROC curves for the AODEs trained with all three features in
the averaged ROC curve (in red). This model achieved an AUC of 0.79 and
of the three independent data sets in Dset1.
unable to optimize the parameters, we used the default
values by the web server: joint identities (the geometric
mean of individual BLAST sequence identities) ≥ 80%, joint
e-values (the geometric mean of individual BLAST e-
values) ≥ 1.0 × e−10 and template sequence coverage ≥ 80%
(see [21] for more details of these parameters). In addition
to the default “filter by template interactions”, we also
examined two additional filtering conditions: informa-
tion about DDIs in iPfam or 3DID, and GO annotations
(biological process, cellular component or molecular
function). The BIPS server accepts sequences of interest
or a list of protein identifiers, evaluates potential inter-
actions between all possible sequence pairs and reports
only likely (high-scoring) interactions. Therefore, we
submitted all the unique sequences in Dset2 to the BIPS
server, retrieved the results and defined all the reported
pairs to be positive predictions (interacting) and all non-
10- fold CV. The ROC curves for the AODE-VII are shown, as well as
a pAUC0.5% of 0.16% on average, in each round of 10-fold CV on each
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reported pairs to be negative predictions (non-interacting).
If a positively predicted pair was found in either the
positive or the negative set of Dset2, it was regarded as
a true positive or a false positive, respectively. If a nega-
tively predicted pair was found in either the positive or
the negative set of Dset2, it was regarded as a false nega-
tive or a true negative, respectively. All the other predicted
interactions were ignored. In this comparison, we aimed
to evaluate the true predictability of these methods, i.e.,
whether they can predict novel PPIs that have never been
observed before, not the data search capability to identify
already known PPIs in a database. Thus, we excluded from
the evaluation any protein pair (SA, SB) if either BIPS or
PSOPIA detected a known interacting protein pair (TA,
TB) in their database (with BLAST e-values of 0 for SA-
TA and SB-TB).
Table 2 shows the prediction performances of PSOPIA

and BIPS on Dset2. BIPS predictions using template in-
teractions from only human PPIs (taxonomy ID = 9609)
(I-A) achieved an F-measure of 0.009 (recall = 0.51%,
precision = 2.72%). Adding additional information about
DDIs and GO annotations reduced the false positives
but also reduced the true positives and did not improve
the prediction performance (II, III). Furthermore, the
use of template interactions from all species increased
the false positive in all three options (I) ~ (III) of the
BIPS predictions. On the other hand, PSOPIA achieved
a higher F-measure of 0.030 (recall = 3.33%, precision =
2.77%) at the chosen threshold of 0.293. In addition, by
raising the threshold to 0.67 to obtain the recall value of
0.5 ~ 0.6% (comparable to that of BIPS), PSOPIA achieved
much higher precision (13.71%) than BIPS (2.72%). In
Table 2 Evaluation of true prediction performance on Dset2

Method TP FP TN

PSOPIA (θ = 0.293, the higheset F) 143 5,026 1,7

PSOPIA (θ = 0.670) 24 151 1,7

PSOPIA (θ = 0.890) 4 31 1,7

(I) BIPS, only filtered by the template interactions

(A) Template: Taxonomy ID = 9609 (human) 19 680 1,7

(B) Template: all species 19 833 1,7

(II) BIPS, filtered by known DDIs (iPfam or 3DID)

(A) Template: Taxonomy ID = 9609 (human) 5 60 1,7

(B) Template: all species 5 72 1,7

(III) BIPS, filtered by known DDIs (iPfam or 3DID) and GO; biological pro

(A) Template: Taxonomy ID = 9609 (human) 3 47 1,7

(B) Template: all species 3 56 1,7

For PSOPIA trained on Dset1 (a data set independent of Dset2), the best threshold
classify a pair of proteins as interacting or non-interacting. For BIPS, the default valu
≥ 1.0 × e−10, and template sequence coverage ≥ 80% (see [21] for more details of th
(I), two additional filters were applied: (II) filtered by known DDIs in iPfam or 3DID a
component or molecular function). Furthermore, two template interactions, (A) only
also considered.
conclusion, in the benchmarking on Dset2, PSOPIA dem-
onstrated higher predictability than BIPS in terms of the
F-measure.

Discussion
We have proposed a new AODE-based method for pre-
dicting PPIs based on known homologous PPIs by using
three different features, FSeq, FDom and FNet. In con-
structing Dset1 [29] used for training and testing the
AODEs, randomly sampled protein pairs that had not
been known to interact with each other were used as a
negative data set, because of the limited availability of
high-quality negative PPI data, either manually curated
or experimentally determined (for example, only 1,892
negative PPIs constructed with 1,257 proteins in the
negatome database [44]). In reality the number of nega-
tive PPIs should be much larger than that of positive
PPIs [29,31] and therefore, we trained and evaluated the
AODEs on a data set with a large number of negative
data. The AODEs were able to deal with this large and
imbalanced PPI dataset effectively and they were easily
trained within several CPU minutes.
In order to deal with symmetry in the protein order

and allow the concatenation of a set of features for in-
dividual proteins in a FV, several kernels have been de-
veloped in sequence-based methods using a support
vector machine (SVM) [6,7,10]. In this study, we pro-
posed a simple geometric selection of FVs in a half
space of the symmetrical FV space. Although no com-
parison can be made between these two approaches,
our FV selection method is simple and can be incorpo-
rated in any ML method.
FN Sp (%) Re (%) Pr (%) F

66,423 4,152 99.72 3.33 2.77 0.030

71,298 4,271 99.99 0.56 13.71 0.012

71,418 4,291 99.99 0.09 11.43 0.002

65,404 3,710 99.96 0.51 2.72 0.009

65,005 3,705 99.95 0.51 2.23 0.008

71,096 4,261 99.99 0.12 7,69 0.002

71,059 4,256 99.99 0.12 6.49 0.002

cess, cellular component or molecular function

71,245 4,284 99.99 0.07 6.00 0.001

71,216 4,280 99.99 0.07 5.08 0.001

value, 0.995, which gave the highest F-measure in the 10-fold CV, was used to
es in homologue conditions were used: joint identities ≥ 80%, joint e-values
ese parameters). In addition to the filtering by the template interactions only
nd (III) filtered by known DDIs and GO annotations (biological process, cellular
from human (taxonomy ID = 9609) and (B) from all species, were
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The predictability of the AODEs, which include a single
dependency between the features, was illustrated in a 10-
fold CV on Dset1, and then the AODE trained using all
three features, named PSOPIA, achieved the highest per-
formance in terms of both AUC (0.79) and pAUC0.5%

(0.16). In comparison with the NBC, which assumes con-
ditional independence of all three features, PSOPIA im-
proved AUC by 0.02 (p-value < 2.8e-08) and pAUC10% by
0.03 (p-value = 6.4e-08). We further tested PSOPIA on
Dset2, an independent data set, and compared its perform-
ance with that of BIPS, a recently reported homology-based
method. By excluding the identification of interacting pro-
tein pairs already in the database, PSOPIA (threshold =
0.670) achieved higher precision of 13.71% than that of
BIPS (2.72%) at a recall level of 0.5 ~ 0.6%, and thus dem-
onstrating higher predictability than BIPS in terms of the F-
measure. The F-measure is generally known as a useful and
reliable measure to evaluate different methods that have
different trade-off relations between precision and recall.
Further improvements of PSOPIA may be possible by

creating a large up-to-date PPI dataset integrated from
several databases, because a larger PPI database provides
a better chance of detecting known PPIs homologous to
a target protein pair. It is still unclear, however, whether
we should include cross-species data in such a database.
In this study, we evaluated BIPS on Dset2 and showed
that the use of interactions from different species did not
reduce the false positives. Also, Park [31] and Pitre et al.
[45] investigated whether interactions for a pair of pro-
teins in a target species can be predicted using a
method trained on known PPI data from different spe-
cies and observed no significant improvements in the
performance of the predictors. Thus, it remains to be
seen whether the AODE, a probability-based ML
method, can improve the prediction performance using
interactions from different species as a training data-
set. Moreover, it will be worth attempting to change
edge weights in a PPI network and distinguish the
interaction type, for example, using numerical parame-
ters given by Kerrien et al. [46] or similarities in GO
annotations [43].

Conclusions
In this study, we have illustrated that proximity in a
known PPI network between two proteins homologous
to a target protein pair contributes to the prediction of
whether the target proteins interact or not. Then, we
have applied this feature FNet to the PPI prediction with
two other features, FSeq and FDom. Our best AODE,
which achieved an AUC of 0.79 (pAUC0.5% = 0.16) in a
10-fold CV on a highly imbalanced data set, will hope-
fully contribute to the identification of novel PPIs and
the estimation of complete PPI networks. The method
proposed in this study is freely available on the web at
http://mizuguchilab.org/PSOPIA, and Dset2 used for
the evaluation can be downloaded from the same URL.

Additional file

Additional file 1: Table S1. Performance of four purely sequence-
based predictors benchmarked on Dset1, reported by Park [29]. The four
methods are; M1: an SVM based on a product of signatures, which
encode the sequence information about a protein pair [7], M2: the method
based on the co-occurrences of a pair of subsequences appearing in an
interacting pair [9,47], M3: an SVM with an S-kernel, which deals with the
symmetrical property of PPIs, and was created based on the counts of triplets
of amino acids catalogued into seven classes in each sequence [10], M4: an
SVM based on auto-correlation values of seven different physicochemical
scales calculated for a protein sequence [11]. The pAUC0.5% values for the
predictors M1 ~ M4 were not reported.
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