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Background. Cardiomyopathies remain among the leading causes of death worldwide, despite all efforts and important advances in
the development of cardiovascular therapeutics, demonstrating the need for new solutions. Herein, we describe the effects of the
redox-active therapeutic Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, AEOL10113, BMX-010 (MnTE-2-PyP5+), on
rat heart as an entry to new strategies to circumvent cardiomyopathies. Methods. Wistar rats weighing 250-300 g were used in
both in vitro and in vivo experiments, to analyze intracellular Ca2+ dynamics, L-type Ca2+ currents, Ca2+ spark frequency,
intracellular reactive oxygen species (ROS) levels, and cardiomyocyte and cardiac contractility, in control and MnTE-2-PyP5+-
treated cells, hearts, or animals. Cells and hearts were treated with 20 μM MnTE-2-PyP5+ and animals with 1mg/kg, i.p. daily.
Additionally, we performed electrocardiographic and echocardiographic analysis. Results. Using isolated rat cardiomyocytes,
we observed that MnTE-2-PyP5+ reduced intracellular Ca2+ transient amplitude, without altering cell contractility. Whereas
MnTE-2-PyP5+ did not alter basal ROS levels, it was efficient in modulating cardiomyocyte redox state under stress conditions;
MnTE-2-PyP5+ reduced Ca2+ spark frequency and increased sarcoplasmic reticulum (SR) Ca2+ load. Accordingly, analysis of
isolated perfused rat hearts showed that MnTE-2-PyP5+ preserves cardiac function, increases SR Ca2+ load, and reduces
arrhythmia index, indicating an antiarrhythmic effect. In vivo experiments showed that MnTE-2-PyP5+ treatment increased
Ca2+ transient, preserved cardiac ejection fraction, and reduced arrhythmia index and duration. MnTE-2-PyP5+ was effective
both to prevent and to treat cardiac arrhythmias. Conclusion. MnTE-2-PyP5+ prevents and treats cardiac arrhythmias in rats. In
contrast to most antiarrhythmic drugs, MnTE-2-PyP5+ preserves cardiac contractile function, arising, thus, as a prospective
therapeutic for improvement of cardiac arrhythmia treatment.
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1. Introduction

Therapeutic improvements, lifestyle modifications, and wider
adoption of evidence-based medicine have resulted in a
remarkable 30–35% decline in cardiovascular mortality [1].
However, despite all efforts and advances in developing car-
diovascular therapeutics, cardiomyopathies are still a major
public health problem and the main causes of death around
the world [2, 3].

Since the first observation that Ca2+ was required for car-
diac contraction and pacemaker activity, the role of Ca2+ as a
signaling ion in the heart has been progressively dissected
and better understood at molecular level, and it is clear that
abnormalities in Ca2+ homeostasis play a pivotal role in the
pathogenesis of many cardiovascular diseases, including car-
diac arrhythmias [4]. Inherited gene alteration and acquired
defects of multiple Ca2+-handling proteins can contribute
to the pathogenesis of arrhythmias in different categories
of heart disease [4]. However, drug therapy is available
only for some of these conditions and is often only partially
effective [5].

Ca2+ handling within cardiomyocytes is widely recog-
nized as a potential target for the treatment of cardiac disease.
Whereas the role of Ca2+ channels in cardiac muscle contrac-
tion has long been elucidated [6], the biophysical and genetic
identities of various voltage-gated Ca2+ channels were dis-
closed [7, 8], contributing along the way to several classes
of antagonists being described, which comprise now part of
the formulary for the treatment of cardiac diseases including
arrhythmias [4].

Accordingly, Ca2+ channel blockers are able to decrease
the automaticity of ectopic foci in the heart and can be used
in many arrhythmias [4]. Overall, it is thought that reduced
L-type calcium currents (ICa,L) result in less Ca2+ overload
on the myocyte, reducing tendency to ectopy, which can
trigger arrhythmias [4]. Additionally, cardiotonic glyco-
sides or digitalis are positive inotropes used in clinical
practice for the treatment of heart failure that also behave as
endogenous ligands for Na+/K+ ATPase. An increase in intra-
cellular Ca2+ content mediates their positive inotropic effect
but has also been suggested as a trigger of life-threatening
arrhythmias [9].

In many tissues, including the heart, reactive oxygen/-
nitrogen species (ROS/RNS) are often derived from mito-
chondria, NADPH oxidase, or uncoupled-nitric oxide
synthase (NOS) and are kept under tight homeostatic control
[10, 11]. In the cardiovascular system, ROS/RNS has been
shown to play an important role in regulation of K+, Na+,
L-type Ca2+ channels (in plasmatic membrane), and ryano-
dine receptor (RyR2) in sarcoplasmic reticulum membrane
[12–14]. Mn-porphyrin-based compounds have been widely
recognized as potent redox-active therapeutics, being able
to modulate ROS/RNS in several animal models of oxida-
tive stress [15–18]. Mn(III) meso-tetrakis(N-ethylpyridi-
nium-2-yl) porphyrin (MnTE-2-PyP5+), also known as
AEOL10113 or BMX-010, is currently under phase I/II clin-
ical trials in Canada and the USA [15], and preclinical toxi-
cological studies in conscious telemetered male cynomolgus
monkeys showed that administration of MnTE-2-PyP5+ at a

dose of 1mg/kg/day led to no statistically significant changes
in heart rate or arterial blood pressure [19].

The pharmacokinetic studies on MnTE-2-PyP5+ show a
good distribution of this compound into the heart [20, 21].
Such data prompted us to investigate MnTE-2-PyP5+ as a
redox-active experimental therapeutic for cardiomyopathy,
with particular focus on reducing Ca2+ stress and preserving
cardiac contractile function. We demonstrate that MnTE-2-
PyP5+ exerts protective effects in rat hearts, by modulating
Ca2+ dynamics, reducing arrhythmia score, and preserving
contractile function of the heart. Additionally, MnTE-2-
PyP5+ was effective in preventing and treating cardiac
arrhythmias in vivo.

2. Methods

2.1. Animals. All experiments were performed using rats of
both sexes (Rattus norvegicus, 200–250 g). Animals were
maintained at the Federal University of Paraiba (UFPB),
Brazil, in accordance with NIH guidelines for the care and
use of animals. Experiments were performed according to
approved animal protocols from the Institutional Animal Care
and Use Committee at UFPB (CEUA Protocol 016/2017). All
animals were euthanized by decapitation.

2.2. MnTE-2-PyP5+ Synthesis. MnTE-2-PyP5+ was synthe-
sized and characterized as described elsewhere [22–25].
Concentrations of MnTE-2-PyP5+ stock solutions were deter-
mined spectrophotometrically (log ε454nm = 5:14) [22–24].
Moreover, MnTE-2-PyP5+ is extremely stable toward deme-
tallation, even in strong concentrated acids (e.g., 98% sulfuric
acid) [26–28], or in the presence of strong chelating agents,
such as EDTA [26–29]. For both in vitro and in vivo experi-
ments, MnTE-2-PyP5+ was diluted in 0.9% NaCl sterile
solution.

2.3. Cardiomyocyte Isolation and Ca2+ Recordings. Ventricu-
lar rat cardiomyocytes were isolated and stored until they
were used as previously described [30]. Intracellular Ca2+

analysis was performed with Fluo-4 AM (10μM; Invitrogen,
Eugene, OR)-loaded cardiomyocytes. The cells were stained
for 30min and then washed to remove the excess dye. Cells
were electrically stimulated at 1Hz to produce steady-state
conditions. The images were recorded in a Zeiss LSM
510META confocal microscope. As an indicator of the SR
Ca2+ load, 10mM caffeine stimulation (in a Ca2+- and Na+-
free solution) and the amplitude of the Ca2+ transient evoked
were recorded [31]. Preconditioning pulses (1Hz) were used
in the cells before caffeine was applied. Ca2+ spark frequen-
cies were recorded in resting ventricular myocytes. The
Ca2+ level was reported as F/F0 (or as ΔF/F0), where F0 is
the resting Ca2+ fluorescence.

2.4. ROS Recordings. Isolated cardiomyocytes were incubated
with 10μM dihydroethidium (DHE, Molecular Probes,
Eugene, OR) for 30min at 37°C and were subsequently
washed with an extracellular solution to remove the excess
dye. Images were acquired with a Zeiss LSM 510 META con-
focal microscope. Images were analyzed in ImageJ software.
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2.5. Measurement of L-Type Ca2+ Current. Whole-cell
voltage-clamp recordings were done at 22–25°C using an
EPC-9.2 patch-clamp amplifier (HEKA Electronics,
Rheinland-Pfalz, Germany) as described previously [32, 33].
L-type Ca2+ current (ICa,L) measurement was done using
internal solution as follows (in mM): 5 NaCl, 120 CsCl, 20
TEACl, 5 EGTA, and 10 HEPES and pH 7.2 (adjusted using
CsOH 1.0M). External solution composition was as follows
(in mM): 5.4 KCl, 140 NaCl, 1.8 CaCl2, 1 MgCl2, 10 HEPES,
and 10 glucose and pH 7.2 (adjusted with NaOH 1.0M). To
measure the effect ofMnTE-2-PyP5+ on ICa,L density, we used
a holding potential of −80mV. Next, to inactivate both
voltage-gated Na+ channels and T-type Ca2+ channels, a pre-
step of 50ms to −40mV was applied. Then, the membrane
potential was swapped to 0mV for 300ms. This protocol
was used before, during, and after washing off each concentra-
tion of MnTE-2-PyP5+.

2.6. Measurement of LV Myocyte Shortening. Cellular con-
tractility was evaluated as previously described [34]. Briefly,
isolated myocytes were placed in a chamber mounted on
the stage of an inverted microscope (Eclipse TS 100; Nikon,
Japan). The chamber was perfused with Tyrode’s solution
(in mM): 150 NaCl, 5.4 KCl, 0.5MgCl2, 1.8 CaCl2, 10 HEPES,
and 10 glucose and pH set at 7.4. All experiments were
performed at room temperature. Myocytes were stimulated
to contract at 1Hz with 4ms square pulse. Shortening was
measured using a video-edge detection acquisition system
(IonOptix, Milton, MA, USA). Sarcomeric shortening was
expressed as a percentage of diastolic LV myocyte length.
Five consecutive myocyte contractions were averaged before
analysis. Cell shortening, maximal rates of contraction and
relaxation, and times to 10% contraction and relaxation were
determined for all groups.

2.7. Atrial Contractility. The left atrium was mounted in an
organ chamber and maintained in modified Krebs–Henseleit
solution (KHS) containing (in mM) 120 NaCl, 5.4 KCl, 1.2
MgCl2, 1.25 CaCl2, 11 glucose, 27 NaHCO3, and 2 NaH2PO4
(pH 7.4), oxygenated with carbogen mixture (95%O2 and 5%
CO2) and maintained at 29 ± 0:1°C. The atrium was electri-
cally stimulated (1Hz, 80V, 1.5ms, SD9 stimulator, Grass).
Tissue was placed under 5mN tension, and an isometric
force transducer (HP FTA 10-1 Sunborn) was used to record
the contraction force. After 30min of stabilization, MnTE-2-
PyP5+ was added cumulatively to the bath (1, 3, 10, 30, 100,
and 300μM).

2.8. Sarcoplasmic Reticular Ca2+ Load. The heart was quickly
removed, placed in a Krebs–Henseleit solution continuously
bubbled with 95% 02 and 5% CO2, and the left atrium was
dissected. The left atrium was tied with an isometric force
transducer (Grass FT03) which was mounted vertically
on a micromanipulator. Stimulation (STIMULATOR SD9
GRASS) was with pulses of 0.5ms duration at a suprathres-
hold voltage, and frequency of stimulation was 1Hz for a
30min equilibration period. Steady level and postrest con-
tractions following 20 s of pause in stimulation were observed
in caffeine-treated (10mM) or caffeine-treated containing

20μMMnTE-2-PyP5+. Measurements were made on the last
contraction before the pause and on the first contraction after
the rest interval.

2.9. Langendorff Preparation-Perfused Hearts. Animals were
euthanized 10–15min after intraperitoneal injection of
1000 IU heparin/kg. The heart was dissected and perfused
through a 1:0 ± 0:3 cm aortic stump with Krebs–Henseleit
solution (KHS) containing (in mM) NaCl, 120; KCl, 5.4;
MgCl2, 1.2; CaCl2, 1.25; glucose, 11; NaHCO3, 27; and
NaH2PO4, 2 (pH 7.4). The perfusion fluid was maintained
at 34 ± 1°C with a pressure of 10ml/min in constant oxygen-
ation (5% CO2 and 95% O2). Electrical activity was recorded
utilizing three platinum electrodes (Ag/AgCl, in NaCl 1M
electrolytic solution) placed inside the chamber close to the
heart for sensing electrical signals. Hearts were perfused for
an initial 20min period with KHS. After equilibration, the
hearts were perfused for 12min with KHS, 12min with
KHS+20μM MnTE-2-PyP5+, and last 30min period with
KHS. The high-calciummodel was used to determine cardiac
arrhythmias. Therefore, after a 20min stabilization, hearts
were perfused for 25min with normal perfusion KHS at
34°C, started 25min with high calcium (HC) (3.3mM) and
25min with HC+20μM MnTE-2-PyP5+.

2.10. In Vitro Arrhythmia. In vitro arrhythmia was deter-
mined in an isolated heart as described previously [35].
Hearts were subjected to perfusion with KHS containing
1.25mM of calcium (control group) at 34°C during 20min.
After stabilization, the hearts were subjected to perfusion
with 3.3mM high calcium (HC group) or with high calcium
in the presence of 20μM MnTE-2-PyP5+ during 25min.
Arrhythmia scores were determinate as previously described
[36]. Therefore, to quantify the arrhythmias, 25min of exper-
iment was divided into 3min intervals and the arrhythmia
scores were added at the end.

2.11. Measurement of Left Ventricular Pressure. Left intra-
ventricular pressure was measured using a water-filled bal-
loon introduced into the cavity of the left ventricle with a
constant diastolic pressure of 15mmHg by adjusting the
volume of the balloon, connected to a pressure transducer
(FE221, Bridge Amp, ADInstruments, Australia) coupled to
an amplifier (PowerLab 8/35, ADInstruments). Ventricular
pressures were processed using a dedicated software (LabChart
8 Pro, ADInstruments).

2.12. In Vivo MnTE-2-PyP5+ Safety. To test the in vivo safety
of MnTE-2-PyP5+, animals were randomized into two
groups: (1) control 0.9% saline (1ml/kg/day, i.p.) and (2)
MnTE-2-PyP5+ (1mg/kg/day, i.p.), which were treated for
15 days. The dose regimen for MnTE-2-PyP5+ administra-
tion was chosen based on rat model experiments carried
out previously by our group [17, 37, 38].

2.13. In Vivo ECG Measurements. The animals were anesthe-
tized with ketamine (80mg/kg, i.p.); surface ECG measure-
ments were conducted using subdermal electrodes placed
in the DII lead arrangement connected to a cardioscope,
amplified and digitalized (PowerLab 4/35 ADInstruments,
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USA). ECG signals were recorded for 15min, then animals
received an injection of caffeine (120mg/kg, i.p.) and epi-
nephrine (2mg/kg, i.p.). Data were analyzed in LabChart 8
(ADInstruments, USA) and arrhythmic score measured as
described previously [36].

2.14. In Vivo Arrhythmia Susceptibility. The animals were
injected with dexamethasone (4mg/kg, i.p.) for 7 days to
predispose to arrhythmia. In the prevention protocol, ani-
mals received MnTE-2-PyP5+ (1mg/kg/day, i.p.) during the
7 days of dexamethasone administration. In the treatment
protocol, the animals received only dexamethasone until
day 5 and MnTE-2-PyP5+ (1mg/kg/day, i.p.) and dexameth-
asone (4mg/kg, i.p.) in days 6 and 7. Rats were randomized
into four experimental groups: 1: control; 2: dexamethasone;
3: dexamethasone+MnP (treatment); and 4: dexamethasone
+MnP (prevention).

2.15. M-Mode Echocardiography. Cardiac function under
noninvasive conditions was assessed by two-dimensional
guided M-mode echocardiography of halothane-anesthetized
mice as previously described [39]. Briefly, animals were posi-
tioned on supine position with front paws wide open and tri-
chotomized. Transthoracic echocardiography was performed
using a SonoSite M-Turbo Ultrasound System B (USA)
equipped with a 14MHz linear transducer.

2.16. Statistical Analysis. Data are presented as mean ± SEM.
Sample comparisons were performed using Student’s t-test
for two-group analysis or one-way ANOVA followed by post
hoc analysis for multiple comparisons. In all statistical tests, a
p < 0:05 was used as a measure of statistical significance.

3. Results

3.1. MnTE-2-PyP5+ Reduces Ca2+ Signaling Preserving
Cardiomyocyte Contractility. To investigate whether
MnTE-2-PyP5+ modulates Ca2+ signaling in the heart, we
performed Ca2+ transient analysis in isolated cardiomyocytes
loaded with Fluo-4/AM (5μM), incubated for 90min with
crescent concentrations of MnTE-2-PyP5+ (2-200μM), and
observed a significant reduction in peak Ca2+ transient in a
concentration-dependent manner (Figure 1(a)). However,
the kinetics of Ca2+ decay was altered only for T90 at
200μM concentration (Figures 1(b) and 1(c)). Considering
that 20μM MnTE-2-PyP5+ concentration reduced approxi-
mately by 50% the peak Ca2+ transient, we chose this concen-
tration to continue the experiments. To further understand
the MnTE-2-PyP5+ effect on cardiac myocytes, we performed
a time course analysis of Ca2+ transient from 5 to 15min.
Once again, MnTE-2-PyP5+ promoted a significant decrease
in peak Ca2+ transient, observed after 15min of incubation
(Figure 1(d)), without causing alterations in the kinetics of
Ca2+ decay (Figures 1(e) and 1(f)). Additionally, we observed
that MnTE-2-PyP5+ did not change the basal Fluo-4 fluores-
cence (Supplementary videos 1–4).

Considering that MnTE-2-PyP5+ is a superoxide dismut-
ase (SOD) mimetic (currently recognized as a broad redox
modulator) [17, 18], we used dihydroethidium (DHE), a
fluorescent, cell-permeable, reactive oxygen species (ROS)

indicator, to evaluate MnTE-2-PyP5+ effect on cardiomyo-
cyte ROS levels. MnTE-2-PyP5+ did not change the basal
levels of ROS. However, as its well-known that MnTE-2-
PyP5+, physiologically, has antioxidant activity under oxida-
tive stress conditions, we used isoproterenol (ISO) as a cell
stressor. As expected, ISO induced an increase in DHE fluo-
rescence that was prevented by MnTE-2-PyP5+ (Figures 2(a)
and 2(b)), indicating that MnTE-2-PyP5+ is efficient in
modulating cardiomyocyte redox state under stress condi-
tions. Nevertheless, as MnTE-2-PyP5+ did not change basal
ROS levels in cardiomyocytes, this result suggests that the
observed reduction in Ca2+ transient induced by MnTE-2-
PyP5+ is likely independent of its antioxidant effect.

As L-type Ca2+ channels (LTCC) and ryanodine receptors
(RyR)arecritical fornormalCa2+signaling,we investigated the
MnTE-2-PyP5+ effects on L-type Ca2+ current (ICa,L) using
whole-cell voltage-clamp recordings. Figures 2(d)–2(f) show
thatMnTE-2-PyP5+inducedasignificantreductioninICa,Lcur-
rentdensity,compatiblewiththereductioninthepeakCa2+tran-
sient. Additionally, we measured Ca2+ spark frequency, and
interestingly, MnTE-2-PyP5+ reduced basal spark frequency
(Figure2(c))andpreventedtheincreaseinCa2+sparkfrequency
inducedbyISO(Figure2(c)).

As we observed all these alterations in pivotal compo-
nents of excitation-contraction coupling (ECC) and consid-
ering the importance of Ca2+ ion for cellular contraction,
we next analyzed the MnTE-2-PyP5+ effects on cardiomyo-
cyte contractility. Remarkably, despite the reduction in ICa,L
and in peak Ca2+ transient, no changes in fractional shorten-
ing, systolic length, or diastolic length of MnTE-2-PyP5+-
treated cardiomyocytes were observed, which is in direct
contrast to the LTCC blocker verapamil-treated group
(Figures 3(a)–3(d)). This result is noteworthy, because it
indicates that although MnTE-2-PyP5+ decreases Ca2+ tran-
sient, it preserves cardiomyocyte contractility.

3.2. MnTE-2-PyP5+ Preserves Heart Contractility Reducing
Arrhythmia Index. Based on effects observed in isolated car-
diomyocytes, we decided to investigate MnTE-2-PyP5+

actions on heart contractility. First, using isolated left atria
preparation, it was observed that MnTE-2-PyP5+ did not
evoke alterations in contraction force, dT/dt(+), and
dT/dt(-) (Figures 3(e)–3(g)), corroborating the data obtained
in isolated cardiomyocytes and indicating that MnTE-2-
PyP5+ preserves cardiomyocyte contractility, also in tissue
analysis. Furthermore, in Langendorff-perfused hearts,
MnTE-2-PyP5+ did not change the left ventricular developed
pressure (LVDP) (Figure 3(h)). Additionally, we verified that
systole, diastole, and cardiac cycle duration were notmodified
by MnTE-2-PyP5+ (Supplementary Fig. S1A–C). Overall,
these data show that althoughMnTE-2-PyP5+ acutely reduces
Ca2+ signaling in isolated cardiomyocytes, it preserves heart
contractility.

As we observed alterations in Ca2+ spark frequency in
isolated cardiomyocytes, we also tested if MnTE-2-PyP5+

altered SR Ca2+ content in isolated atria. Consistent with iso-
lated cell data, MnTE-2-PyP5+ increased the SR Ca2+ load in
approximately 66%, which helps to explain the maintenance
of the cardiac contractility (Supplementary Figs. S1D and E).
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Figure 1: MnTE-2-PyP5+ reduces Ca2+ transients in cardiac myocytes. Concentration effect of MnTE-2-PyP5+ on Ca2+ transients.
(a) Significant reduction in peak Ca2+ transient amplitude in isolated cardiomyocytes treated with MnTE-2-PyP5+. Ca2+ transient kinetics of
decay in ms for (b) T50 or (c) T90. (d, e) Time course effect of MnTE-2-PyP5+ 20 μM on Ca2+ transients. (d) Significant reduction in peak
Ca2+ transient amplitude in MnTE-2-PyP5+-treated cardiomyocytes for 15min. (e, f) Ca2+ transient kinetics of decay in ms for (e) T50 or
(f) T90; n= at least 10 cells per animal and 3 animals per group. ∗p ≤ 0:05; ∗∗p ≤ 0:01; ∗∗∗p ≤ 0:001. MnP=MnTE-2-PyP5+.
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Considering the involvement of Ca2+ ions in triggering
cardiac arrhythmias, we used Langendorff-perfused hearts
to test whether MnTE-2-PyP5+ could alter the electrical
activity of the heart. Electrocardiographic (ECG) recordings
were used to analyze ECG intervals and segments. The results

showed that heart rate and QRS complex length were not
modified by MnTE-2-PyP5+ (Figures 4(a)–4(c)). However,
QTcV was significantly shortened and PRi increased
(Figures 4(d) and 4(e)). Additionally, to investigate if
MnTE-2-PyP5+ could target cardiac arrhythmias, isolated
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Figure 2: MnTE-2-PyP5+ reduces Ca2+ currents independent of antioxidant activity. (a) Representative images of DHE-stained cells.
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hearts were perfused with high calcium (HC) to induce car-
diac arrhythmias. Figure 4(f) shows normal ECG traces in
control situation (top panel) and induced arrhythmias in
HC-perfused heart (bottom panel). As shown in Figure 4(g),
HC perfusion significantly increased the arrhythmia scores
and MnTE-2-PyP5+ decreased HC-induced cardiac arrhyth-
mias. Furthermore, most of the arrhythmias evidenced
in control situation were of lower severity, such as ven-
tricular premature beats (VPB, Figure 4(h)). In contrast,
HC-perfused hearts presented ventricular fibrillation (VF),
the most severe type of arrhythmia. Remarkably, MnTE-2-
PyP5+ prevented the incidence of the most severe arrhythmia
events (Figure 4(h)).

3.3. MnTE-2-PyP5+ Increases Ca2+ Transient and Preserves
Heart Function In Vivo. Based on our in vitro results, we
visualized MnTE-2-PyP5+ as a potential lead for therapeutic
approaches for some cardiac arrhythmias. Thus, we designed

in vivo experiments in rats to investigate the effect of MnTE-
2-PyP5+ on the heart. Animals were treated daily with
1mg/kg MnTE-2-PyP5+ (i.p. injections) for 15 days. First,
we tested MnTE-2-PyP5+ effects on Ca2+ transient. Cardio-
myocytes from MnTE-2-PyP5+-treated rats presented
increased peak Ca2+ transient and T90 time for Ca2+ decay,
different from what we observed in acutely treated isolated
myocytes (Figures 5(a)–5(c)). Additionally, as we verified
an increase in SR load in vitro, we decided to investigate
the SR load in cardiomyocytes isolated from treated ani-
mals. In agreement with in vitro experiments, MnTE-2-
PyP5+ treatment increased SR Ca2+ load by approximately
14% (Figure 5(d)).

Additionally, heart weight/body weight (HW/BW) and
heart weight/tibia length (HW/TL) ratios were evaluated as
markers of cardiac hypertrophy in MnTE-2-PyP5+-treated
animals. As shown in Figures 5(e) and 5(f), these parameters
did not differ from those of the control group. Next, by
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Figure 3: MnTE-2-PyP5+ preserves cardiomyocyte and atria contractility. (a) Representative traces of isolated ventricular cardiomyocyte
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echocardiographic analysis, we verified that MnTE-2-PyP5+-
treated animals had no difference in ejection fraction (EF)
when compared to control (Figure 5(g)), indicating that
MnTE-2-PyP5+ preserves cardiac contractility in vivo. Taken
together, these results indicate that MnTE-2-PyP5+ adminis-
tered at 1mg/kg/day i.p. does not alter normal heart function
in vivo.

3.4. MnTE-2-PyP5+ Effectively Prevents and Treats Cardiac
Arrhythmias In Vivo. Considering the robust effects of
MnTE-2-PyP5+ in preventing cardiac arrhythmias in isolated
hearts, we assessed its antiarrhythmic property in vivo. By
using a dexamethasone-induced arrhythmia model, we tested
both preventive and therapeutic actions of MnTE-2-PyP5+.
Figure 6(a) shows representative ECG traces along with the
type of the recorded arrhythmias: isolated VPB, sustained
VPB, and VT. Remarkably, in both prevention and treatment
protocols, MnTE-2-PyP5+ was completely effective to reduce
both arrhythmia score and duration (Figures 6(b) and 6(c)),
restoring the control profile. When we analyzed the severity
of ventricular arrhythmias, we observed that MnTE-2-
PyP5+ prevented the occurrence of ventricular tachycardia
(VT) (Figure 6(d)). However, although MnTE-2-PyP5+

reduced the duration of arrhythmias, it was not able to
reverse the relative occurrence of VT (Figure 6(d)).

To better view the multiple actions of MnTE-2-PyP5+,
Figure 7 presents a schematic summary of the main effects
of MnTE-2-PyP5+ both in vitro and in vivo.

To better view the multiple actions of MnTE-2-PyP5+,
Figure 7 presents a schematic summary of the main effects
of MnTE-2-PyP5+ both in vitro and in vivo.

4. Discussion

Cardiac arrhythmias are important causes of sudden death;
thus, proper treatment of these conditions is of utmost
importance. Indeed, over the last two decades, there has been
a great deal of progress in arrhythmiamanagement. However,
most antiarrhythmic drugs proved ineffective or dangerous in
patients with ventricular arrhythmias [40], demonstrating
the need for new therapeutic strategies.

Although the mainstay of treatment for catecholaminer-
gic polymorphic ventricular tachycardia (CPVT) has been
β-blockade, there has also been early evidence that blocking
ICa,L with the LTCC blocker verapamil prevents ventricular
arrhythmias [41]. Overall, it is thought that reduced ICa,L
results in less Ca2+ overload of the myocyte, reducing predis-
position to ectopy that can trigger arrhythmias [4]. In agree-
ment with these findings, our study shows that acute
administration of MnTE-2-PyP5+ to isolated cardiomyocytes
reduced the peak Ca2+ transient in these cells, in association
with reduced ICa,L. Additionally, acute administration of
MnTE-2-PyP5+ in isolated hearts resulted in reduction in
arrhythmia index, severity, and duration of arrhythmias,
demonstrating, for the first time, that MnTE-2-PyP5+ repre-
sents a new lead molecule for the treatment of cardiac
arrhythmias.

Additionally, while in vitro acute use of MnTE-2-PyP5+

reduced Ca2+ transient in cardiomyocytes, in vivo 15-day

use of MnTE-2-PyP5+ in healthy rats did not change Ca2+

transient in cardiomyocytes. Although these results may at
first seem inconsistent, when we consider that MnTE-2-
PyP5+ reduced Ca2+ spark rate and increased SR load, chron-
ically, these two effects combined may account for the final
increased Ca2+ transient observed in vivo. Additionally, as
we and others [15, 17, 18] demonstrated that under stress
conditions MnTE-2-PyP5+ prevents oxidative stress, this
effect can also contribute, chronically, to cellular restoration
of basal transient kinetics. Accordingly, Almeida et al. [42]
demonstrated that aldosterone-treated cardiomyocytes pre-
sented increased ICa,L and Ca2+ transient and that Angioten-
sin-(1–7) restored basal ICa,L albeit with a great increase in
Ca2+ transient. Further investigation demonstrated that this
alteration in Ca2+ transient was caused by reduction in
Ca2+ spark frequency and consequent increased SR load.
MnTE-2-PyP5+ apparently works via a similar mechanism
by improving Ca2+ transient in the long term. In addition,
the systemic antioxidant effect of MnTE-2-PyP5+ must be
considered in the cardiovascular health in vivo.

By reducing peripheral vasoconstriction and LV after-
load, calcium channel blockers were thought to have a poten-
tial role in the management of chronic heart failure (HF).
However, first-generation dihydropyridine and nondihydro-
pyridine calcium channel blockers also have myocardial
depressant activity [43]. Several clinical trials have demon-
strated either no clinical benefit or even worse outcomes in
patients with HF treated with these drugs [44–48]. Despite
their greater selectivity for calcium channels in vascular
smooth muscle cells, second-generation calcium channel
blockers, dihydropyridine derivatives such as amlodipine
and felodipine, have failed to demonstrate any functional or
survival benefit in patients with HF [49–53]. Together, these
data show that although calcium channel blockers have an
important role in the management of cardiac arrhythmias,
they are of limited use, especially in patients with HF.

Although the use of calcium channel blockers for
arrhythmia treatment is often plagued by myocardial depres-
sant activity, here, we demonstrated that MnTE-2-PyP5+

prevents and treats cardiac arrhythmias while preserving
contractility at both cardiomyocyte and heart levels. These
combined effects respond to a large gap in arrhythmia treat-
ments, especially in patients with HF.

It is worth noting that our study demonstrates that
MnTE-2-PyP5+ preserves cardiomyocyte and heart contrac-
tility and exerts antiarrhythmic effects both in vitro and
in vivo, representing, thus, a potentially new strategy to
treat cardiac arrhythmias in patients with contractile dys-
functions. In addition, although reduction in peak calcium
transients is usually related to reduction in cardiac contrac-
tility, modulation of proteins involved in calcium handling
or contractile machinery can alter this relationship. In this
way, Vanzelli el al [54]. demonstrated that heart failure
mice treated with carvedilol had an improvement in cardiac
fractional shortening instead of no alterations in peak cal-
cium transients. Although we did not analyze these mecha-
nisms directly, we speculate that MnTE-2-PyP5+ effect may
be somewhat related to the mechanism described by
Vanzelli el al [54].; further investigations are obviously
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Figure 6: MnTE-2-PyP5+ effectively prevents and treats cardiac arrhythmias. (a) Representative images of electrocardiogram records, cardiac
arrhythmias are highlighted. Bar graphs showing that MnTE-2-PyP5+ reduces (b) arrhythmia score and (c) duration. (d) Bar graph showing
protective effect of MnTE-2-PyP5+ on severity of arrhythmias. n = 5 animals per group. Dx = dexamethasone (4mg/kg, i.p. 7 days); Dx+MnP
treat = dexamethasone+MnP treatment (MnTE-2-PyP5+, 1mg/kg/day, i.p., during the last 2 days of Dx); Dx+MnP= dexamethasone+MnP
prevention (MnTE-2-PyP5+, 1mg/kg/day, i.p., during the 7 days of Dx). ∗p ≤ 0:05; ∗∗p ≤ 0:01; ∗∗∗p ≤ 0:001. #p ≤ 0:05 compared to control.
VT= ventricular tachycardia; VPB= ventricular premature beat. Mn=MnTE-2-PyP5+.
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needed to disclose the actual MnTE-2-PyP5+ mechanism(s)
of action.

Finally, it is important to highlight that the use of Mn
porphyrin-based SOD mimics for cardiovascular treatments
is in its infancy. A first report [55] was very recently pub-
lished on the ability of an analogous Mn porphyrin,
MnTnBuOE-2-PyP5+ (BMX-001) [28], to suppress aortic
valve sclerosis in mice and human models. We showed
herein that the prototypical Mn-porphyrin MnTE-2-PyP5+

represents a simple, promising redox-active therapeutic for
preventing and treating cardiac arrhythmias, preserving heart
contractile function. Taken together, the data strengthen the
therapeutic potential of Mn porphyrins in a quite unexplored
field of cardiac applications.
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Supplementary Materials

Supplementary 1. Supplementary figure 1: (A-C) duration
time for systole, diastole, and cardiac cycle, calculated in
electrocardiograms recorded in isolated hearts, and (D)

representative traces of the left atrium contraction. Steady
level and postrest contractions following 20 s of pause in
stimulation were observed in caffeine-treated (10mM) or
caffeine-treated containing 20μM MnTE-2-PyP5+.

Supplementary 2. Supplementary figure 1: (E) the bar graph
of contraction force average for each group. Measurements
were made on the last contraction before the pause and on
the first contraction after the rest interval. Supplementary
videos 1-4: representative videos of Fluo-4 AM (10μM;
Invitrogen, Eugene, OR)-loaded cardiomyocytes, under field
stimulation (1Hz), recorded in a Zeiss Axio Observer A1
fluorescent microscope.
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