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Acute ischaemic stroke disturbs healthy brain organization, prompting subsequent plasticity and reorganization to compensate for

the loss of specialized neural tissue and function. Static resting state functional MRI studies have already furthered our understand-

ing of cerebral reorganization by estimating stroke-induced changes in network connectivity aggregated over the duration of several

minutes. In this study, we used dynamic resting state functional MRI analyses to increase temporal resolution to seconds and ex-

plore transient configurations of motor network connectivity in acute stroke. To this end, we collected resting state functional MRI

data of 31 patients with acute ischaemic stroke and 17 age-matched healthy control subjects. Stroke patients presented with

moderate to severe hand motor deficits. By estimating dynamic functional connectivity within a sliding window framework, we

identified three distinct connectivity configurations of motor-related networks. Motor networks were organized into three regional

domains, i.e. a cortical, subcortical and cerebellar domain. The dynamic connectivity patterns of stroke patients diverged from

those of healthy controls depending on the severity of the initial motor impairment. Moderately affected patients (n = 18) spent sig-

nificantly more time in a weakly connected configuration that was characterized by low levels of connectivity, both locally as well

as between distant regions. In contrast, severely affected patients (n = 13) showed a significant preference for transitions into a spa-

tially segregated connectivity configuration. This configuration featured particularly high levels of local connectivity within the

three regional domains as well as anti-correlated connectivity between distant networks across domains. A third connectivity con-

figuration represented an intermediate connectivity pattern compared to the preceding two, and predominantly encompassed

decreased interhemispheric connectivity between cortical motor networks independent of individual deficit severity. Alterations

within this third configuration thus closely resembled previously reported ones originating from static resting state functional MRI

studies post-stroke. In summary, acute ischaemic stroke not only prompted changes in connectivity between distinct networks, but

it also caused characteristic changes in temporal properties of large-scale network interactions depending on the severity of the indi-

vidual deficit. These findings offer new vistas on the dynamic neural mechanisms underlying acute neurological symptoms, cortical

reorganization and treatment effects in stroke patients.
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Introduction
Ischaemic stroke is a major cause of sudden focal brain damage

that severely disrupts structural and functional integrity at

both local and global scales (von Monakow, 1914; Carrera

and Tononi, 2014). Functional neuroimaging has strongly con-

tributed to reveal neural mechanisms engaged in post-stroke

plasticity and reorganization (Grefkes and Fink, 2011, 2014;

Ward, 2017). More precisely, resting state functional MRI

studies have frequently demonstrated disturbances in interhe-

mispheric connectivity following stroke (Carter et al., 2010;

Wang et al., 2010; Golestani et al., 2013; Rehme et al., 2014).

A highly consistent finding encountered in motor stroke is the

reduction of interhemispheric connectivity between the pri-

mary sensorimotor cortices, which develops in the first weeks

after stroke and returns to levels observed in healthy subjects in

parallel with behavioural recovery (van Meer et al., 2010; Park

et al., 2011; Volz et al., 2016). However, as conventionally

applied analysis tools do not allow for a fine-grained temporal

evaluation of resting state functional MRI signals, it is current-

ly unknown whether such stroke-induced alterations in func-

tional network connectivity additionally exhibit fluctuations

dependent on symptom severity. These temporal variations

could reflect network flexibility necessary for neural reorgan-

ization underlying recovery of function.

Importantly, the temporal resolution of resting state functional

MRI data has recently been increased by the advent of time-

varying or ‘dynamic’ functional network connectivity (dFNC)

analyses (Chang and Glover, 2010; Allen et al., 2014; Calhoun

et al., 2014). In contrast to the assumption of ‘static’ connectivity

over the entire duration of a functional MRI scan, ‘dynamic’

analyses now allow connectivity between brain areas to differ

over short periods of time. Consequently, connectivity changes

can be assessed in the range of seconds instead of several

minutes. By summarizing reoccurring large-scale patterns of

connectivity, dFNC analyses can then be presented as distinct

‘connectivity states’ of the brain, as well as transition trajectories

between them. These dynamic measures may enable a more

sophisticated evaluation of the spontaneously fluctuating nature

of neural signals compared to static ones, may possess behav-

ioural relevance (Vidaurre et al., 2019) and are increasingly sug-

gested as novel biomarkers of disease (for reviews see Hutchison

et al., 2013; Preti et al., 2017; Lurie et al., 2020). For example,

Kim et al. (2017) applied dFNC analyses on Parkinson’s disease

patients’ data and substantiated a significant association

between the occurrences of dynamic connectivity states and clin-

ical disease severity. These dynamic patterns uncovered reduc-

tions in functional network segregation that did not manifest in

static analyses. Likewise, Espinoza et al. (2019) reported a sig-

nificantly increased occurrence of a particularly weakly con-

nected dynamic connectivity state in Huntington’s disease,

which was not detected using static analyses.

Given the increased capacity of dFNC analyses in delineat-

ing spontaneously forming connectivity states, such a dy-

namic approach seems to be particularly well suited to

assess conditions requiring high levels of network flexibility,

as, for example, in the case of stroke-induced acute lesions.

A focal lesion may not only disrupt communication within

the motor system, but also alter the brain’s predilection for

certain connectivity states (Vergara et al., 2018). Specific dy-

namic patterns may be crucial for the process of neural re-

organization and hence determine the potential of the brain

to recover (van der Horn et al., 2019).

Therefore, the goal of the current study was to investigate

dFNC of the motor system in patients with acute ischaemic

stroke. We analysed resting state functional MRI data from 31

first-ever stroke patients, presenting with moderate-to-severe

hand motor deficits, and 17 age-matched healthy control sub-

jects. We hypothesized distinct dFNC patterns in stroke

patients linked to symptom severity, i.e. specific patterns for se-

verely and moderately affected patients, which were not assess-

able in the static analysis framework. In particular, we

expected to observe temporally highly variable global changes

in functional connectivity, readily interpretable as segregation

and integration between functional domains (Friston, 2002;

Eickhoff and Grefkes, 2011). Therefore, the dFNC approach

seems to be promising for revealing the complex network

effects that acute stroke exerts on the dynamic interactions

among brain areas during the recovery process.

Materials and methods

Participants

Thirty-two first-ever acute ischaemic stroke patients admitted to
the University Hospital of Cologne, Department of Neurology
[mean age ± standard deviation (SD): 68.4±12.1 years, 19
males, days post stroke ± SD: 7.2± 2.7] and 17 healthy controls
(mean age ± SD: 65.4±6.4 years, 15 males) were recruited. One
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stroke patient was excluded because of severe head motion dur-
ing scanning (see below), leaving 31 patients for the final ana-
lysis. Stroke patients presented with acute unilateral hand motor
deficits. Further inclusion criteria were: (i) 40–90 years of age;
(ii) diffusion-weighted MRI (DWI) positive for ischaemic stroke;
(iii) structurally intact ipsilesional precentral gyrus (M1) as veri-
fied by MRI; (iv) within 2 weeks from symptom onset (one pa-
tient was included 16 days after stroke); and (v) absence of
severe aphasia, apraxia, and neglect. Exclusion criteria were: (i)
any contraindication to MRI (e.g. cardiac pacemaker); (ii) epi-
lepsy; (iii) infarcts in multiple territories; (iv) haemorrhagic
stroke; and (v) further neurological diseases. Furthermore, no
patient featured a haemorrhagic transformation of the ischaemic
lesion. In addition, 17 age-matched healthy subjects with no
neurological or psychiatric disease served as control group. All
subjects provided informed written consent in accordance with
the Declaration of Helsinki and all aspects of this study were
approved by the local ethics committee.

Please note that the raw data of 26 patients were previously
included in Volz et al. (2016). Importantly, the scopes of the
two studies strongly differ [dynamic functional connectivity ana-
lysis in acute stroke in the current study versus effects of repeti-
tive transcranial magnetic stimulation (rTMS) on motor
recovery in Volz et al. (2016)]. There is no overlap, neither in
the research question nor in any of the results. Therefore, all
analyses described here are novel.

Hand motor function and clinical
assessments

Hand motor deficits were quantified using the Action Research
Arm Test (ARAT) (Yozbatiran et al., 2008). This test is widely
used in stroke research and assesses gross and fine upper limb
function in four dimensions (i.e. grasp, grip, pinch, and gross
movements; range 0–57; 57 = normal performance, 0 = unable
to perform any movements). Furthermore, we obtained the
National Institutes of Health Stroke Scale (NIHSS) for each
patient.

To test for the impact of the motor deficit on dFNC, we div-
ided the sample into (i) a subgroup of severely affected patients
(ARAT score 0–28); and (ii) a subgroup of lightly to moderately
affected patients (ARAT score 29–57). For two patients, ARAT
scores were unavailable because of technical reasons. The first
patient was severely affected, according to an NIHSS of 16, and
suffered from hemiplegia with no residual arm function. This
was equivalent to an ARAT score close to 0, hence the patient
was assigned to the severely affected subgroup. The second pa-
tient was mildly affected (NIHSS = 3) and had only minor hand
motor deficits. Therefore, this patient was assigned to the mod-
erately affected subgroup. Demographic characteristics of all
study participants and clinical features of stroke patients are
listed in Table 1.

MRI

Acquisition of resting state functional MRI data was performed
on a Siemens Trio 3 T scanner (Siemens Medical Solutions). The
following gradient echo-planar imaging (EPI) parameters were
applied: repetition time = 2200 ms, echo time = 30 ms, field of
view = 200 mm, 33 slices, voxel size: 3.1 � 3.1 � 3.1 mm3,
20% distance factor, flip angle = 90�, 183 volumes (slice

coverage of the whole brain). Participants were instructed to lie
motionless in the scanner and keep fixating on a red cross on a
black screen all through the approximately 7-min session. For
stroke patients, we additionally collected DWI images (repetition
time = 5100 ms, echo time = 104 ms, field of view = 230 mm,
30 slices, voxel size = 1.8 � 1.8 � 3.0 mm3) to obtain detailed
information on lesion location and extent.

Preprocessing of resting state
functional MRI data

Resting state functional MRI data were preprocessed using the
Statistical Parametric Mapping software package (SPM12,
Wellcome Trust Centre for Neuroimaging, London, UK; www.
fil.ion.ucl.ac.uk/spm) as implemented in MATLAB (version
R2019a, MathWorks, Inc., Natick, MA, USA). In case of right-
hemispheric lesions (n = 8), images were flipped along the mid-
sagittal plane. In this way, all lesions were located in the left
hemisphere, thereby ignoring effects specific to the left or right
hemisphere. The first four volumes (‘dummy’ images) of each
scan were discarded to allow for the development of a steady
blood oxygenation level-dependent activity signal. Preprocessing
of the remaining 179 volumes continued with head movement
correction by affine realignment to each scan’s mean image. In
stroke subjects, diffusion-weighted images were co-registered to
the mean EPI. Image volumes were spatially normalized using
the ‘unified segmentation’ option after masking lesioned tissue
(Ashburner and Friston, 2005). In a final preprocessing step,
images were smoothed using a Gaussian kernel with a full-width
at half-maximum (FWHM) of 8 mm.

Controlling for head motion

We verified the absence of severe motion by calculating individ-
ual mean and maximum framewise displacements (Power et al.,
2012). As dynamic functional connectivity analyses are sensitive
to head motion, we excluded one subject (Subject 32) with a
maximum framewise translation of 12.2 mm. No significant
group difference in framewise displacements was observable
when comparing the final sample of 31 stroke patients with the
17 healthy controls (two-sided t-test: P = 0.79).

Intrinsic connectivity networks

The intrinsic connectivity network components used for func-
tional connectivity estimations were computed using spatially
constrained independent component analysis (ICA) (Lin et al.,
2010; Du and Fan, 2013) based on components estimated from
resting state functional MRI data of 405 healthy controls
(Calhoun et al., 2001; Allen et al., 2014; components are avail-
able for download from: http://trendscenter.org/software/). The
advantage of using a spatially constrained ICA approach with
components from healthy participants on the current data sam-
ple is that parcellations are not biased by stroke lesions, yet are
still adaptive to the individual and provide enhanced robustness
to artefacts and noise compared to single-subject ICA denoising
and regression-based back-reconstruction (Du et al., 2016;
Salman et al., 2019). We refer to Salman et al. (2019) for a
detailed description of the group information guided ICA
(‘back-reconstruction’) algorithm. Given that all patients were
scanned very early after stroke (on average 7.2 days), cortical
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reorganization is rather unlikely to have significantly changed
the functional architecture (Rehme et al., 2011), further justify-
ing the use of a healthy sample for defining the network compo-
nents of interests. As all patients were selected based on the
presence of a motor deficit, we focused our analysis on the
motor system. Accordingly, we obtained 15 motor network
components (as extracted in Allen et al., 2014). After back-re-
construction, we decided to exclude two of these 15 components
because of spatial inaccuracies and a low ratio of low-frequency
to high-frequency spectra, a marker of poor signal quality. The
remaining 13 network components were identified as (i) left
(ipsilesional) primary sensorimotor cortex; (ii) right (contrale-
sional) primary sensorimotor cortex; (iii) bilateral ventral pre-
motor cortex; (iv) supplementary motor area (SMA); (v)
bilateral postcentral gyrus; (vi–vii) paracentral lobule (I and II);
(viii) bilateral superior parietal lobule; (ix–xi) three subcortical
(SC) components: putamen I, putamen II and thalamus; and (xii
and xiii) two cerebellar (CB) components: cerebellum right and
left. These network components were assigned to one of three
domains, i.e. sensorimotor, subcortical and cerebellar domains
(Fig. 1).

Before entering the resulting spatial maps and corresponding
time courses into further static and dynamic functional connect-
ivity pipelines, time courses were detrended (i.e. accounting for
linear, quadratic and cubic trends in the data), despiked using
3Ddespike (Cox, 1996) and filtered by a fifth-order Butterworth
low-pass filter with a high-frequency cut-off of 0.15 Hz. Finally,
each time course was normalized for variance (Rachakonda
et al., 2007).

Static functional network
connectivity analysis

The multivariate analysis of covariance (MANCOVAN) toolbox
within GIFT (http://trendscenter.org/software/gift) was used to
evaluate significant associations of connectivity within and be-
tween functional networks and the independent variables age,
gender, translation, rotation, and group status (healthy controls
– moderately affected stroke patients – severely affected stroke
patients). We proceeded in sequential multi- and univariate man-
ners, as first outlined in Allen et al. (2011). Translation and rota-
tion were computed as the mean of the absolute differences
between consecutive time frames. Age, translation and rotation
were treated as continuous variables, while gender and group
status were defined as categorical variables.

Within-network connectivity

For each of the 13 network components, analyses were separ-
ately performed on the signal intensities of the respective spatial
maps. These intensities represent a measure of the coherence
(connectivity) between voxels within the spatial map. We began
with the full set of independent variables and PCA-dimensional-
ity reduced voxel intensities of spatial maps as multivariate, de-
pendent variables. We then obtained reduced models by
backward elimination, i.e. relying on F-tests at each step, and
retained significant independent variables only. Afterwards, we
computed univariate, voxelwise t-tests for those independent
variables that had remained significant in the multivariate ana-
lysis after backward selection. More precisely, we tested for dif-
ferences in signal intensity for each voxel within a spatial map
dependent upon the significant variable, e.g. group status, while
accounting for the remaining independent variables. As this
resulted in several thousand individual t-tests, a separate one for
each voxel in a given spatial map, we applied false discovery
rate (FDR)-correction for multiple comparisons to determine
statistical significance at a level of P50.05 (Benjamini and
Hochberg, 1995).

Between-network connectivity

To assess static connectivity, pairwise Pearson correlations were
computed on the Z-transformed time courses for each partici-
pant . This resulted in 78 connectivity pair values per partici-
pant, according to the formula: 13 network components � (13
network components – 1) / 2 = 78.

Considering healthy controls, moderately and severely
affected patients separately, we evaluated static functional net-
work connectivity differences in a three-level one-way ANOVA
(level of significance P5 0.05). Post hoc t-tests (healthy versus
moderate, healthy versus severe, moderate versus severe) were
performed in case of significant ANOVA results (level of signifi-
cance P50.05, FDR-corrected).

Dynamic functional network
connectivity

DFNC was estimated by means of the sliding window approach
as implemented in the GIFT toolbox (Sako�glu et al., 2010;
Allen et al., 2014; Calhoun et al., 2014; Damaraju et al., 2014).
We first defined 159 individual tapered windows by sliding time
rectangles of 44 s (width = 20 repetition times). These time win-
dows were convolved with a Gaussian of 7 s (r = 3 repetition

Table 1 Demographics and clinical characteristics of stroke patients and healthy controls.

Stroke patients (n = 31) Healthy controls (n = 17) P-value

Age, years, mean (range) 68.4 (42–89) 65.4 (57–82) 0.4

Sex, % female 39 12 0.1

Mean framewise displacement, mean (range) 0.28 (0.09–0.83) 0.27 (0.07–0.51) 0.8

Days since stroke, mean (range) 7.2 (1–16) – –

NIHSS 8 – –

ARATaffected hand, mean (range) 30 (0–57) – –

Lesion volume, ml, median (range) 12.8 (1.4–136.6) – –

CSToverlap %, median (range) 6.8 (0.0–59.1) – –

Values are presented as mean (range) unless otherwise stated. Age and mean framewise displacement values were compared by means of two-sided t-tests, sex frequencies by

means of a Pearson’s chi-squared test.

1528 | BRAIN 2020: 143; 1525–1540 A. K. Bonkhoff et al.

http://trendscenter.org/software/gift


times) and shifted in steps of 2.2 s (one repetition time). We
opted for common parameter settings, particularly as prior stud-
ies have provided evidence that a window width between 30
and 60 s enables successful estimation of dFNCs, which are not
governed by noise (Liégeois et al., 2016; Preti et al., 2017).
Within each of these windows, we computed dFNCs from the
l1-regularized precision matrix, i.e. sparse inverse covariance
matrix (Friedman et al., 2008; Varoquaux et al., 2010; Smith
et al., 2011). We regressed out the covariates age, sex, mean
framewise translation and rotation. Finally, we applied Fisher’s
Z-transformation to functional connectivity matrices to obtain
Z-values and stabilize variance for further analyses.

Clustering analysis

Aiming to condense and thereby improve the interpretability of
the rich information of 159 dFNC matrices per subject, we used
k-means clustering (Lloyd, 1982) to compute reoccurring func-
tional connectivity patterns, i.e. ‘connectivity states’, across time
and subject space (Hutchison et al., 2013; Allen et al., 2014;
Calhoun et al., 2014). We implemented the l1 distance function
(‘Manhattan distance’) given its suitability for high-dimensional
data (Aggarwal et al., 2001). By convention (Allen et al., 2014;
Espinoza et al., 2018), this clustering approach was applied to all
subjects’ connectivity matrices twice: first, to determine the opti-
mal number of clusters k (referred to as ’states’), and then to con-
struct the final k connectivity states. We decided upon the

number k by relying on three complementary criteria: the silhou-
ette measure (Rousseeuw, 1987), the elbow criterion based upon
the cluster validity index, computed as the ratio between within-
cluster distance to between-cluster distances (Allen et al., 2014)
and a state frequency of 410% (Espinoza et al., 2018). Each
window of each subject was assigned to one of these connectivity
states. Notably, this analysis does not guarantee that all partici-
pants visit all of the connectivity states, i.e. some might enter only
one or two states in spite of three or more existing states. We
compared the group-averaged connectivity states originating
from the dynamic functional connectivity analysis with the
group-averaged static functional connectivity obtained earlier by
calculating the Manhattan distance.

Statistical analysis of dynamic
connectivity measures

We statistically evaluated the following dynamic connectivity
measures: (i) fraction times (the percentage of total time a sub-
ject spent in a given state); (ii) dwell times (the time a subject
spent in a state without switching to another one ); (iii) numbers
of transitions (how often a subject changed states); and (iv) tran-
sition likelihoods (percentages of transition likelihood between
the k connectivity states). Additionally, we tested for group dif-
ferences in dynamic connectivity pairs within each connectivity
state. Similar to the between-network static functional connect-
ivity analysis, we initially performed three-level one-way

Figure 1 Intrinsic connectivity networks and between-network analysis. (A) Spatial maps of the 13 independent components com-

puted for the entire sample (31 ischaemic stroke patients and 17 healthy controls). These maps were organized in three domains: sensorimotor

(SMN, eight components, framed in dark blue), subcortical (SC, three components, framed in light blue) and cerebellar (CB, two components,

framed in orange). Components were back-reconstructed based on the independent components of the cortical and subcortical sensorimotor

as well as cerebellar domains presented in Allen et al. (2014). (B) Static functional network connectivity between independent components

resulting in a total of 78 connectivity pairs. Connectivity values correspond to the Fisher’s Z-transformed Pearson correlation, averaged over the

entire group of healthy controls and ischaemic stroke patients. Red colour indicates positive correlation, blue colour indicates negative correl-

ation. Thus, the connectivity matrix illustrates high positive intra-domain connectivity within the sensorimotor, subcortical and cerebellar

domains as well as neutral to negative inter-domain connectivity: SMN-SC, SMN-CB and SC-CB. Asterisks indicate significantly altered static con-

nectivity between the three subgroups: healthy controls, moderately, and severely affected stroke patients (one-way ANOVA, P5 0.05). The

components ‘left ipsilesional sensorimotor’ and ‘bilateral postcentral gyri’ were both characterized by the highest number of disturbed static con-

nectivity pairs (six each). L = left; R = right; SMA = supplementary motor area.
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ANOVAs to test for differences between the three groups:
healthy controls, moderately and severely affected stroke
patients (level of significance P50.05). Post hoc t-tests (healthy
versus moderate, healthy versus severe, moderate versus severe)
were added in case of significant ANOVA results (post hoc
t-tests: level of significance, P50.05, FDR-corrected).

Domain-wide segregation

In addition to qualitatively describing connectivity patterns
across motor domains for static and dynamic connectivity con-
figurations, we computed respective segregation values using a
formula proposed by Chan et al. (2014) and Wig (2017):

System segregation ¼ meanðZwÞ � meanðZbÞ
meanðZwÞ

(1)

Mean(Zw) here represents the average of all within-domain cor-
relations, while mean(Zb) denotes the average of all between-do-
main correlations, measured as Fisher’s Z-transformed r. Note
that we set all negative correlation values to 0 in accordance
with Chan et al. (2014).

In the case of static between-network connectivity, we com-
puted one segregation value per subject (and thus static connect-
ivity matrix) and tested for group differences in segregation using
a one-way ANOVA with three levels (healthy controls, moderate-
ly affected patients, and severely affected patients, level of signifi-
cance: P50.05). In contrast, in the case of dynamic network
connectivity, we calculated 159 segregation values per subject,
given that we had obtained one dynamic connectivity matrix per
each of the 159 sliding windows. Analogous to the previous
static analysis, we tested for group differences in a one-way
ANOVA framework (healthy controls, moderately affected
patients, and severely affected patients, level of significance:
P50.05), this time entering 159 � subject dynamic connectivity
matrices in total. We furthermore evaluated connectivity state dif-
ferences in segregation, also by means of a one-way ANOVA
with three levels (connectivity state 1, connectivity state 2, and
connectivity state 3, level of significance: P50.05).

Replication analysis

To verify the main results reported for the sample described
above, an independent replication sample of n = 24 acute stroke
patients with hand motor impairments and n = 30 control
patients was used (see Supplementary material for more details).

Data and code availability

MATLAB scripts for dFNC computation were based on templates
available in the GIFT toolbox, additional jupyter notebooks in py-
thon 3.7 for statistical evaluations and visualizations can be found
here: https://github.com/AnnaBonkhoff/DFNC_Stroke.

Results

Demographic and clinical
characteristics

There were no significant differences in age, sex category

and mean framewise displacement between healthy controls

and all stroke patients (Table 1). Patients were scanned 7.2

[±0.6 standard error of the mean (SEM)] days after stroke

onset with no statistically significant difference in time since

stroke between subgroups.

As we defined patient subgroups based on a discrete ARAT

cut-off of 29 (i.e. half of the maximum score), severely affected

patients (n = 13, ARAT 5 29) and moderately affected

patients (n = 18, ARAT 5 29) differed significantly in regard

to their motor performance (P5 0.05): arm motor function

was significantly lower in the severely affected group (ARAT

= 10.0± 3.1 SEM) compared to the moderately affected group

(ARAT = 44.5± 2.4 SEM). In contrast, covariates including

age, days post-stroke and lesion volume did not significantly

differ between groups (Supplementary Table 1).

Static functional network
connectivity

Within-network connectivity

MANCOVAN analyses indicated statistically significant group

differences between healthy controls, moderately affected and

severely affected stroke patients within the spatial maps of

seven of eight cortical sensorimotor components and one sub-

cortical component (sensorimotor cortex left and right, SMA,

paracentral I and II, postcentral and superior parietal, but not

the ventral precentral cortex; putamen II). Subsequent univari-

ate, i.e. voxel-wise analyses, centring on group differences

(healthy controls–moderately affected stroke patients, healthy

controls–severely affected stroke patients, moderately affected

stroke patients–severely affected stroke patients) and signal

intensities of each voxel within a spatial map, provided further

evidence of significantly lowered within-network connectivity

in the motor system early after stroke (Fig. 2E). Here, patients

with moderate motor deficits featured more widespread reduc-

tions of connectivity within cortical sensorimotor networks

compared to healthy controls, whereas severely affected

patients showed more circumscribed connectivity reductions

compared to healthy controls (Fig. 2E). However, when com-

paring both patient groups statistically, we only obtained a

very small cluster of voxels with lowered signal intensity

located in ipsilesional sensorimotor cortex (P50.05, FDR-

corrected for multiple comparisons).

Between-network connectivity

Static functional network connectivity (over the entire scan-

ning time series) was calculated as (Fisher Z-scored)

Pearson’s correlation between 78 individual component

pairs. In general, we observed strong intra-domain connect-

ivity, i.e. component pairs within either the sensorimotor,

subcortical or cerebellar domains were highly positively cor-

related. In contrast, inter-domain connectivity was compar-

ably low, i.e. components from sensorimotor and subcortical

or cerebellar domains were either independent from each

other or negatively connected (Fig. 1B). When screening for

group differences between controls, moderately and severely

affected patients by means of a one-way ANOVA, 18
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connectivity pairs showed significantly altered between-net-

work component connectivity. These alterations were mostly

located in the cortical sensorimotor domain (Fig. 1B). Post
hoc t-tests, contrasting severely affected patients and healthy

controls, revealed a stroke-induced increase in connectivity

between subcortical components (P5 0.05, FDR-corrected).

In contrast, moderately affected patients comprised decreases

in connectivity strength when compared to healthy controls

(P5 0.05, FDR-corrected). For example, connectivity was

lower between the left and right sensorimotor components

and ventral precentral components, as well as postcentral

components and the supplementary motor area and both

cerebellar components (see Fig. 3 for details on altered con-

nectivity pairs). Moderately and severely affected patients

did not feature significantly different static connectivity after

correction for multiple comparisons.

Dynamic functional network connectivity

We next investigated the temporal properties of functional

connectivity, i.e. dFNC. By applying the k-means clustering

algorithm to the estimated 159 functional connectivity

matrices per subject and the optimization criteria for the

number of states mentioned above (Fig. 4B), we identified

three connectivity states, i.e. quasi-stable connectivity pat-

terns, that reoccurred across all subjects during functional

MRI scanning. The states are presented and described in the

order given by k-means clustering. The first connectivity

state was characterized by highly positive intra-domain con-

nectivity and highly negative inter-domain connectivity. We

refer to this state as the ‘regionally densely connected’ state

with strong inter-domain segregation (overall frequency of

State 1: 29%, Fig. 4A). This connectivity state was also the

one that most closely matched the static connectivity esti-

mates in terms of Manhattan distance. The second connect-

ivity state featured comparably weak intra-domain

connectivity, which was particularly true for connections of

the ventral precentral and postcentral components. Inter-do-

main connectivity values close to zero additionally implied a

low connectivity between the three domains. We therefore

call this state the ‘weakly connected’ state (overall frequency

Figure 2 Overlap maps of DWI lesions (A–D) and within-network connectivity (E). (A) Entire sample of stroke patients. The majority

of lesions were located subcortically, with the maximum overlap (n = 18/31) being in the posterior limb of the internal capsule. (B) Illustration of

the lesion overlap with the corticospinal tract (CST, in red, median overlap for the entire stroke patient sample: 6.8%). (C) Subgroup of moder-

ately affected stroke patients (n = 18). (D) Subgroup of severely affected stroke patients (n = 13). Both stroke patient subgroups primarily pre-

sented with subcortical lesions. Importantly, while subgroups were defined based on their motor function (cut-off: ARAT 28/29), they neither

differed in lesion volume, nor corticospinal tract overlap (see Supplementary Table 1). (E) Moderately and severely affected stroke patients exhib-

ited significantly reduced within-network connectivity in comparison to healthy controls. Contrasting the patient subgroups resulted in a small

cluster of voxels with reduced signal intensity in case of moderate symptoms (P5 0.05, FDR-corrected for multiple comparisons; left: moderate-

ly affected versus healthy controls; middle: severely affected versus healthy controls; right: moderately versus severely affected patients).
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of State 2: 43%, Fig. 4A). The third connectivity state repre-

sented a combination of the preceding two: positive intra-do-

main connectivity, slightly positive connectivity between the

sensorimotor and subcortical domains and negative connect-

ivity between the cerebellar and both of the sensorimotor

and subcortical domains (overall frequency of State 3: 27%,

Fig. 4A). Therefore, instead of one static connectivity state

in the form of one FNC matrix, we now obtained three dy-

namic connectivity states and dFNC matrices. Importantly,

one dynamic connectivity state, the weakly connected State

2, differed markedly from the static version.

Temporal characteristics

We subsequently tested for between-group differences in the

measures of dynamic behaviour. Three-level one-way

ANOVAs comparing healthy controls, moderately and se-

verely affected stroke patients revealed significant differences

of temporal features in State 2, i.e. the weakly connected

state (fraction and dwell times of State 2: P5 0.05) (Fig. 5A

and B). Moderately affected patients had the most deviating

behaviour: when contrasted with healthy controls, they par-

ticularly preferred State 2 and spent more time in it in total

as well as dwelled longer once having entered it (post hoc

t-tests: fraction and dwell times P50.05, FDR-corrected).

With respect to severely affected patients, moderately

affected patients again tended to spend more time in State 2

(post hoc t-tests: faction time: P = 0.07, FDR-corrected;

dwell time: not significant). In contrast, there were no signifi-

cant between-group differences for the absolute number of

transitions between states. Subjects switched five to seven

times on average during the entire scanning period (one-way

ANOVA: P4 0.05, Fig. 5C).

Next, we evaluated the transition likelihoods between

states. There were significant between-group effects (ANOVA

P5 0.05) with respect to the likelihood of staying within a

state and switching to a new one; consistent with the

observed increase in fraction and dwell times in State 2, mod-

erately affected patients were more likely to stay in the weak-

ly connected state compared to both healthy controls and

severely affected patients (post hoc t-tests: P5 0.05, FDR-

corrected). Of note, severely affected patients presented with

a markedly different behaviour. They were not only less likely

to remain in the weakly connected State 2, but demonstrated

a significant preference for the regionally densely connected

State 1. Coming from State 2, they were more likely to switch

to State 1 compared to moderately affected patients (post hoc
t-tests: P50.05, FDR-corrected) and healthy controls

(P = 0.056, FDR-corrected, Fig. 6). Moderately affected

patients and controls did not differ in this aspect.

Figure 3 Circle plots of significant static functional connectivity differences between the subgroups (post hoc t-tests, P5 0.05,

FDR-corrected for multiple comparisons). (A) Moderately affected stroke patients versus healthy controls. Connectivity strength in stroke

patients was found to be decreased between the pre- and postcentral areas and between the supplementary motor area and bilateral cerebellar

components as well as the left, ipsilesional precentral gyrus and the right cerebellum, yet comparably increased between the ipsilesional precen-

tral gyrus and putamen. (B) Severely affected stroke patients versus healthy controls. In contrast to the previous group comparison, only two sig-

nificantly altered connectivity pairs emerged: the connectivity between both of the putamen components and the more anterior putamen

component with the thalamic component were increased in stroke patients. Note that there were no significant connectivity differences between

moderately and severely affected stroke patients. SMA = supplementary motor area.
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Dynamic connectivity
characteristics

Lastly, we examined between-group differences in connectiv-

ity strengths for each of the three connectivity states. While

we did not detect any significant effects for State 1, i.e. the

regionally densely connected state, moderately affected

patients featured a number of differences in States 2 and 3

compared to both severely affected patients and healthy

Figure 4 Dynamic functional network connectivity analysis. (A) Three resulting connectivity states as well as their across-group fre-

quencies. The first state was characterized by a highly positive intra-domain connectivity in all of the domains [sensorimotor (SMN), subcortical

(SC), cerebellar, (CB)] and highly negative inter-domain connectivity. It was the state resembling the static connectivity matrix the most, meas-

ured in Manhattan distance. The second and most frequent state featured comparably lower connectivity within the sensorimotor domain, par-

ticularly between the ventral precentral component and the paracentral lobule to further sensorimotor components. Inter-domain connectivity

was mostly neutral. The third state comprised positive intra-domain connectivity, negative inter-domain connectivity between both the sensori-

motor and subcortical domains to the cerebellar domain and no connectivity between the sensorimotor and subcortical domains. (B) Elbow cri-

terion. Trajectory of the cluster validity index with increasing numbers of clusters, i.e. k in k-means clustering (top) and cluster distributions for a

given number of clusters (bottom). The cluster validity index was computed as the ratio between the within-cluster distance to between-cluster

distance. As the steepness of the decline in the clustering validity index decreased markedly after three and four clusters, yet the four-cluster so-

lution included a state with a frequency of 510%, k = 3 combined the lowest cluster validity index and most well-balanced solution. This choice

was additionally enforced by the highest silhouette measure for k = 3 (see Supplementary material). (C) Connectivity states separately for each

of the three subgroups. Please note that some subjects only entered one or two of the defined three connectivity states, resulting in varying num-

bers of subjects within a specific state (cf., stated absolute numbers of subjects entering the state as well as the percentage of the entire sub-

group). Connectivity state frequencies did not differ significantly between subgroups.
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controls. This was especially true with respect to the connect-

ivity of ipsilesional primary sensorimotor cortex and subcor-

tical components (Fig. 7). In moderately affected patients,

connectivity differences in State 3 matched those of the static

analysis to a great extent, with reduced connectivity in stroke

patients between the ipsilesional left and contralesional right

sensorimotor components, as well as bi-hemispherical SMA

and one of the paracentral lobule components. Of note, we

found reduced connectivity between the right contralesional

sensorimotor and paracentral lobule components when con-

trasting severely affected patients with controls. This inter-

hemispheric difference was not detectable in the static ana-

lysis and can hence be interpreted as increased sensitivity of

the dynamic analysis. Lastly, moderately and severely

affected patients differed in three cortical–subcortical–cerebel-

lar connectivity strengths: paracentral–putamen, left sensori-

motor–putamen and putamen–left cerebellum (Fig. 7).

Differences in domain-wide
segregation

For static connectivity data, we did not observe a significant

difference in domain-wide segregation across healthy controls

and both patient groups (three-level ANOVA: P = 0.39). This

situation changed distinctly once we considered dynamic

Figure 5 DFNC analysis. Fraction and dwell times as well as the number of transitions for the three groups: healthy controls, moderately, and

severely affected patients. (A) Fraction times. Over the entire scan duration, moderately affected stroke patients spent significantly more time in

State 2 than healthy control subjects. Higher fraction times in State 2 in the case of moderate symptoms compared to severe symptoms were sig-

nificant only at uncorrected thresholds (P = 0.047, asterisk in parentheses). State 2, the generally most frequent connectivity state, was character-

ized by comparable low positive intra-sensorimotor domain connectivity. (B) Dwell times. Once again, moderately affected stroke subjects

differed from healthy controls and spent significantly more time in State 2 at any one time. (C) Number of transitions. The absolute number of

transitions did not differ significantly between the three groups. Subjects switched between states five to seven times on average. Asterisks indi-

cate statistically significant group differences based on significant post hoc t-tests (P5 0.05, FDR-corrected for multiple comparisons).

Figure 6 Transition matrices displaying the differences in likelihood of changing from one connectivity state to another be-

tween the subgroups. In general, subjects tended to stay in their current connectivity state. Thus, if they were in State 1 at any one time t,

they would most likely be in the same connectivity state at t + 1, i.e. the next window. The same was true for States 2 and 3 (likelihood of

remaining in the same state: range 87–97%). Transitions from any one state to one of the other two states were less likely (likelihood range 1–

10%). There were statistically significant group differences for transitions from State 2 to itself as well as to State 1 (one-way ANOVAs,

P5 0.05). Moderately affected stroke patients had a significantly higher likelihood of staying in State 2 than healthy controls and severely affected

stroke patients (post hoc t-tests, P5 0.05, FDR-corrected for multiple comparisons). In contrast, severely affected stroke patients had a higher

likelihood of not staying in State 2, but switching from this state to State 1 (post hoc t-tests, P5 0.05, FDR-corrected for multiple comparisons).

Therefore, they preferably transitioned to the regionally densely connected State 1 and left the weakly connected State 2.
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connectivity data; a significant ANOVA-result (P50.001)

indicated an overall difference between controls and the two

patient groups. Post hoc t-tests revealed significant differences

between all of the subgroup constellations. Moderately

affected patients presented with significantly lower segrega-

tion values than healthy controls and severely affected

patients, while severely affected patients had higher segrega-

tion values than healthy controls and moderately affected

patients (post hoc t-tests: P�0.001, FDR-corrected for

multiple comparisons; system segregation: healthy controls:

0.83, moderately affected: 0.81, severely affected: 0.87).

Furthermore, the three connectivity states significantly

diverged in their degree of segregation: State 1, the densely

connected state, was also the one with the highest degree of

segregation, followed by the less segregated States 2 and 3

(three-level ANOVA: P� 0.001, post hoc t-tests: P5 0.01,

FDR-corrected for multiple comparisons, State 1: 0.95,

State 2: 0.89, State 3: 0.83). Therefore, the reduced degree

of segregation that moderately affected patients presented

with was also expressed in their longer dwell and fraction

times in State 2, a comparatively less segregated state.

Conversely, the significantly higher transition likelihood of

severely affected patients into State 1 matches their higher

degree of segregation in comparison to moderately affected

patients and healthy controls.

Replication analysis

We repeated the main dynamic connectivity analysis steps in

an independent sample of 24 acute ischaemic stroke patients

with motor symptoms to test the robustness of our findings.

A group of 30 age-matched ischaemic stroke patients without

Figure 7 Differences in dynamic functional connectivity between the various subgroups. Subgroup-specific connectivity matrices as

well as numbers and percentages of subjects within a group entering this state (left) and circle plots of significant functional dynamic connectivity

differences (right, post hoc t-tests, P5 0.05, FDR-corrected for multiple comparisons. Significant differences are also marked by an asterisk in the

connectivity matrices). (A and B) Differences between moderately affected stroke patients and healthy controls. Moderately affected stroke

patients presented higher connectivity strength between the ipsilesional sensorimotor area and the more posterior putamen component, yet

lower connectivity between a bilateral, more ventral precentral component and the same posterior putamen component in State 2 (A).

Furthermore, connectivity differences in State 3 resembled those in the static functional connectivity analysis. Stroke patients featured significant-

ly lower connectivity between the ipsi- and contralesional sensorimotor areas as well as lower connectivity between the ipsilesional sensori-

motor area and the paracentral lobule and supplementary motor area (B). (C) Differences between healthy controls and severely affected

patients in State 3. Stroke patients presented with a decreased connectivity between the contralesional, right sensorimotor and paracentral

areas, while connectivity between the more anterior putamen component and both cerebellar components was increased. (D) Differences be-

tween moderately and severely affected stroke patients in State 3. Several connectivity pairs were reduced in the case of moderately affected

stroke patients. These pairs were: ipsilesional, left sensorimotor cortex–putamen, paracentral cortex–putamen and the more anterior putamen

component–left cerebellum. SMA = supplementary motor area.
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any motor symptoms replaced the healthy control sample of

the main analysis. Once again, we identified three connectivity

states that resembled those in the main analysis. We obtained a

highly connected State 1, a weakly connected State 2, and a

State 3 combining integration between cortical and subcortical

motor areas and segregation between cortical motor and cere-

bellar areas (Supplementary Fig. 4). Importantly, we could rep-

licate significantly increased dwell times in State 2 in the case

of moderately affected patients compared to stroke patients

presenting without any motor symptoms. Furthermore, we

found significantly increased inter-domain segregation in

patients with severe motor symptoms, as was reflected by a sig-

nificantly higher intra-domain compared to inter-domain con-

nectivity (Chan et al., 2014). Stroke patients with moderate

motor symptoms presented with a significant reduction in in-

ter-domain segregation. Therefore, we were able to replicate

the main findings in a completely independent dataset, which

was scanned in a different setting, with different technical

parameters and field strengths. These findings underscore the

robustness of the dynamic connectivity changes observed for

patients with motor impairments very early after stroke (see

Supplementary material for a detailed description of results).

Summary

In summary, we found significant differences in the preferen-

ces for connectivity states depending on the degree of motor

impairment. While moderately affected patients spent more

time in a weakly connected state, severely affected patients

transitioned more often to a regionally densely connected

state with strong intra-domain (e.g. cortico-cortical) connect-

ivity and negative inter-domain (e.g. cortico-subcortical) con-

nectivity. These differences in dynamic connectivity patterns

were also reflected by an overall decreased network segrega-

tion in case of moderate motor symptoms and increased seg-

regation in case of severe symptoms. Importantly, these

impairment-related differences in network segregation did

not emerge in the static analysis. Interestingly, and somewhat

surprisingly, functional connectivity estimates differed more

between moderately affected patients and healthy controls

than between severely affected patients and healthy controls.

This was particularly the case for disturbed static functional

connectivity between specific brain regions, where moderate-

ly affected patients presented with multiple reduced function-

al connectivity pairs. In cases of severely affected patients

and the static between-network analysis, we found altered

functional connectivity pairs only in the subcortical domain.

Disturbances at the level of cortical regions became evident

exclusively in the dynamic analysis. We here substantiated

lowered between-network connectivity for the contralesional

sensorimotor and paracentral lobule components post-stroke,

indicating an added benefit of dynamic analysis.

Discussion
DFNC analyses encompass the capacity of more fine-grained

conclusions in the temporal domain when working with

functional resting state MRI data (Allen et al., 2014;

Calhoun et al., 2014). In this study, we dissected the dynam-

ic connectivity behaviour of ischaemic stroke patients within

the first few days of their acute event, putting a particular

emphasis on hand motor function and the sensorimotor sys-

tem. We here considered behaviourally well-characterized

stroke patients with symptoms ranging from mild upper

limb impairment to complete paralysis, which therefore

reflected a comprehensive clinical spectrum of motor impair-

ments. Of note, stroke patients diverged from healthy con-

trols depending on the severity of their motor deficit.

Patients with severe motor symptoms showed a significant

preference for transitioning to State 1, a regionally densely

connected state with strong intra-domain connectivity.

Conversely, moderately impaired patients spent significantly

more time in State 2, a weakly connected state. Both of these

patterns remained hidden in previous conventional static

analyses. The third connectivity state did not differ in terms

of dynamic connectivity specific measures, such as transi-

tions, fraction and dwell times, but reflected many of the

connectivity differences observed in the static analysis and

previously described in the literature (Carter et al., 2010;

Wang et al., 2010; Golestani et al., 2013; Rehme et al.,

2014). Contrary to our initial expectations, moderately

affected patients comprised more pronounced alterations in

functional connectivity for both the static and dynamic anal-

yses, despite their weaker clinical deficit. These alterations

were located between the ipsi- and contralesional sensori-

motor cortices as well as the contralesional sensorimotor

cortex and bilateral paracentral cortex. Importantly, in case

of severe motor symptoms, significantly reduced inter-hemi-

spheric connectivity between cortical sensorimotor compo-

nents was exclusively found in the dynamic analysis,

highlighting its higher sensitivity in comparison to the static

analysis.

Functional integration and
segregation

Dynamic connectivity states can be interpreted within the

concepts of functional integration and functional segregation

(Eickhoff and Grefkes, 2011; Friston, 2011). Functional seg-

regation refers to the parcellation of the brain into regionally

unique modules (i.e. areas), each of which may be assigned

to a particular domain. These domains can either orchestrate

information transmission from one to the other (referred to

as integration) or process information in isolation (referred

to as segregation), essentially balancing the two extremes to

maintain healthy brain function (Sporns, 2013). Below, we

evaluate the computed three connectivity states within the

framework of these concepts .

Severely affected patients and State 1

The regionally densely connected State 1 was characterized

by highly positive intra-domain connectivity, i.e. within

the sensorimotor, subcortical or cerebellar domains, and
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negative inter-domain connectivity, i.e. between sensori-

motor–subcortical, sensorimotor–cerebellar and subcortical–

cerebellar domains. Altogether, this can be interpreted as high

segregation between domains. In view of the significantly

increased transition likelihood to this State 1, severely affected

patients thus preferred a state where information could easily

travel from one component to another in the same domain.

However, information exchange between components of dis-

tinct domains was hindered. This high intra-domain connect-

ivity or integration was reminiscent of the over-activation and

excessive recruitment of cortical motor areas, particularly of

contralesional M1, bilateral premotor cortex and SMA, in

task-based studies post-stroke (e.g. Ward et al., 2003; Rehme

et al., 2011, for a review see Rehme et al., 2012). Importantly,

Rehme et al., 2011 uncovered these activity changes exclusive-

ly for severely affected patients, starting a few days after

stroke, and suggested these to represent early signs of reorgan-

ization. Conceivably, the observed dynamic pattern here, even

though expressing connectivity instead of activation and re-

cruitment, could be a respective correlate, demonstrating the

increased employment of functional connections within well-

defined domains, aiming to recover lost motor performance.

This specific pattern may not have been discovered and

described in preceding static analyses, as it was solely

expressed in the temporal markers of our dynamic analysis.

Segregation, as a measure of spatial functional specializa-

tion, can be quantified in multiple ways and is often linked to

brain modularity. This graph theoretical measure compares

densities of connections within and between domains, with

higher values implying greater modularity and segregation of

domains (Newman, 2004). Brain modularity was recently

suggested as biomarker of intervention-related brain plasti-

city, since higher baseline values of modularity were shown

to be predictive of later gains in cognitive function (Gallen

and D’Esposito, 2019). This relationship could be established

not only for healthy ageing brains, but also, notably, structur-

ally damaged brains of patients with traumatic brain injury

(Arnemann et al., 2015; Gallen et al., 2016; Baniqued et al.,

2018). Similarly, when limiting analyses to the cortical motor

and visual domains, Mattar et al. (2018) extracted a link be-

tween pronounced modularity and prospective motor skill

learning. In these regards, the predilection of severely affected

patients for the segregated State 1 could represent an attempt

to facilitate brain plasticity enabling motor recovery.

Nonetheless, it has previously been hypothesized that modu-

larity and segregation might follow an inverse U-shaped curve

and values on either end of the scale could co-occur with mal-

adaptive behaviour (Duncan and Small, 2016). Therefore,

not having any available long-term behavioural markers pro-

hibits a definitive conclusion at this point and necessitates fu-

ture research to investigate links between segregation and

motor recovery.

Moderately affected patients and State 2

In contrast, moderately affected patients spent significantly

more time in State 2 that comprised low intra-domain

integration and relatively increased inter-domain connectiv-

ity, which is interpretable as reduced segregation. Decreased

segregation has been found in healthy as well as pathological

ageing (Chan et al., 2014; Kim et al., 2017; Wig, 2017). In

principle, this pattern of decreased segregation is also well in

line with previous reports of reductions in modularity post-

stroke, reflecting a decrease in segregation between domains

(Gratton et al., 2012; Duncan and Small, 2016; Siegel et al.,

2016, 2018). Duncan and Small (2016) and Siegel et al.

(2018) reported initially reduced and subsequently increasing

segregation in parallel to functional recovery, suggesting

reduced segregation to be a signature of impaired function.

However, substantial differences in average scanning time

after stroke [i.e. 2 weeks (Siegel et al., 2018), 40 months

(Duncan and Small, 2016) and 1 week in our study] and

clinical deficit [i.e. predominantly cognitive symptoms (Siegel

et al., 2018), aphasia (Duncan and Small, 2016) and motor

symptoms here] impede any direct transfer of their conclu-

sions to our findings. The interpretation of reduced segrega-

tion in moderately affected patients as a correlate of

impaired function is additionally challenged by the fact that

clinically more affected patients did not show similar altera-

tions. Hence, in our setting, reduced segregation rather

appeared as a signature of (early) reorganization, given that

moderately and severely affected patients differed in motor

performance by definition, but not in lesion volume or corti-

cospinal tract overlap. This interpretation is supported by

comparable findings of increasing integration (i.e. decreasing

segregation) in case of recovery after traumatic brain injury

(Kuceyeski et al., 2019). Also, one could imagine that new

connections could be more easily established starting from a

weakly connected state, providing a basis for higher network

flexibility. In contrast, the regionally densely connected State

1 with high intra-domain, yet low inter-domain connectivity

might facilitate regional processing and hence reorganization

in the case of a severe disruption of motor output.

Contextualizing our findings of altered dynamic connectiv-

ity patterns in acute stroke patients with motor symptoms:

Hu et al. (2018) investigated regional dynamic connectivity

in 19 patients with acute ischaemic stroke (on average 4

days post-stroke) with moderate motor symptoms and

described an initial reduction of temporal variability in pri-

mary motor, auditory and visual cortex compared to healthy

controls. Chen et al. (2018) computed whole-brain dynamic

connectivity for 64 patients with subacute stroke (7–31 days

post-stroke) and substantiated significant dynamic connectiv-

ity differences (relative to healthy controls), primarily affect-

ing connections between either contra- or ipsilesional M1

regions and visual, insular and inferior parietal regions.

Duncan and Small (2018) established a first link between

dynamic connectivity and recovery in chronic stroke. They

leveraged the sliding window approach to track dynamic

network changes of 12 chronically aphasic stroke patients

(on average 40 months post-stroke) during a 6-week inter-

vention. Estimating 10 different connectivity states in total,

the increase in dwell time in one of these, a particularly

weakly connected state, correlated with an increase in
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language performance. Lastly, we may compare our findings

to those originating from a study with patients suffering

from small vessel disease. Clinically, patients with subcor-

tical ischaemic vascular dementia predominantly present

with prolonged and not necessarily acute onset neurocogni-

tive decline as well as chronic deep white matter hyperinten-

sities and subcortical lacunar infarcts (Hachinski et al.,
2006). The analysis of their dynamic functional connectivity

revealed that fraction and dwell times were increased in a

weakly connected state and reduced in a densely connected

state; the former finding being much alike our main finding

for moderately affected patients. Altogether, the previous

and present findings suggest a consistently present link be-

tween dynamic measures and vascular disease, rendering

it a promising future technique in the field of

neurorehabilitation.

Limitations and future directions

Although our sample size of 31 acute stroke patients is rela-

tively small, it was apparently equipped with sufficient statis-

tical power, especially given the replication of previous static

functional connectivity findings. We were able to exploit

detailed measures of motor function by relying on a com-

petitive group size of severely affected patients (n = 13) (cf.,
6–10 severely affected patients in Carter et al., 2010; Wang

et al., 2010; Park et al., 2011; Golestani et al., 2013; Rehme

et al., 2014). We further link current limitations to future

directions: in light of the spatial heterogeneity of stroke

lesions as well as not yet satisfactorily accurate predictions

of individual recovery trajectories, future studies should in-

volve larger sample sizes and evaluate symptoms in a fine-

grained as well as prospective fashion to corroborate and ex-

tend current finding. In this way, confidence in their general-

izability could be further increased. Eventually, this would

represent a natural succession to the approach presented

here, where we focused on dynamic connectivity differences

within motor-related networks at the acute stage post-stroke.

It would enable elucidating pressing questions, such as: are

dynamic connectivity measures predictive of future out-

comes, especially in regard to treatment effects, including

TMS and transcranial direct current stimulation (tDCS)?

How do non-motor symptoms affect dynamic connectivity

comprising all conceivable domains? How do dynamic con-

nectivity measures evolve over time? Existing literature al-

ready suggests a delicate relationship between connectivity

changes and the exact time point post-stroke. It has been

shown that asymmetries in bi-hemispherical connectivity

peaked approximately 1 month after the acute event (Park

et al., 2011) and, considering rats, different temporal trajec-

tories emerged depending on lesion location (van Meer

et al., 2010). Asynchronistic behaviour could conceivably

explain why severely and moderately affected patients dif-

fered in their dynamic connectivity profiles in our analysis.

As a reasonable interpretation, moderately affected patients

may have traversed through a more segregated phase al-

ready when regaining function, while severely affected

patients lagged behind. Moreover, it remains to be eluci-

dated whether the dynamic connectivity changes that we ob-

serve here reflect adaptive and maladaptive effects. Lastly, it

might be promising to link findings of functional MRI deter-

mined connectivity states to micro states as inferred from

EEG data, in light of the increased temporal resolution in

both cases (with EEG providing even higher temporal resolu-

tions) (Zappasodi et al., 2017).

Conclusion
Dynamic functional connectivity analyses hold promise to

capture critical characteristics of cognition and behaviour in

health and disease (Hutchison et al., 2013). In this study, we

build upon this notion by implementing dynamic functional

connectivity analyses to investigate the temporal behaviour

within the motor system of 31 acute stroke patients present-

ing with impairments of hand motor function. Significant

deficit-severity dependent dynamic patterns demonstrated

the added value of dynamic connectivity measures as (resting

state) biomarkers of ischaemic vascular disease. Patients

with severe deficits preferred a regionally densely connected,

highly segregated state, i.e. a condition previously associated

with an enhanced level of brain plasticity (Gallen and

D’Esposito, 2019). On the other hand, patients with moder-

ate deficits spent significantly more time in a weakly con-

nected state with reduced segregation. Therefore, the degree

of motor impairment seemed to be associated with differen-

tial dynamic network reorganization patterns in acute stroke

patients. Importantly, these impairment-related network

effects have not been detected in previous static connectivity

studies in early stroke. Likewise, classical task-based activa-

tion studies did not detect differential reorganization pat-

terns for patients with mild-to-moderate motor impairments

either (Rehme et al., 2011). Hence, using a dynamic connect-

ivity approach allowed new insights into the systems-level

effects that a stroke has on neural processing within the

motor system, pointing to differential reorganizational mech-

anisms depending on the initial motor deficit. In the future,

these insights might be of particular importance when aim-

ing to interfere with network reorganization very early after

stroke, e.g. when inducing cortical plasticity using non-inva-

sive brain stimulation to promote recovery of function

(Grefkes and Fink, 2012; Lefaucheur et al., 2020).
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