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ABSTRACT
Acute lymphoblastic leukemia (ALL) is the most common pediatric, and ninth 

most common adult, cancer. ALL can develop in either B or T lymphocytes, but 
B-lineage ALL (B-ALL) exceeds T-ALL clinically. As for other cancers, animal models 
allow study of the molecular mechanisms driving ALL. Several zebrafish (Danio rerio) 
T-ALL models have been reported, but until recently, robust D. rerio B-ALL models 
were not described. Then, D. rerio B-ALL was discovered in two related zebrafish 
transgenic lines; both were already known to develop T-ALL. Here, we report new 
B-ALL findings in one of these models, fish expressing transgenic human MYC (hMYC). 
We describe B-ALL incidence in a large cohort of hMYC fish, and show B-ALL in two 
new lines where T-ALL does not interfere with B-ALL detection. We also demonstrate 
B-ALL responses to steroid and radiation treatments, which effect ALL remissions, 
but are usually followed by prompt relapses. Finally, we report gene expression in 
zebrafish B lymphocytes and B-ALL, in both bulk samples and single B- and T-ALL 
cells. Using these gene expression profiles, we compare differences between the two 
new D. rerio B-ALL models, which are both driven by transgenic mammalian MYC 
oncoproteins. Collectively, these new data expand the utility of this new vertebrate 
B-ALL model.

INTRODUCTION

Acute lymphoblastic leukemia (ALL) and the related 
malignancy lymphoblastic lymphoma (LBL) dominate 
pediatric oncology, together representing over one third of 
all childhood cancer [1–3]. These diseases afflict even more 
adults in absolute terms, and are more often fatal in them 
[4, 5]. ALL and LBL can develop in lymphoblasts of either 
the B or T cell lineage; B-ALL exceeds T-ALL, but T-LBL 
is more prevalent than B-LBL. Despite treatments for these 
diseases improving considerably over the past several 
decades, relapsed ALL is actually the 4th most-frequent 
pediatric cancer diagnosis and second most lethal childhood 
malignancy, accounting for ~25% of all deaths [6–8].

Animal studies have been instrumental in 
investigating the genetics, genomics, drug sensitivities, 
and other features of ALL and LBL, and several mouse 
models for these diseases exist [9, 10]. Mammalian 
systems have advantages such as anatomic, physiologic, 
and genetic conservation, with mice being the main 
mammal utilized, but other organisms provide 
complementary advantages. Zebrafish (Danio rerio) 
offer flexible genetic tools, powerful live imaging, high 
fecundity, rapid development, shared oncogenic pathways, 
affordability, and other favorable traits that have allowed 
them to quickly gain traction as a cancer model [11–17].

Many groups have exploited these attributes to 
create zebrafish leukemia models, specifically for acute 
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myeloid leukemia (AML) and T-ALL [18–37]. For 
T-ALL in particular, zebrafish models have been highly 
informative, advancing our understanding of T-ALL 
genetics, pro- and anti-oncogenic interactions between 
different genes and pathways, tumor heterogeneity, 
leukemia stem cells, and in screens for new therapeutics 
[28, 38–53]. However, despite the fact that zebrafish 
T-ALL models had proven to be fertile grounds for study, 
B-ALL modeling in D. rerio had not been fruitful, with 
only one low penetrance and long latency line reported 
[54]. This was curious because a zebrafish recombination 
activating gene 2 (rag2) promoter—active in both 
immature T and B cells—was used to regulate most of 
these transgenic oncoproteins in the various T-ALL lines, 
yet D. rerio B-ALL had not been reported in them [55, 
56]. Overall, since B-ALL is the more prevalent type in 
patients, the lack of B-lineage models was particularly 
unfortunate.

In 2018, the zebrafish ALL field advanced suddenly 
with reports of B-ALL in two closely-related transgenic 
lines where T-ALL was already known to occur [57, 58]. In 
one, a rag2:mMyc (murine Myc) transgene was used [29], 
with ALL purified as single clones by allo-transplantation. 
Two of 12 ALL analyzed by RNA sequencing (RNA-
seq) exhibited gene expression consistent with B-ALL 
cells arrested at the pro-B cell stage [57]. In the other, a 
rag2:hMYC (human MYC) transgene was utilized [32], as 
well as a transgenic marker, lck:eGFP [59], differentially 
expressed by B and T cells. Analysis of over one hundred 
animals demonstrated that many develop B-ALL, others 
develop T-ALL (as previously known), and still other fish 
acquire both ALL types concommitantly [58]. A follow-
up report by these groups further showed that despite 
high similarity between the mMyc and hMYC transgenes 
used, these B-ALL are actually quite different, occurring 
in distinct B cell lineages and with dissimilar expression 
patterns [60]. Here, we present new results in the hMYC 
model, including B- and T-ALL latency and penetrance 
data in a cohort of over 600 animals, in vivo glucocorticoid 
and radiation treatment of B-ALL, and expression profiles 
from single B- and T-ALL cells. We also present new 
analyses that compare mMyc vs. hMYC B-ALL to reveal 
key biologic pathways that distinguish them.

MATERIALS AND METHODS

Zebrafish care

Zebrafish care was provided as previously reported 
[58]. Animals were housed in an aquatic colony at 
28.5°C on a 14:10 hour light:dark circadian cycle and 
experiments performed according to protocols approved 
by the University of Oklahoma Health Sciences Center 
IACUC (12-066 and 15-046). For all procedures, fish 
were anesthetized with 0.02% tricaine methanesulfonate 
(MS-222). D. rerio with the cd79a:GFP or cd79b:GFP 

transgenic markers [61] were bred to rag2:hMYC fish [32] 
to create the new transgenic lines reported herein.

Fluorescent microscopy

Anesthetized 3–9 month old hMYC; GFP fish were 
screened for abnormal GFP patterns using a Nikon AZ100 
fluorescent microscope. Low exposure (200 ms, 2.8× gain) 
and high exposure (1.5 s, 3.4× gain) settings were used to 
obtain images with Nikon DS-Qi1MC camera. Images were 
processed with Nikon NIS Elements Version 4.13 software.

Fluorescence-Activated Cell Sorting (FACS) and 
flow cytometric analyses

As previously described [58], cells from whole fish 
were dissociated using a pestle, and then passed through 
35 μm filters. GFPhi, GFPlo, and/or GFP- cells were 
collected from the lymphoid and precursor gates using a 
BD-FACSJazz Instrument (Becton Dickinson, San Jose, 
CA, USA). Flow cytometric analyses were performed 
using FlowJo software (Ashland, OR, USA).

B- and T-ALL incidence studies

Beginning at ~75 dpf, a cohort of 628 
rag2:hMYC;lck:GFP zebrafish was monitored by ~weekly 
fluorescence microscopy to detect ALL. Animals that 
developed fluorescent cancers were euthanized and single 
cell suspensions were prepared as described previously 
[58]. Cells in the lymphoid and precursor gates were 
analyzed for GFP intensity using a Beckman-Coulter 
CytoFLEX™ to determine whether each ALL derived 
from T, B, or both lymphocyte lineages [58, 62, 63].

In vivo dexamethasone and radiation treatments 
of D. rerio B-ALL

Zebrafish with B-ALL were treated by continuous 
immersion in 5 μg/ml dexamethasone (DXM) in normal 
fish water for 9 days, modified from our prior zebrafish 
T-ALL DXM protocol [43, 64]. Water and DXM were 
changed daily, with one or two fish housed in 500 ml. 
After completing treatment, animals were monitored by 
weekly fluorescent microscopy to detect relapse. Zebrafish 
with B-ALL were treated by γ-irradiation (IR) using 
a Cesium137 irradiator to deliver a total dose of 15 Gy 
divided in two fractions: 10 Gy on day 0 and a 5 Gy boost 
on day 5. Animals were imaged by fluorescent microscopy 
prior to treatment, 2 days post-treatment (day 7), and 
weekly-to-monthly thereafter to monitor for relapse.

Nanostring™ gene expression analyses

FACS purification of normal lymphocyte and ALL 
samples from WT and rag2:hMYC fish, RNA extraction, 
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and probe hybridization were performed as described 
previously [58], with gene identities and probe sequences 
available in the online supplemental material of that 
publication. Hybridization data were analyzed using 
nSolver 3.0 software (Nanostring nCounter Technologies, 
Seattle, WA, USA). Read counts were log-transformed and 
converted to z-scores for visualization purposes.

Single-cell qRT-PCR analyses of hMYC B- and 
T-ALL

ALL cells from double-transgenic hMYC fish 
were isolated from peritoneal washings as described 
previously [63]. Individual B- and T-ALL cells were 
FAC-sorted into 96 well plates, and cells were lysed, 
RNA extracted, and cDNA synthesized according to 
the Fluidigm™ single-cell protocol. Twenty-cycle pre-
amplification reactions were performed using gene-
specific primers (listed in Supplementary Table 1.) 
according to manufacturer instructions. Unincorporated 
primers were digested with exonuclease I (NEB 
M0293L) and samples diluted 5-fold in DNA suspension 
buffer (TEKnova PN T0221). Single-cell pre-amplified 
cDNA were then quantified by qRT-PCR in a Fluidigm 
BioMark HD machine using 48.48 Dynamic Array 
Chips for Gene Expression following the manufacturer’s 
protocol. CT values were converted to Log2Ex values 
for visualization purposes using a limit of detection 
(LoD) of 28. Additional LoD limits were examined and 
showed similar results.

RNA-seq and gene expression comparisons of 
hMYC and mMyc B-ALL

Paired-end RNA-seq reads were trimmed with 
BBDuk (v.38.22; retrieved from http://sourceforge.net/
projects/bbmap) and aligned to the D. rerio GRCz11 
genome using STAR (v.2.6.1b; default settings optimized 
for read-length) [65]. Picard’s MarkDuplicates tool 
(v.2.18.14; retrieved from http://broadinstitute.github.io/
picard) was used to identify potential duplicates. Gene 
counts were generated with featureCounts (RSubread 
v.1.32.1) using D. rerio Ensembl annotation (release 
92) [66, 67]. Ribosomal and mitochondrial RNA were 
excluded. Counts were processed and normalized 
within DESeq2 (v.1.22.1) [68], and pairwise differential 
expression testing was used to compare hMYC and mMyc 
B-ALL (adjusted p-value < 0.05, absolute fold-change 
> 1.5). Additional filtering steps were as described 
previously [60]. Putative human orthologues were mapped 
to corresponding D. rerio genes using BEAGLE (update 
090718; retrieved from http://chgr.mgh.harvard.edu/
genomesrus/index.php). In downstream analyses, a gene 
count threshold of 100 was used for each up-regulated 
group (minimum expression in at least 75% of in-group 
samples). RNA-seq heatmaps depict normalized counts 

generated via the variance-stabilizing transformation in 
DESeq2, unless otherwise described. Over-representation 
analysis was performed with clusterProfiler (v.3.10.0) 
[69] using putative human orthologues (FDR < 0.05) in 
the C2, C5, and C7 collections from MSigDB (v.7.0) [70]. 
The 10 highest-scoring pathways by FDR q-value for 
each group were chosen for visualization, with pathway 
names changed for brevity. Highly-redundant pathways 
were excluded manually, based on gene overlap. Original 
pathway names (order matching Figure 6B) and related 
data are listed in Supplementary Table 4.

RESULTS AND DISCUSSION

B-ALL is early onset and highly penetrant in 
hMYC zebrafish

We previously analyzed more than 50 unique hMYC 
B-ALL [58, 60], demonstrating these fish are a robust 
model, but latency and incidence rates for B- and T-ALL 
have not been reported in the hMYC line. To determine 
these, beginning at 3 months of age, we monitored fish 
by serial fluorescent microscopy to detect GFPlo B-ALL 
and GFPhi T-ALL, as we described previously (Figure 1A) 
[58]. Using the lck:GFP marker, GFPlo B-ALL fluoresce 
dimly, making them difficult to discern by microscopy and 
more likely to require high disease burdens to be detected. 
In addition, brightly fluorescent T-ALL can obscure 
detection of B-ALL. To address these possibilities, we 
flow cytometrically tested ALL in order to definitively 
assign them to the correct group.

We surveyed over 600 fish until 184 days post 
fertilization (dpf) and found ~60% developed at least one 
form of ALL by that time (Figure 1A). Isolated T-ALL 
was most common (40%), with peak incidence between 
4-5 months. B-ALL followed a similar time course, with 
12% incidence by 184 dpf, and another 7% of animals 
developing both T- and B-ALL. To confirm these results, 
every ALL was analyzed flow cytometrically (Figure 1B). 
By 300 dpf, every surviving animal had developed at least 
one type of ALL (64% T-ALL, 23% B-ALL, 13% T- and 
B-ALL; data not shown). We conclude that ALL is highly 
penetrant in hMYC fish, with peak onset beginning shortly 
after 120 dpf.

To simplify detection of B-ALL by fluorescent 
microscopy and eliminate the need for flow cytometric 
confirmation, we created double-transgenic fish with 
rag2:hMYC and either the cd79a:GFP or cd79b:GFP 
marker (Figure 1C), which utilize promoters from B 
cell-specific proteins that are components of the surface 
immunoglobulin signaling complex [61]. In these lines, 
B-ALL fluoresce brightly, but T-ALL do not fluoresce. 
These models will be useful for B-ALL studies, 
particularly in investigations with potential therapeutic 
agents. The highly-fluorescent B-ALL of these lines can 
facilitate accurate and high-throughput determinations of 

http://sourceforge.net/projects/bbmap
http://sourceforge.net/projects/bbmap
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
http://chgr.mgh.harvard.edu/genomesrus/index.php
http://chgr.mgh.harvard.edu/genomesrus/index.php
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both response rates and relapse kinetics, allowing precise 
regression measurements via fluorescence quantifications, 
and more sensitive detection of B-ALL relapses when 
disease burden still remains low.

B-ALL respond to dexamethasone and radiation 
treatments

The glucocorticoids prednisone and dexamethasone 
(DXM) are the backbone of ALL therapy in patients, 
and γ-irradiation (IR) remains an effective adjunct that 
is also used, although it is reserved for specific cases 

due to toxicity [71, 72]. To determine whether B-ALL 
in zebrafish are similarly responsive to these modalities 
and establish protocols for future therapeutic studies in 
this model, we devised in vivo regimens for DXM and IR 
treatment of D. rerio with B-ALL.

For DXM, fish were housed continuously in fish 
water containing 5 μg/ml DXM for 9 days, modified 
from our prior DXM studies in zebrafish T-ALL, and 
monitored by serial fluorescence microscopy [43, 64]. 
We treated nineteen animals, and every B-ALL showed 
robust regression, with most becoming undetectable 
by fluorescent microscopy by the end of treatment 

Figure 1: B-ALL in hMYC zebrafish. (A) Curves displaying B- and T-ALL incidence by 184 dpf, as determined by fluorescence 
microscopy. (B) Fluorescence microscopy images of fish with B-ALL (left), both B- and T-ALL (center), or T-ALL (right). Flow cytometry 
plots of ALL samples from these fish are shown beneath them. (C) B-ALL appearance in fish with rag2:hMYC and different transgenic 
markers: cd79a:GFP (left), cd79b:GFP (center), or lck:GFP (right). WT cd79a:GFP or cd79b:GFP fish without B-ALL are shown beneath 
for comparison. Images are representative of > 50 animals examined for each genotype.
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(Figure 2A). After completing DXM treatment, we then 
monitored fish for 9 weeks, with 58% (11/19) recurring by 
4 weeks. We conclude that our DXM protocol effectively 
kills most B-ALL cells, as 100% of animals exhibited 
brisk responses, but in many cases, sufficient B-ALL 
cells persist to re-grow the cancer quickly. Based on this, 
we believe this model can be utilized to investigate the 
genetic and molecular features of steroid-resistant ALL, a 
significant clinical problem in ALL patients [73].

IR is toxic in patients, and we also observed this 
in zebrafish with B-ALL. We initially administered IR 
treatments of 20 Gray (Gy) as single doses, but many 
animals died, despite the fact that this dose is well-
tolerated by wild-type (WT) fish [59]. To diminish IR 
toxicity, presumably caused by overwhelming tumor lysis 
[74], we divided IR into two fractions, giving 10 Gy on 
day 0 and an additional 5 Gy on day 5. This was better 
tolerated, and following the second fraction, B-ALL were 
undetectable by fluorescence microscopy (Figure 2B). 
However, as seen in many DXM-treated B-ALL, all 
B-ALL relapsed post-IR, and recurrences were even more 
rapid (~3 weeks). From these results, we infer that IR 
(like DXM) kills most B-ALL cells, but surviving cells 
quickly re-populate the tumor. In addition, the rapid re-
growth of B-ALL after IR suggests either more cells 
persist following IR, or that B-ALL cells that survive 
IR adopt more aggressive phenotypes. Distinguishing 
between these possibilities and unravelling the underlying 
mechanisms responsible will be informative to the clinical 
scenarios these experiments represent.

Defining B-ALL and B cell gene expression 
patterns

We discovered many D. rerio B lymphocytes and 
B-ALL express low levels of lck [58], which fostered new 
studies not previously done in zebrafish, such as FACS 
isolation of B-lineage cells (i. e., GFPlo cells from lck:GFP 
fish) and profiling their gene expression [58, 63]. These 
findings translate to humans because immature human B 
cells and many patients’ B-ALL also express low levels of 
LCK [58, 75, 76]. It is currently not known if these newly-
described lcklo/LCKlo B cells represent one, or many, B cell 
population(s).

To begin to address this, we assessed gene expression 
in lymphocytes of fish carrying only the lck:GFP marker 
transgene (henceforth referred to as WT) and double-
transgenic rag2:hMYC, lck:GFP fish (henceforth, hMYC). 
We FACS-purified lymphoid gate cells from both marrow 
and thymus, and further divided these into GFP-negative 
(GFP-), GFPlo, and GFPhi fractions [58, 62]. We then used 
Nanostring™, a multiplexed probe-based hybridization 
technique, to quantify mRNAs expressed by each 
population [77, 78]. To categorize distinct cell identities, 
we selected zebrafish gene homologues whose expression 
distinguishes mammalian B, T, and other leukocytes for 

these experiments [58, 79]. We found that GFPhi cells from 
both thymus and marrow in both genotypes (WT, hMYC) 
express T-lineage transcripts such as cd2, cd4, cd8a, itk, 
lat, and T cell receptor (TCR) mRNA (trcd, trcg, trbc2, 
trac, trbc1; Figure 3A). RNA-seq studies by other groups 
indicate some D. rerio natural killer (NK) and myeloid 
cells also express lck [49, 80], but transcripts indicative 
of these cells were not seen, suggesting they are minor 
populations in marrow and thymus. In contrast, B cell 
gene expression (cd79a, cd79b, ighz, btk, cd22, syk, lyn, 
pax5, blnk, ighm, etc.) was prominent in GFPlo and GFP- 
fractions from both organs (Figure 3A), particularly in 
hMYC GFPlo cells of both marrow (Figure 3B) and thymus 
(Figure 3C), where B-lineage genes were the dominant 
signature. We draw two inferences from these data: (1) 
lck- and lcklo lymphocytes both contain B cells, but the lcklo 
population has greater B cell enrichment and (2) lcklo B 
cells are more abundant in hMYC fish, as B-lineage genes 
were more dominant in hMYC GFPlo signatures than in 
those of WT animals.

These results support our conclusions, but using 
bulk gene expression patterns to compare populations that 
contain multiple cell types is challenging. Alternatively, 
single cell analyses can unambiguously define cell 
identities and precisely quantify different cell types. Such 
approaches can also reveal heterogeneity in seemingly-
uniform populations, which is more powerful than 
binary categorizations like simple lineage assignments. 
Recognizing differences between cells of the same lineage, 
or cells of the same cancer, also has functional relevance, 
since distinct gene expression patterns correspond to 
different cellular phenotypes. Lymphocytes are diverse 
and complex populations, composed of not only B, T, 
and NK cells, but also innate lymphoid cells (ILC) [81]. 
Moreover, each of these cell types have multiple additional 
subtypes, such as the distinct IgM and IgZ B cell lineages 
in teleost fish [61, 82–84] or the various T lymphocyte 
subtypes [e. g., cytotoxic (CD8+ CTL), helper (CD4+ TH), 
TH17, and regulatory (Treg) subclasses] [85–87].

Diversity is not unique to normal lymphocytes; 
lymphoid cancers also contain heterogeneous populations, 
as previously shown in D. rerio mMyc-driven T-ALL [15, 
40, 45, 48]. To assess tumor heterogeneity in hMYC-
induced ALL and begin to define its extent, we analyzed 
mRNA expression in single cells from B- or T-ALL from 
hMYC fish (Figure 4). Animals exhibited either dim or 
bright cancers by fluorescent microscopy (Figure 4A) and 
by FACS analysis (Figure 4B). Using Fluidigm Biomark™ 
multiplex quantitative reverse transcriptase polymerase 
chain reaction (PCR primers are listed in Supplementary 
Table 1), we analyzed the expression of 17 transcripts: 10 
B-lineage, 6 T-lineage, and as a mRNA threshold control, 
eukaryotic translation elongation factor 1 alpha 1, like 
1 (ef1a) in 10 B- and 10 T-ALL individual cells (Figure 
4C). All 20 B- and T-ALL cells profiled in accordance 
with their expected lineage, but expression differences of 
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specific genes in single cells (e. g., pax5, id3, etc.) were 
evident. In addition, select genes (e. g., foxo1b, skap1) 
occasionally were mis-expressed by cells of the ‘wrong’ 
lineage. The significance of these findings remain to be 
determined, as malignant cells express aberrant markers 
on occasion [88], but biphenotypic ALL was demonstrated 
in mMyc fish, so what has previously been termed gene 
‘mis-expression’ may actually represent an intriguing 
finding [57, 60]. Future single-cell studies hold promise as 
a means to address these and other unanswered questions 
about the cellular heterogeneity amongst lymphocytes, and 
within individual cancers, so as to define the precise gene 
expression differences that underlie their differing cellular 
phenotypes in vivo.

Distinct types of B-ALL driven by hMYC and 
mMyc

MYC acts oncogenically in many ALL cases, and 
MYC is hyperactive in several other forms of cancer also 
[89], so it is not surprising that hMYC and mMyc can induce 

ALL in several types of lymphocytes [60]. However, the 
human and mouse MYC oncoproteins in these transgenic 
fish are highly conserved (435 amino acids, ~92% 
identical, ~94% similar; Figure 5), and both lines regulate 
MYC using the same zebrafish rag2 promoter, so it was 
surprising to discover that B-ALL in hMYC and mMyc fish 
are quite different. Specifically, hMYC B-ALL arise in ighz-
lineage precursor B cells, whereas mMyc B-ALL occur 
in pro-B cells of the ighm lineage [60]. Unlike mammals 
which lack IgZ, expression of the zebrafish IgZ isotype 
does not occur by class switching. Instead, because of the 
configuration of the D. rerio immunoglobulin heavy chain 
(IgH) locus, during VDJ recombination zebrafish B cells 
must delete ighz sequences in order to express IgM [82]. 
Thus, when B cells commit to the IgM lineage, they lose 
their ability to express IgZ. As such, IgZ B cells, which are 
believed to primarily mediate mucosal immunity, can be 
viewed as an earlier stage in zebrafish B cell development 
that precedes IgM lineage commitment.

We used RNA-seq to profile gene expression in 
hMYC ighz+ and mMyc ighm+ B-ALL (Figure 6) [60]. We 

Figure 2: B-ALL regress with DXM or IR treatments. (A) B-ALL in rag2:hMYC fish treated with DXM for 9 days (n = 19). Post-
treatment and relapsed images were obtained on days 9 and 28, respectively. Every (19/19) B-ALL regressed after DXM, but 11/19 (58%) 
B-ALL relapsed by day 28 (19 days after DXM withdrawal). (B) B-ALL in rag2:hMYC fish treated with IR (n = 13). Post-treatment and 
relapsed images were obtained on days 7 (i. e., 2 days after the 2nd IR dose) and 23, respectively. Every B-ALL (13/13) regressed after IR, 
but 100% recurred within 3 weeks of the 2nd IR dose. Upon relapse, flow cytometric testing (See Figure 1B) was used to verify that each 
relapse was GFPlo B-ALL. Images of rag2:hMYC, lck:GFP fish (top 5 animals) have had brightness enhanced to facilitate visualization of 
dim B-ALL. Images of the rag2:hMYC, cd79a:GFP fish (lowest animal) are unmodified.
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Figure 3: Gene expression in zebrafish lymphocytes. (A) Nanostring™ expression data in GFP-, GFPlo, and GFPhi lymphocytes 
from WT or rag2:hMYC fish bearing the lck:GFP marker transgene. hMYC GFPlo cells from thymus and marrow express B cell genes, as 
do WT GFPlo marrow cells. hMYC and WT GFP- marrow cells also express B cell transcripts. WT and hMYC GFPhi thymocytes express T 
cells genes, as do WT GFPhi marrow cells. WT GFPlo thymocyte fractions contain a mixture of B and T cells (as do hMYC GFPlo thymocytes 
and WT GFPlo marrow cells), due to the difficulty of obtaining pure GFPlo populations from these tissues [58, 63]. Samples are clustered 
hierarchically. (B) Nanostring™ expression data for B cell genes in marrow lymphocytes. WT and hMYC GFPlo marrow cells show the 
strongest B cell signature, but B cell hyperplasia in hMYC fish increases the B cell signature of GFP- hMYC marrow cells compared to 
WT GFP- marrow cells, which show little-to-no B cell gene expression. Samples are clustered hierarchically. (C) Nanostring™ expression 
data in hMYC thymocytes. hMYC GFPlo thymocytes express B, but not T, cell genes; hMYC GFPhi thymocytes show the opposite pattern. 
In panels (A–C), triplicates [hMYC/GFPlo/thymus (tan/lt. blue/red), hMYC/GFPlo/marrow (tan/lt. blue/orange), hMYC/GFP-/marrow (tan/
purple/orange), WT/GFPhi/thymus (dk. blue/green/red), and hMYC/GFPhi/thymus (tan/green/red)] represent individual biologic replicates, 
where each column depicts results from RNA of cells pooled from 10 fish. For each singleton sample [WT/GFPlo/marrow (dk. blue/lt. 
blue/orange), WT/GFP-/marrow (dk. blue/purple/orange), WT/GFPlo/thymus (dk. blue/lt. blue/red), and WT/GFPhi/marrow (dk. blue/green/
orange)], cells were pooled from 30 fish of the indicated genotype for RNA extraction. In panels A–C, read counts were log-transformed 
and converted to z-scores for visualization purposes. Scale bars are shown at the left of each heatmap.
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compared 4 hMYC B-ALL to duplicate transcriptomes 
from the only 2 mMyc B-ALL thus far reported [57]. As 
noted, this revealed hMYC B-ALL expressed ighz constant 
regions while mMyc B-ALL expressed ighm constant 
region mRNA [60], plus additional differences. Overall, 

> 400 genes displayed statistically-significant differential 
expression (Figure 6A and Supplementary Tables 2 and 
3), including several pathways of interest. Curiously, in 
hMYC B-ALL much higher expression levels were seen 
for 9 of 10 fos and jun family members in the zebrafish 

Figure 4: Gene expression in individual hMYC B- and T-ALL cells. (A) rag2:hMYC;lck: GFP fish with dim (left) and bright 
(center) cancers. B-ALL is only visible with 1.5 s exposure (upper left); T-ALL is visible with either 1.5 s (upper middle) or 200 ms (lower 
middle) exposures. Control lck:GFP fish images are shown at right, where only the thymus is visible. (B) Flow cytometry plots of the 
same ALL samples demonstrate GFPlo B-ALL and GFPhi T-ALL specimens. (C) Gene expression in single B- and T-ALL cells of the same 
cancers (n = 10 cells for each), as determined by Fluidigm™ Biomark qRT-PCR. B-ALL cells express B cell, but not T cell, genes; T-ALL 
show the opposite pattern. Expression of eef1a1l1 (homologue of human eukaryotic translation elongation factor 1 alpha 1, aka EF1A) was 
used as a threshold control for the presence of RNA in each well. CT values were converted to Log2Ex for visualization (scale bar at left).

Figure 5: Alignment of human and murine MYC proteins. Transgenic human and mouse MYC are 435 and 439 amino acids, 
respectively (last four mMyc residues not shown). Proteins show > 91% identity (399 residues, shaded light blue) and > 94% similarity (410 
residues; 11 additional similar residues shaded darker blue).
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genome (green bar in Figure 6A) with the lone exception 
fosl1b, which was higher in mMyc B-ALL. Also intriguing 
was the finding that all 6 endogenous D. rerio MYC 
family members (myca, mycb, mycn, mych, mycla, and 
myclb; red bar in Figure 6A) were more highly expressed 
in hMYC-driven B-ALL, as were multiple MYC-binding 
proteins and several MAX proteins, which heterodimerize 
with MYC (purple bar in Figure 6A).

B-ALL from the mMyc model showed dramatic up-
regulation of many genes belonging to the Gene Ontology 
(GO) RNA binding pathway (blue bar in Figure 6A 
and top entry of Figure 6B lower panel). Several other 
genes also showed higher expression in mMyc B-ALL 
(Supplementary Table 3), including D. rerio homo/
orthologues of mechanistic target of rapamycin kinase 
(MTOR) and the MTOR complex 1 member RPTOR, 

multiple cyclin-dependent kinases and related cell cycle 
regulators (CDK5, CDK14, CDC5L, CACUL1, TNK2), 
and the non-receptor tyrosine phosphatases PTPN13 
and PTPN21. Together, these results suggest cell growth 
and division may be regulated differently in mMyc vs. 
hMYC B-ALL. Other notable orthologues up-regulated in 
mMyc B-ALL included the MYB-like gene MYSM1, two 
genes with jumonji lysine demethylase domains (JMJD8, 
JARID2), and the transcription factor NFAT5.

We postulate these and other differences may explain 
the apparently disparate oncogenic mechanisms employed 
by hMYC and mMyc in the B lymphoblasts of these closely-
related lines. Pathway analysis of differentially-regulated 
genes predicted differing activation of several biologic 
pathways (e.g., cell differentiation, immune system 
process, lymphocyte activation, RNA binding, etc.; Figure 

Figure 6: Differentially-expressed genes in hMYC versus mMyc B-ALL. (A) Heatmap depicting 62 differentially-expressed 
mRNA, including genes of the Gene Ontology (GO) RNA binding pathway (blue bar), D. rerio fos/jun-family members (green bar), 
endogenous myc-family members (red bar), and other myc-related proteins, including several max heterodimeric partners (purple bar). 
Samples hMYC-1, -3, -4, and -5 are four distinct hMYC B-ALL; 9.2A/B and 10.2A/B pairs are RNA-seq technical replicates of two mMyc 
B-ALL [57, 60]. Genes not meeting differential expression testing thresholds or other filtering criteria are marked by asterisks (FDR < 0.05, 
absolute fold-change ≥ 1.5). Read counts are shown as z-scores (scale bar at left). (B) Top ten biologic pathways up-regulated in hMYC 
(top) or mMyc B-ALL (bottom; FDR < 0.05). Pathways are ordered according to the number of genes detected in the gene set (x-axis) and 
colored based on FDR q-value. Data point sizes correspond to the percentage of genes over-expressed in each pathway.
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6B panels and Supplementary Table 4). These markedly 
different pathway signatures further demonstrate that 
human and murine MYC are far from synonymous in terms 
of their oncogenic effects upon zebrafish B lymphoblasts.

CONCLUSIONS

Recent discoveries of B-ALL in D. rerio lines 
previously-known to develop T-ALL were unexpected, 
but in retrospect, are not surprising. Both B and T 
lymphoblasts express rag2, so it is predictable that the 
transgenic promoters used in hMYC and mMyc fish would 
be active in both lymphocyte lineages. Likewise, MYC 
is known to be potently oncogenic in multiple types of 
B cell cancer, so the fact that mammalian MYC proteins 
can induce zebrafish B-ALL is no more surprising than 
their already well-documented activities in promoting 
zebrafish T-ALL. Rather, what is somewhat surprising is 
that over a decade passed between the first description of 
rag2:mMyc fish and the recognition that B-ALL occurred 
in them. This may reflect that B-ALL is less prevalent 
than T-ALL, but our incidence data in the related 
rag2:hMYC line (Figure 1A) demonstrate that B-ALL is 
still quite common—at least in hMYC fish. Irrespective 
of this, now that B-ALL are described, recognizing them 
is straightforward, either by differential GFP expression 
in the lck:GFP background, or with other transgenic 
markers like cd79a:GFP or cd79b:GFP (Figure 1C). In 
the case of these latter two lines, T-ALL will of course 
still develop, but go undetected. In view of this, it is 
worth noting that other forms of ALL are perhaps yet 
to be discovered in mMyc and hMYC fish, as alluded to 
by the discovery of a biphenotypic ALL of mixed B/T-
lineage in the aforementioned mMyc study [57]. Going 
forward, continued efforts to discern the molecular 
mechanisms by which MYC mediates oncogenic effects 
in different lymphocyte lineages promise to yield even 
more insights into how this potent oncogene can drive 
cancer in zebrafish, and in humans.
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