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The microRNAs (miRNAs) function as global negative regulators of gene expression and have been associated with a multitude of
biological processes. The dysfunction of the microRNAome has been linked to various diseases including cancer. Our laboratory
recently reported modulation in the expression of miRNA in a variety of cell types exposed to ionizing radiation (IR). To further
understand miRNA role in IR-induced stress pathways, we catalogued a set of common miRNAs modulated in various irradiated
cell lines and generated a list of predicted target genes. Using advanced bioinformatics tools we identified cellular pathways where
miRNA predicted target genes function. The miRNA-targeted genes were found to play key roles in previously identified IR stress
pathways such as cell cycle, p53 pathway, TGF-beta pathway, ubiquitin-mediated proteolysis, focal adhesion pathway, MAPK
signaling, thyroid cancer pathway, adherens junction, insulin signaling pathway, oocyte meiosis, regulation of actin cytoskeleton,
and renal cell carcinoma pathway. Interestingly, we were able to identify novel targeted pathways that have not been identified
in cellular radiation response, such as aldosterone-regulated sodium reabsorption, long-term potentiation, and neutrotrophin
signaling pathways. Our analysis indicates that the miRNA interactome in irradiated cells provides a platform for comprehensive
modeling of the cellular stress response to IR exposure.

1. Introduction

MicroRNAs (miRNAs) are approximately 21 nucleotides in
length that do not code for proteins. miRNAs were discov-
ered in 1993 but their significance was not realized until 2000
[1]. miRNAs act as negative regulators of gene expression by
mRNA degradation and protein downregulation [2]. miRNA
bind to the target mRNA and initiate mRNA degradation.
Alternatively miRNAs inhibit the protein machinery from
latching on to the mRNA. The interplay between the miRNA
and mRNA forms a highly complex regulatory network,
mainly because a single miRNA can target hundreds of
different mRNA molecules [3]. Higher production of miRNA
leads to lower expression levels of its target proteins. The
miRNAs are reported to be involved in cell differentiation,
metabolic regulation, apoptosis, and many other biological
processes [4]. Dysfunction of miRNA has been associated
with numerous cancers [5] and alterations in the expression

levels or complete deletion of key miRNAs have been
reported in tumor cells [6].

Cellular stress pathways protect cells from the deleterious
effects of genotoxic insult. Ionizing radiation disrupts cel-
lular homeostasis through multiple mechanisms. The cells
respond to stress induced by ionizing radiation exposure
through complex processes by activating many pathways
ranging from DNA damage processing, signal transduction,
altered gene expression, cell-cycle arrest, and genomic insta-
bility to cell death [7, 8]. The current data suggests that the
exposure to radiation provokes cellular responses controlled
in part by gene expression networks [7, 9]. miRNAs regulate
gene expression and have been shown to control multiple
intracellular processes involved in the response to cellular
stress [10, 11].

Alterations in the miRNA expression levels occur fol-
lowing exposure to ionizing radiation [12–14]. The miRNA
expression levels in primary human dermal microvascular
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endothelial cells (HDMEC) after 2 Gy radiation treatment
indicated upregulation of hsa-let-7g, hsa-miR-16, hsa-miR-
20a, hsa-miR-21 and hsa-miR-29c, and downregulation of
hsa-miR-18a, hsa-miR-125a, hsa-miR-127, hsa-miR-148b,
hsa-miR-189, and hsa-miR-503 [15]. miRNA profiles of
irradiated lung cancer cells indicated that the level of hsa-
let-7g was higher in radiosensitive cells Caski, NCI-H460
(H460), and ME180 than in radioresistant cells A549, H1299,
DLD1 [16]. Changes in expression patterns of hsa-miR-92b,
hsa-miR-137, hsa-miR-656, hsa-miR-558, hsa-miR-660, and
hsa-miR-662 after low (0.1 Gy) and high (2.0 Gy) doses of
X-ray in human fibroblasts were observed [17]. The hsa-
let-7 family miRNAs were upregulated in irradiated M059K
cells and downregulated in M059J cells. The hsa-miR-17-3p,
hsa-miR-17-5p, hsa-miR-19a, hsa-miR-19b, hsa-miR-142-3p,
and hsa-miR-142-5p were upregulated in both M059K and
M059J cells. [14]. Radiation treatment of prostate cancer
cells changed the expression levels of hsa-miR-521 [18]. The
expression profiles of miRNAs in HCT116 human colon
carcinoma cells and its p53-null derivative correlated with
p53 status [19]. The expression of hsa-let-7 family miRNAs,
which are negative regulators of the rat sarcoma, RAS
oncogene, was upregulated in irradiated p53 positive TK6
cells but was downregulated in p53 negative WTK1 cells. The
hsa-miR-15a and hsa-miR-16 were upregulated in 0.5 Gy-
irradiated TK6 cells but were downregulated after a 2 Gy
dose of X-rays [13]. The expression levels of hsa-let-7 family
miRNA and miRNA associated with MYC translocation were
modulated after gamma radiation treatment in Jurkat cells
[12]. While many studies have reported dose-dependent
changes in the expression profiles of miRNAs in irradiated
IM9 human B lymphoblastic cells [20, 21], human lung car-
cinoma cell line A549 [22], and human fibroblasts [23]; some
studies did not observe any significant alterations in miRNA
expression in cells treated with gamma-irradiation [24].

We were interested to examine the role of miRNAs in
ionizing radiation- (IR-)induced stress pathways. Although
miRNAs have been implicated as crucial posttranscriptional
gene regulators, their role in the cellular response to IR is
not comprehensively examined. We asked the question: can
we use microRNAome and their target genes to corroborate
previously identified IR responsive pathways? We also argued
if the miRNAome would allow us to discover new perspective
to radiation exposure. This study was undertaken (1) to
assemble miRNA species that are modulated after radiation
exposure in many human cell lines, (2) to identify the
genes that are targeted by these miRNA using bioinformatics
approaches, and (3) to determine the role of miRNA target
genes in radiation-induced cellular pathways.

2. Materials and Methods

2.1. Selection of IR-Induced miRNA. We collected the data
from our published work on radiation-induced miRNA
and also searched the PubMed database to collect articles
that investigated the modulation of miRNA after IR exposure.
The keywords miRNA, microRNA, ionizing radiation and
radiation were used in performing the literature search.

This search retrieved 236 research articles. PubMed was a
preferred choice over the other available article databases
such as Web of Science, BIOSIS Previews (http://thomson-
reuters.com/) and Science Direct because PubMed provided
comprehensive results that overlapped and displayed more
articles. The articles were imported into EndNote after deter-
mining its relevancy to miRNA and IR topic. The relevant
articles extracted from PubMed were subjected to addi-
tional refinement. The research studies which were selected,
performed ionizing radiation experiments on human cell
lines only and recorded the miRNA expression levels. We
identified the miRNA species, cell types, type of radiation,
radiation dose, and analysis time from these studies. We then
assembled a common list of miRNAs that were investigated
among a group of cell types.

2.2. Generation of IR-Induced miRNA Database. The miRNA
expression data extracted from the published research arti-
cles was used to assemble a database. Over 1000 records were
generated from the data extraction procedure. Microsoft
Excel was utilized to tabulate the information from various
articles. This “mastersheet” formed the platform for the sub-
sequent analysis. The data was organized in the Excel “mas-
tersheet” with the following headings: cell type, cell line, radi-
ation type, radiation dose (Gy), dose rate (Gy/min), analysis
time (hours) after treatment, miRNA species, qualitative
miRNA expression from base, qualitative miRNA expression
from base (numerical), quantitative miRNA expression
(fold change), and data source. The Pivot Table tool of
Microsoft Excel was employed to reorganize the master
dataset. This “pivot table” was referenced to the original
unchanged mastersheet. The pivot table allowed to generate a
list of miRNA that were observed to show altered expression
in 5 or more cell lines after exposure to ionizing radiation.

2.3. Prediction of miRNA Target Genes. The miRNAs of
interest were assembled in Microsoft Access database
then searched against the mirDB dataset (http://mirdb.org/
miRDB/) [25] to predict target genes. Microsoft Access
allowed for the quick creation of local database from
which high-level queries could be placed. To obtain gene
ontology (GO) terms for each target gene, we equipped the
Access database with other genomic datasets, such as Entrez
Gene, GaRNeT (Genomics and Randomized Trials Net-
work), and KEGG (Kyoto Encyclopedia of Genes and Gen-
omes) Pathways. The Entrez Gene dataset provided infor-
mation regarding gene symbol and description, which was
linked by the Entrez ID. The GaRNeT dataset allowed linking
the mirDB dataset to the Entrez Gene dataset.

2.4. Identification and Visualization of miRNA-Predicted
Genes and Biological Pathways. The output dataset queried
through the Access database provided the predicted target
genes for the miRNA species of interest. The Entrez ID
list was imported in DAVID (Database for Annotation,
Visualization andIntegrated Discovery) (http://david.abcc
.ncifcrf.gov/), an online database that can link genes to
its biological pathways through the KEGG database. This
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strategy enabled an enriched analysis of genes for GO terms,
using the miRNA target genes with respect to the category
of biological process. The miRNA-predicted target genes and
biological pathways were visualized with Cytoscape software
(http://cytoscape.org/). Cytoscape is an open source software
package that allows for powerful visual mappings of the
provided datasets. Cytoscape provided a visualization that
helped connect miRNA to their respective target genes and
associated pathways. Cytoscape enabled us to perform more
detailed functional analysis to identify miRNA-mediated net-
works, biological functions and canonical signaling pathways
for both miRNAs and the target mRNAs.

3. Results and Discussion

Exposure to ionizing radiation induces various physiological
responses including DNA repair, cell cycle arrest, signal
transduction, cell death, and cell differentiation [7, 8]. It is
becoming clear that changes in the expression profile of
many genes play a significant role in these processes [7,
9]. The discovery of miRNA and the establishment of
their involvement in regulating the gene expression have
prompted the need to interrogate their participation in the
radiation response. It is not completely understood how
miRNAs function in the cellular response to radiation expo-
sure. Our laboratory is engaged in assessing the miRNA
responses in irradiated human cells. We have collected data
on IR-induced miRNA expression alterations in a variety of
cell types [12–14]. We combined our data along with other
published data to compile miRNA species that are modulated
in a variety of human cell types. It was important to find
miRNAs that were analyzed in different studies, because a
singular data point would not have allowed for the formation
of relationships between different cell types. This dataset was
used for the identification of predicted miRNA target genes
and the basis of the functional role of miRNAs in the cell.
Our goal was to establish a link between the modulation of
miRNA after radiation exposure to the stress induced path-
ways in the cell.

3.1. Cell Lines Investigated for IR-Induced miRNA Expression
Analysis. A variety of cell lines have been exploited to exam-
ine the miRNA expression profile after radiation exposure.
The lymphoblast TK6 cell line has normal p53 and was used
as a base to compare IR-induced miRNA from p53 negative
WTK1 cell line [13]. The M059J and M059K glioma cell lines
isolated from the same tumor specimen differ in the DNA-
dependent protein kinase activity. M059J lack this kinase
whereas M059K express normal levels [26]. The Jurkat and
IM9 are both of lymphoid lineages; Jurkat is of T-cell origin
and IM9 is of B-cell origin (ATCC; American Type Culture
Collection). These cells are prevalent in many research stud-
ies because they provide platform on which to study immu-
nological signaling processes and the production of various
chemokines [12, 20, 21]. The A549 and HBE135-E6E7 are
cancerous cell lines from lung tissue. The cytogenetic data
from ATCC indicate that A549 cell line displays a hypo-
triploid chromosomal expression; a majority of cells having

around 66 chromosomes. The radiation-induced miRNA
expression profiles differ considerably among all these cell
types. We looked for miRNA expression similarities across
these cell lines to find common miRNA responses after rad-
iation exposure. Table 1 shows information regarding some
of these cell lines from where the miRNA dataset was selected
in this study.

3.2. Identification of miRNA Modulated in IR-Exposed Cell
Lines. We built an miRNA database to warehouse the IR-
induced miRNA expression data extracted from various
published studies. All of these studies employed low LET
radiation and the doses ranged from 0.1 to 40 Gy. The analy-
sis methodology ranged from real-time PCR to microarray
techniques. The number of radiation modulated miRNA
ranged from 8 to 36 in individual cell lines. The Microsoft
Excel’s pivot table from the original “mastersheet” permitted
to create a list of miRNA that were modulated in 5 or more
cell lines. 20 miRNA species were identified that were modu-
lated in 5 or more cell lines after treatment with IR. The pivot
table feature was further exploited to build a heat map of
the IR-modulated miRNAs. This heat map displays 3 dimen-
sional information which accounts for cell line, analysis time
after IR treatment and the miRNA species (Figure 1). We
first looked at the modulation of eight let-7 family miRNA
hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-
let-7f, hsa-let-7g, and hsa-let-7i. The published studies have
examined the expression of these miRNA in various cell lines
including A549, HBE135-E6E7, IM9, Jurkat, M059J, M059K,
TK6, and WTK1 at 0–24 h time points after exposure to
IR. A quick snapshot of the data assembled in Figure 1
indicated that majority of these miRNA were induced in
Jurkat, M059J, M059K, and TK6 cell lines. In contrast these
miRNA were downregulated in A549, HBE135-E6E7, and
WTK1 cells. The expression analysis of hsa-let-7 family
miRNA indicated that both A549 and WTK1 cell lines display
similar signatures (Figure 1). The differences in hsa-let-7
family miRNA expression between eight cell lines revealed
that WTK1 displayed marked down regulation in all miRNAs
of interest compared to the other cell lines. This could be
due to the fact that WTK1 is characterized as an inherently
unstable cell line [27]. Even in the absence of any radiation
exposure, a high percentage of WTK1 cells was reported
to display chromosomal aberrations such as aneuploidy,
chromatid breaks, and translocations [27]. These genomic
instabilities could be connected to the dysfunction in the
microRNAome. Many studies have attempted to probe the
role of miRNA in radiation sensitivity. The overexpression or
inhibition of let-7g markedly influenced clonogenic survival
and cell proliferation; hsa-let-7g enhanced radiosensitivity
of these cells [15]. Overexpression of hsa-let-7g in H1299
cells suppressed the translation of K-RAS, and increased
the sensitivity to IR. Knockdown of LIN28B, an upstream
regulator of hsa-let-7g, increased the level of mature hsa-let-
7g and the sensitivity to IR in H1299 cells [16]. The over-
expression of hsa-let-7a decreased the expression of K-RAS
and radiosensitized A549 lung carcinoma cells. Inhibition of
LIN28, a repressor of hsa-let-7, attenuated K-RAS expression
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Table 1: Radiation-induced miRNA expression analysis in various cell lines.

Cell line Cell type Radiation type Radiation dose (Gy) Characterized miRNA Reference

A549 Basal Epithelial N/A 2.5 8 [11]

HBE135-E6E7 Squamous N/A 2.5 8 [11]

TK6 Lymphoblast X-radiation 0.5 21 [13]

TK6 Lymphoblast X-radiation 2 21 [13]

WTK1 Lymphoblast X-radiation 0.5 21 [13]

WTK1 Lymphoblast X-radiation 2 21 [13]

HDMEC Endothelial X-radiation 2 11 [15]

AG1522 Fibroblast X-radiation 0.1 7 [17]

AG1522 Fibroblast X-radiation 2 22 [17]

M059J Glial X-radiation 3 19 [14]

M059K Glial X-radiation 3 19 [14]

IM9 B Lymphoblast Gamma 1 36 [20]

IM9 B Lymphoblast Gamma 10 26 [20]

IM9 B Lymphoblast Gamma 0.5 22 [21]

IM9 B Lymphoblast Gamma 10 22 [21]

TK6 Lymphoblast Gamma 2 20 [12]

Jurkat T- cell Gamma 2 20 [12]

A549 Basal epithelial Gamma 20 12 [22]

A549 Basal epithelial Gamma 40 18 [22]

LNCaP Epithelial X-radiation 6 15 [18]

C4-2 Epithelial X-radiation 6 11 [18]

HCT116 (Null) Epithelial Gamma 10 36 [19]

HCT116 (WT) Epithelial Gamma 10 36 [19]

and radiosensitized A549, and pancreatic cancer ASPC1 cells
[28].

We next determined the expression status of another
twelve miRNA hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-
143, hsa-miR-155, hsa-miR-15a, hsa-miR-16, hsa-miR-17-
3p, hsa-miR-17-5p, hsa-miR-18, hsa-miR-19a, hsa-miR-19b,
and hsa-miR-21 in irradiated IM9, Jurkat, M059J, M059K,
TK6, and WTK1 cells (Figure 2). Majority of these miRNA
were upregulated in Jurkat, M059J, and M059K cells after
exposure to IR but were repressed in irradiated IM9 and
WTK1 cells. Some of these IR-induced miRNAs have been
implicated in various cancers. In chronic lymphocytic leu-
kemia and prostate cancer, a majority of the patients had
deletions or downregulations of hsa-miR-15 and hsa-miR-16
[29, 30]. The hsa-miR-145 and hsa-miR-143 were downreg-
ulated in colorectal neoplasia [31]. In lung cancers, miRNA
hsa-let-7 was down regulated. The genes that code for
miRNAs have been frequently located at genomic locations
involved in cancers and there is strong indication that
miRNA gene acts as both tumor suppressors and oncogenes
[32].

3.3. Prediction and Visualization of IR-Modulated miRNA
Target Genes. The list of miRNAs studied among a group of
cell types was further examined to identify the target mRNAs
affected by these miRNA. We utilized the miRDB for pre-
dicting the miRNA target genes. The miRDB uses a support
vector machine (SVM), which is a type of algorithm based

on statistical learning theory. This program uses statistics
and employs artificial intelligence strategy such as neural
networks to assign a prediction score for a miRNA’s target
gene. This process of predicting miRNA target genes is
accomplished through a machine-learning algorithm, which
places a target score on a miRNA-gene association. This
miRDB database was chosen to identify miRNA target genes
because for the simplicity of the database structure and
agreed upon thresholds for the prediction target score. The
prediction target score of 50–95 was used to filter the target
genes. We constructed association networks between miR-
NAs and the target mRNAs and visualized the target genes
controlled by various IR responsive miRNA with Cytoscape.
The complexity associated with miRNA interactome is
shown in Figure 3. As expected a singular miRNA was found
to affect the regulation of hundreds of genes and a number
of miRNAs were seen to work synergistically with each
other to downregulate a multitude of genes. The resulting
miRNA : mRNA association network provided nodes and
connections between many miRNAs and the target mRNAs
(Figure 3). This network demonstrated the overlapping
mRNA targets for miRNAs in the hsa-miR-let7 family, hsa-
miR-15a, hsa-miR-16, hsa-miR-18a, hsa-miR-19a, hsa-miR-
19b, hsa-miR-21, hsa-miR-34a, hsa-miR-34b, hsa-miR-142-
3p, hsa-miR-142-5p, hsa-miR-143, hsa-miR-145, hsa-miR-
155, hsa-miR-197, hsa-miR-202, hsa-miR-376a, hsa-miR-575,
and hsa-miR-609 (Figure 3). Most of the radiation-mod-
ulated miRNAs have a large number of mRNA targets. For
example, the number of targets genes that were identified in
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Figure 1: The modulation of hsa-let-7-family miRNA in various
cell lines. The analysis time indicates the period of time that had
elapsed after exposure to ionizing radiation. The green color indi-
cates upregulation and red color shows downregulation of a
miRNA. The yellow color signifies no change, and the gray color
indicates that the miRNAs during those time points were not exam-
ined. The orange color signified some conflicting data where it was
either reported a no change or downregulation in two or more
studies. Similarly the light green color indicates data where it was
either reported a no change or upregulation in two or more studies.

Analysis 
time 

(hours)

IM
9

Ju
rk

at
M

05
9J

M
05

9K
T

K
6

W
T

K
1

miRNA species

0

4

8

12

24

hsa-miR-142-3p
hsa-miR-142-5p
hsa-miR-143
hsa-miR-155
hsa-miR-15a
hsa-miR-16
hsa-miR-17-3p
hsa-miR-17-5p
hsa-miR-18a
hsa-miR-19a
hsa-miR-19b
hsa-miR-21
hsa-miR-142-3p
hsa-miR-142-5p
hsa-miR-143
hsa-miR-155
hsa-miR-15a
hsa-miR-16
hsa-miR-17-3p
hsa-miR-17-5p
hsa-miR-18a
hsa-miR-19a
hsa-miR-19b
hsa-miR-21
hsa-miR-142-3p
hsa-miR-142-5p
hsa-miR-143
hsa-miR-155
hsa-miR-15a
hsa-miR-16
hsa-miR-17-3p
hsa-miR-17-5p
hsa-miR-18a
hsa-miR-19a
hsa-miR-19b
hsa-miR-21

hsa-miR-142-3p
hsa-miR-142-5p
hsa-miR-143
hsa-miR-155
hsa-miR-15a
hsa-miR-16
hsa-miR-17-3p
hsa-miR-17-5p
hsa-miR-18a
hsa-miR-19a
hsa-miR-19b
hsa-miR-21

hsa-miR-142-3p
hsa-miR-142-5p
hsa-miR-143
hsa-miR-155
hsa-miR-15a
hsa-miR-16
hsa-miR-17-3p
hsa-miR-17-5p
hsa-miR-18a
hsa-miR-19a
hsa-miR-19b
hsa-miR-21
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Figure 3: Visualization of miRNAs and their associated target genes network with Cytoscape. The interaction network shows nodes and
connections between miRNAs and the target genes. The yellow nodes represent the miRNA and the pink/red nodes represent its targeted
gene. The opacity of the blue edge links signifies the target score between the miRNA and the target gene. The opacity of red nodes represents
genes that have been identified to play roles in biological pathways.

biological pathways for hsa-miR-15a and hsa-miR-16 were 22
(Table 2). The target genes for all these miRNA are shown
in Table 2. These interactions demonstrated that a singular
miRNA has the capability to affect the regulation of a large
number of genes. It was apparent that a number of miRNAs
could work together to downregulate several genes.

We also identified the genes that were controlled by
multiple miRNA after exposure to IR. Figure 4 shows the list
of genes along with the miRNA that regulate their expression.
The genes that were regulated by two or more miRNA
were included in the Figure 4. For example LRIG3 gene
was targeted by hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d,
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SWI/SNF-related, matrix-associated actin-dependent regulator of chromatin, subfamily a, containing DEAD/H box 1

Ash1 (absent, small, or homeotic)-like (Drosophila)

3    Family with sequence similarity 70, member A 
3   F-box protein 30 
3   Host cell factor C2 
3   Integrin, beta 8
3   Kelch repeat and BTB (POZ) domain containing 2 
3   Potassium voltage-gated channel, shaker-related subfamily, member 4 
3   Potassium inwardly-rectifying channel, subfamily J, member 2 
3   Kinesin family member 21A 
3  Adenosylmethionine decarboxylase 1 pseudogene 
3   Low density lipoprotein receptor-related protein 6
3   Mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase, isozyme A 
3   Protocadherin 9 
3   Phosphoglucomutase 2-like 1 
3   Pleiomorphic adenoma gene 1
3   Reversion-inducing-cysteine-rich protein with Kazal motifs 
3   Ring finger protein 145 
3   SH3 domain and tetratricopeptide repeats 2 
3   Solute carrier family 9 (sodium/hydrogen exchanger), member 6 
3   TGF-beta activated kinase 1/MAP3K7 binding protein 2 
3   Tripartite motif-containing 23 
3   Teashirt zinc finger homeobox 3 
3   Tocopherol [alpha] transfer protein-like 
3   WEE1 homolog (S. pombe)
2   ATP-binding cassette, sub-family C (CFTR/MRP), member 9 
2   Acyl-CoA oxidase 1, palmitoyl 
2   Acyl-CoA synthetase long-chain family member 4 
2   ARP2 actin-related protein 2 homolog (yeast)
2   ADAM metallopeptidase with thrombospondin type 1 motif, 3 
2   Activity-dependent neuroprotector homeobox 
2   Adenylosuccinate synthase 
2   AF4/FMR2 family, member 1 
2   Aftiphilin
2   Adenosylhomocysteinase-like 2 
2   Ankyrin repeat domain 46 
2   Anoctamin 3
2   ADP-ribosylation factor guanine nucleotide-exchange factor l(brefeldin A-inhibited)
2   Arrestin domain containing 3 
2   Arylsulfatase D
2   ATG14 autophagy related 14 homolog (S. cerevisiae)
2   ATG16 autophagy related 16-like 1 (S. cerevisiae) 
2   ATPase, Ca transporting, plasma membrane 2 
2  ATPase, Ca transporting, type 2C, member 1 
2   ATPase, H transporting, lysosomal 56/58 kDa, VI subunit B2 
2   ATPase, Cu transporting, alpha polypeptide 
2   ataxin 1
2   BMP and activin membrane-bound inhibitor homolog (Xenopus laevis)
2   B-cell receptor-associated protein 29 
2   BEN domain containing 4 
2   Bone morphogenetic protein receptor, type IA
2   BTAF1 RNA polymerase II, B-TFIID transcription factor-associated, 170 kDa (Mot1 homolog, S. cerevisiae) 
2   Beta-transducin repeat containing 
2   Chromosome 10 open reading frame 46 
2   Chromosome 11 open reading frame 96 
2   Chromosome 1 open reading frame 21 
2   Complement component 1, q subcomponent-like 3 
2   Chromosome 8 open reading frame 86 
2   Calcium channel, voltage-dependent, L type, alpha 1C subunit 
2   Capping protein (actin filament] muscle Z-line, alpha 2 
2   Coactivator-associated arginine methyltransferase 1 
2   Caspase 8, apoptosis-related cysteine peptidase 
2   Calpastatin
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Figure 4: The regulation of genes with various miRNA. The genes that are controlled by two or more different miRNAs are shown. The
green shade identifies the miRNA predicted to regulate that particular gene. The red shade identifies the miRNA that are not predicted to
control the expression of the listed gene.
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Table 2: miRNA and the predicted target genes identified in biological pathways.

miRNA Target genes identified in biological pathways

miR-15a, miR-16
AP2A1, PHKA1, CDC25A, SMAD7, CCNE1, SMURF1, PIK3R1, INSR, SESN1, ARHGAP5, UBE4B,
YWHAH, SIAH1, BTRC, RELN, UBE2Q1, FGF2, FASN, WEE1, SGK1, TGFBR1

miR-202 SMAP1, DUSP1, LAMA1

miR-155 VAV3, DET1, RAB11FIP, IGF2

miR-197 IL1RAP, ARHGEF12

miR-142-5p
DIAPH2, CUL4A, CCNH, STAG1, RAP1A, UBE2K, TPR, ACTN4, VHL, ATP1B1, ITGAV, CCNG2,
UBE2D1, CUL2, HIF1A

miR-142-3p WASL, MYLK, TAB2

miR-575 GRIA2, TSG101, MYH10

miR-609 PRKC1, PDPK1, PPP1R3A

miR-34A WASF1, PVRL1, FLOT2, VSP37B, COL4A4, DNM1L, PPM1A, CCNE2, RRAS

miR-34b YWHAG, DNM3, PDK1, NCKAP1, PRKAR2E

miR-18a ATM

miR-21 PPP1R3B, NTF3, FRS2, VCL, PPP1R3D, PITX2, UBE2D3, WWP1

miR-let 7a, b, c, d, e, f, g, i IGF1R, ADRB2, MAP4K3, NRAS, E2F5, GDF6

miR-143 CACNA1A, PRKX, UBE2E1, KRAS, LMO7, UBE2E3, ARFGAP3

miR-376a TP53AIP1, G8PC2, PRKAC8

miR-19a, miR-19b RPS6KA5, RAPGEF2, CASP8, VPS37A, CACNA1C, CLTC, ITGB8, LDLR, BMPR2, NCOA4, RAP1B

miR- 145 DAB2, AP2B1, TPM3, SMAD2, DUSP6, PPP3CA, PHHKB, SKP1ITGB8, PPP3R2, CRKL, UBA6, PXN

hsa-let-7e, hsa-let-7f, hsa-let-7g, hsa-let-7i, hsa-miR-19a, and
hsa-miR-19b. Similarly TGFBR1 gene was regulated by hsa-
let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-
7f, hsa-let-7g, hsa-let-7i, hsa-miR-142-3p, and hsa-miR-145.
This analysis clearly indicated that individual genes were
controlled by multiple miRNA after exposure to IR. The net
effect of miRNA modulation in irradiated cells is enormous
impacting many cellular functions.

3.4. Mapping of miRNA-Predicted Target Genes to Biological
Pathways Affected by Radiation. Using the KEGG database
we searched for pathways where the miRNA target genes
function in order to gain insight into the processes that could
be affected by miRNA modulation in irradiated cells. First
the mirDB was linked to the Gene Database from the NCBI
(National Center for Biotechnology Information) to identify
the functions of the specific genes. The Gene Database from
the NCBI was retrieved for offline purposes. This database
provided descriptive information regarding the functions
of miRNA target gene. Second, the Entrez Gene ID was
linked to the KEGG pathways database to identify the genes
associated with biological pathways. The miRNA target gene
dataset was imported into DAVID, a bioinformatics tool that
provides functional gene-annotation. The genes associated
with various biological pathways were determined with
DAVID and the interactions were visualized with Cytoscape
(Figure 5).

The functional pathways highlighted by Cytoscape are
shown in Table 3. We were able to map 222 miRNA predicted
target genes to 17 biological pathways (Table 3). 22 of these
genes were identified in MAPK-signaling pathway, 20 target

genes were found to be associated with regulation of actin
cytoskeleton, and another 20 genes belonged to endocytosis.
A large number of studies have documented the involvement
of MAPK-signaling pathway in the response to radiation
exposure [33]. The actin cytoskeleton and endocytosis path-
ways are affected in cells treated with IR [34–36]. We also
identified the participation of insulin signaling pathway in
radiation response by mapping 19 miRNA target genes to
this pathway. The involvement of insulin signaling pathway
in radiation response has been reported [37]. Our analysis
confirmed the participation of apoptosis, cell cycle, p53 sig-
naling, TGF-beta signaling, all known to be disturbed in cells
treated with IR [38–41]. Other pathways that we identified in
this analysis and have been documented in radiation res-
ponse were adherens junction [42], focal adhesion [43],
oocyte meiosis [44], renal cell carcinoma [45], thyroid cancer
[46], and ubiquitin-mediated proteolysis [47].

Interestingly, the interactome analysis reported in the
present study permitted us to discover novel pathways that
have not been previously associated with ionizing radiation
response. We discovered that radiation-induced miRNA
control the expression of a number of genes that function
in aldosterone-regulated sodium reabsorption, long-term
potentiation, and neurotrophin signaling pathways.

The mineralocorticoid hormone, aldosterone is a key
regulator of sodium homeostasis. The aldosterone controls
sodium reabsorption by regulating the cell-surface expres-
sion and function of the epithelial sodium channel (ENaC).
The stimulatory effect of aldosterone on ENaC is mediated by
the induction of serum- and glucocorticoid-regulated kinase
1 (SGK1) [48]. The promyelocytic leukemia zinc finger pro-
tein (PLZF) is also upregulated by aldosterone. PLZF is
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Figure 5: Mapping of miRNA targets genes to biological pathways. This network depicts the miRNA target genes and the associated
biological pathways. The landscape of genes to pathway interactions was visualized with Cytoscape. Pink or red nodes represent the genes
and the blue nodes indicate biological pathways.

involved in cell cycle control and cell differentiation [49].
How the activation of aldosterone-regulated sodium reab-
sorption pathway contributes to the response of irradiated
cells remain to be investigated.

The neurotrophin-signaling pathway is involved in differ-
entiation and survival of neural cells. The insulin/insulin-like
growth factor 1 receptor-signaling (IGF1-R) pathway is
linked to the neurogenic capacities of the aging brain, to
neurotrophin signaling, and to the molecular pathogenesis

of Alzheimer’s disease [50]. The response of central ner-
vous system (CNS) to the IR exposure has not been under-
stood. Perhaps signaling molecules act downstream of IGF1-
R, and there is a checkpoint to balance excessive growth/
“immortality” and reduced growth/“senescence” of a cell.
Future investigations might define this connection and its
relationship with radiation effects.

The long-term potentiation pathway is associated with
long-lasting enhancement in signal transmission between
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Table 3: Biological pathways controlled by IR-modulated miRNAs and their association with ionizing radiation response.

Identified pathways Number of miRNA target genes Association with IR response Reference

Adherens junction 10 Yes [42]

Aldosterone-regulated sodium reabsorption 7 Unknown N/A

Apoptosis 9 Yes [38]

Cell cycle 12 Yes [41]

Endocytosis 20 Yes [35]

Focal adhesion 17 Yes [43]

Insulin signaling 19 Yes [37]

Long-term potentiation 11 Unknown N/A

MAPK signaling 22 Yes [33]

Neutrotrophin signaling 12 Unknown N/A

Oocyte meiosis 13 Yes [44]

p53 signaling 8 Yes [39]

Regulation of actin cytoskeleton 20 Yes [34]

Renal cell carcinoma 9 Yes [45]

TGF-β signaling 10 Yes [40]

Thyroid cancer 6 Yes [46]

Ubiquitin-mediated proteolysis 17 Yes [47]

two neurons. The plastic changes at synapses between neu-
rons are partly associated with the memory. The long-term
potentiation (LTP) is a major form of synaptic plasticity
[51]. The possible implications of long-term potentiation
pathway in radiation-induced biological effects remains to be
investigated.

Our findings suggest that the miRNA target gene inter-
actome can help identify novel cellular functions that could
be altered as a result of stress induced by radiation exposure.
The ability to discover previously uncharacterized new novel
pathways through understanding the interactome of miRNA-
predicted target genes and -associated pathways offers a new
platform for future investigations. A deeper understanding
of the miRNA expression signatures in different cell types
subjected to IR exposure will not only lead to identify
common biological pathways affected in all cell types but will
also permit to discover pathways that are only affected in
certain cell types.

4. Conclusions

It is apparent that miRNAs are involved in controlling
the biological pathways associated with ionizing radiation
induced stress responses. The miRNA expression alterations
in irradiated cells explains the observed biological effects and
provides a broader perspective on understanding cellular
defense mechanisms against radiation-induced insult. This
investigation has provided a starting point where the role of
miRNAs in ionizing radiation can be explored. The pathways
affected by IR-induced miRNA provide vital information
to understand the regulation of the biological processes in
cells exposed to IR. It has always been assumed that only
transcriptional factors affect the gene expression and control
biological pathways. However, the participation of miRNAs
adds another set of rules dictating control of the biological

pathways. miRNAs may act as “hub” regulators of specific
cellular responses, immediately downregulated so as to
stimulate DNA repair mechanisms, followed by upregulation
involved in suppressing apoptosis for cell survival. Taken
together, miRNAs may mediate signaling pathways in
sequential fashion in response to radiation. Future studies
will be aimed to understand the effect of miRNA perturba-
tion on the disruption of biological pathways. Though the
genes that are associated with the pathways have been
determined, it is still unclear whether an activation or inhi-
bition of the pathway takes place in the cells exposed to
radiation.
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