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Abstract

Communication through spoken language is a central human capacity, involving a wide range of complex computations
that incrementally interpret each word into meaningful sentences. However, surprisingly little is known about the
spatiotemporal properties of the complex neurobiological systems that support these dynamic predictive and integrative
computations. Here, we focus on prediction, a core incremental processing operation guiding the interpretation of each
upcoming word with respect to its preceding context. To investigate the neurobiological basis of how semantic constraints
change and evolve as each word in a sentence accumulates over time, in a spoken sentence comprehension study, we
analyzed the multivariate patterns of neural activity recorded by source-localized electro/magnetoencephalography (EMEG),
using computational models capturing semantic constraints derived from the prior context on each upcoming word. Our
results provide insights into predictive operations subserved by different regions within a bi-hemispheric system, which
over time generate, refine, and evaluate constraints on each word as it is heard.

Key words: Bayesian language modeling, electro/magnetoencephalography, incremental prediction, representational

similarity analysis, semantics

Introduction

Spoken language comprehension involves a variety of rapid
computations that transform the auditory input into a mean-
ingful interpretation. When listening to speech, our primary per-
cept is not of the acoustic-phonetic detail, but of the speaker’s
intended meaning. This effortless transition occurs on millisec-
ond timescales, with remarkable speed and accuracy and with-
out any awareness of the complex computations on which it
depends. How is this achieved? What are the processes and rep-
resentations that support the transition from sound to meaning,
and what are the neurobiological systems in which they are
instantiated?

Understanding the meaning of spoken language requires
listeners to access the meaning of each word that they hear and
integrate it into the ongoing semantic representation in order

to incrementally construct a syntactically licensed semantic
representation of the sentence (Tyler and Marslen-Wilson 1977;
Marslen-Wilson and Tyler 1980; Kamide et al. 2003; Hagoort
et al. 2009). Research to date provides a broad outline of the
neurobiological language system and of the variables involved
in language comprehension (Hickok and Poeppel 2007; Marslen-
Wilson and Tyler 2007; Friederici 2011; Kutas and Federmeier
2011, Price 2012; Bornkessel-Schlesewsky and Schlesewsky 2013;
Hagoort 2013; Matchin and Hickok 2020), but surprisingly, little
is known about the specific spatio-temporal patterning and
the neurocomputational properties of the incremental process-
ing operations that underpin the dynamic transitions from the
speech input to the meaningful interpretation of an utterance.
This is our goal in the present study where we probe directly
the dynamic patterns of time-sensitive neural activity that are
elicited by spoken words, focusing on the semantic constraints
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they generate on upcoming words and the incremental pro-
cesses that combine them into semantically coherent utter-
ance interpretations. We use computational linguistic analyses
of language corpora to build quantifiable models of semantic
constraint and mismatch, where the latter reflects the pro-
cessing demands of interpreting the upcoming word given the
properties of prior constraints (Hale 2001; Levy 2008). Based on
these cognitive models, we employ representational similarity
analysis (RSA) to probe the different types of neural compu-
tation that support dynamic processes of incremental inter-
pretation, using source-localized MEG + EEG (EMEG) imaging to
capture the real-time electrophysiological activity of the brain.
RSA enables us to compare the (dis)similarity structure of our
theoretically relevant models with the (dis)similarity structure
of observed patterns of brain activity, revealing how different
information types are encoded in different brain areas over
time.

In a previous EMEG study, involving single spoken words, we
used these methods to map out the spatio-temporal dynamics of
the word recognition process (Kocagoncu et al. 2017). Using RSA
to test quantifiable cognitive models of key analysis processes
as they occur in real time in the brain, we identified the cor-
tical regions that support the early phonological and semantic
competition between cohort candidates as a word is heard,
and the dynamic process of convergence on a single candidate
and its unique semantic representation as the uniqueness-
point (UP) approaches [i.e., the point at which the word can
be differentiated from its word-initial cohort and is uniquely
recognizable (Marslen-Wilson 1987)]. Hence, identifying the UP
plays an important role in interpreting the timing of linguistic
processing with respect to the input word. In a subsequent
study, placing spoken words in a minimal phrasal context (e.g.,
yellow banana), we constructed RSA models of the semantic
constraints generated by the adjective (yellow) to determine
how these interacted with the processing of the following noun
(banana). Consistent with previous behavioral and ERP results
(Marslen-Wilson 1975; Kamide et al. 2003; DeLong et al. 2005;
Bicknell et al. 2010), we found early effects of prior probabilistic
semantic constraints on lexical processing (within 150-200 ms
of word onset), where the timing of these effects reflects the
prior access of potential word candidates driven by the sensory
input (Klimovich-Gray et al. 2019). These studies suggest an
underpinning lexical access process where lexical contents can
be made available very soon after word onset for interaction with
contextual constraints.

In the context of these two studies, the current study aims to
determine how these rich contextual constraints incrementally
combine words into a meaning interpretation and how this
interpretation modulates the processing of subsequent words
in the utterance. Critical to this study is the development of
the appropriate quantifiable measures of the relevant properties
of the sentential processing environment, as the basis for the
RSA models used to probe the real-time brain activity elicited by
hearing the test sentences.

Within the broad context of predictive processing frame-
works (Kuperberg and Jaeger 2016), we investigated the role
of semantic constraint elicited by the incrementally devel-
oping context in sentences such as “The experienced walker
chose the path,” including its subject, verb, and object, in
generating a message-level interpretation. To do this, we used
language models of constraint and mismatch derived by
combining the behavioral responses from sentence completion
studies with the latent Dirichlet allocation (LDA) approach of

topic modeling (Griffiths and Steyvers 2004). These models were
used to construct RSA models of semantic constraints, as they
evolve over a spoken utterance, and to look at the spatiotem-
poral pattern of model fit for each processing dimension being
tested (Kocagoncu et al. 2017). Importantly, the cognitive models
that test for effects of semantic constraints and their integration
into the developing sentence are probabilistic and experiential
in nature, reflecting language as people experience it in the real
world and providing the type of quantifiable data necessary
to calculate rich multivariate representational models. This
avoids the limitation of relying on categorical distinctions
between stimuli which fail to capture the multifaceted richness
of linguistic representations and the probabilistic nature of
language.

Our primary interest here is in what we call “combined
constraints” on upcoming words, the cumulative constraints
generated by the set of words comprising the prior context. In
this study, we developed a set of contextual constraint models
in order to illuminate the temporal progression of predictive
processing as each word [i.e., verb and complement noun (CN)]
incrementally unfolds over time. This enables us to illustrate
the spatiotemporal dynamics of the cumulative effects of con-
straints and to determine how far these constraints are neurally
expressed.

In common with recent accounts of incremental processing
of speech inputs, we expect to see the computation of con-
straints as each word is being recognized (Marslen-Wilson 1975;
Marslen-Wilson and Tyler 1980; DeLong et al. 2014). The RSA
models, as described above, primarily focus on modeling these
constraints and the relative timing with which they appear
as the utterance unfolds over time. We also investigate the
mismatch effect between the context and a target word (CN)
that captures the difficulty of semantically processing the tar-
get word with respect to the constraint imposed by the prior
context, based on its semantic properties. Together the timing
and location of the effects captured by these models reveal
a picture of when and where the human brain activates and
utilizes constraints at the semantic level.

Overview

To determine the spatiotemporal neural properties of incremen-
tal semantic interpretation during language comprehension,
we developed models of the incremental constraints that the
context imposes on the meanings of upcoming words and the
mismatch between an upcoming word and its fit into the prior
context. We tested these models against the spatiotemporal
properties of the source-localized EMEG data to compare the
similarity structure of our theoretically relevant models. We
tested for the timing of the model fit generated for these models
at different time points within a language mask that includes
a set of brain regions comprising a bilateral fronto-temporo-
parietal language system, which has been frequently reported in
the literature (Binder et al. 2009). We asked when and where each
of our key models—of semantic constraint, and mismatch—
would fit the brain data, when and where is there an effect of
the subject noun phrase (SNP) semantic constraint? how does it
change as a subsequent verb is processed? and what is the scope
of these constraint effects on upcoming words?

In order to model incrementally developing constraint over
time, we obtained measures of semantic prediction at two differ-
ent points in a sentence—immediately after the SNP [“the expe-
rienced walker”] and after the combination of the SNP + verb
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Table 1 All semantic models used in this study and the epochs in which they were tested against the brain data. The epoch(s) in which each
model was tested was chosen specifically to investigate the cascade of incremental predictive processes: 1) emerging with the early activation
of the SNP constraint on verbs and on CNs before the verb is recognized; 2) evolving with a verb being incorporated into the context once the
verb is recognized; and 3) facilitating the semantic interpretation once the CN is recognized. The average duration of each word to which each
epoch is aligned is indicated by the bracket [mean + standard deviation (SD)]

Epochs (0-600 ms in duration)

Epoch 1: SN onset

Epoch 2: verb onset Epoch 3: CN onset

(432 + 142 ms) (422 +111 ms) (4014115 ms)
Entropy SNP- > verbs SNP- > verbs SNP + verb- > CNs
SNP- > CNs SNP- > CNs
SNP + verb- > CNs
Mismatch - - SNP + verb<-CN
[“the experienced walker chose...”]. In this way, we aimed to Materials and Methods

characterize the changing patterns of prediction as a verb is
combined with the initial SNP context. To do this, we conducted
two separate behavioral studies with different participants in
which they were asked to complete a sentence either after hear-
ing the SNP fragments (study 1) or after hearing the SNP + verb
fragments (study 2). We then extracted main verbs from the
first behavioral study and CNs from the second behavioral study,
allowing us to infer the predictive state of the brain throughout
the sentence.

However, in natural speech comprehension, prior constraints
are relatively broad, so that specific words are rarely strongly
predicted (Luke and Christianson 2016). Particularly, during
the early stage of sentence processing, the context (SNP or
SNP + verb) rarely provides a strong prediction of a particular
upcoming word, leading to high uncertainty (entropy) in word-
level constraints (Kuperberg 2016). Therefore, we applied topic
modeling to each unique word provided by participants in
the behavioral studies, in order to characterize constraints
derived from the rich semantic (topic) representation associated
with each unique word in a Bayesian framework of incre-
mental predictive processing. To model prediction at a more
abstracted semantic level, we combined the topic distributions
of the continuation data into semantic “blends” of word
candidates, modeling the conditional probability distribution
P(topic/full context) (see Materials and Methods: Incremental
Models of Predictive Processing). Then, we computed entropy
(see Materials and Methods: Spatiotemporal Searchlight RSA) of
the blend to quantify the overall constraint strength, which
was tested against the EMEG data during relevant epochs as
described in Table 1 (see also Fig. 1), in order to investigate
the incremental development of semantic constraint. Finally,
in order to investigate how the constrained words are eval-
uated and incorporated into the prior context (SNP + verb),
we also characterized the EMEG data using a pattern of
mismatch between the predicted and the target semantics (see
Materials and Methods: EMEG Recordings and MRI Acquisition).

In light of the claims that semantics is represented bilaterally
(Price 2010, 2012; Wright et al. 2012), our approach provides an
opportunity to determine whether different kinds of semantic
computations are represented differentially across the hemi-
spheres. We expected the predictive computations based on this
information to involve bilateral anterior temporal and frontal
areas with the right hemisphere (RH) involved in the construc-
tion of a broader semantic representation and the engagement
of the context (Beeman and Chiarello 1998; St George et al. 1999;
Seger et al. 2000; Jung-Beeman 2005).

Participants

Fifteen participants (7 females; average age: 24 years; range:
18-35 years) took part in the study. They were all native British
English speakers and right-handed with normal hearing. Two
participants were excluded from the analysis: one because of
sleepiness during the EMEG study and the other because of poor
quality EEG recordings. Informed consent was obtained from
all participants and the study was approved by the Cambridge
Psychology Research Ethics Committee.

Stimuli

We constructed 200 spoken sentences consisting of an SNP
(e.g., “the experienced walker”), followed by a verb (e.g., “chose”)
which in turn was followed by a CN (e.g., “path”). The sentence
sets were constructed in the following way. First, we chose verbs
from the VALEX database (Korhonen et al. 2006) that occurred
with (at least) two different complement structures: one was
a simple transitive direct object (DO) structure (e.g., “... chose
the path...”) and the other was one of three other possible
complement structures including sentential complement (SC;
“... denied that the court ...), infinitival complement (INF; “. ..
wanted to become ...”), and prepositional phrase complement
(PP; “... fled to the forest ...”). For 72% of the stimuli, the
DO complement structure was more frequent [according to the
subcategorization frame (SCF) information in VALEX; (Korho-
nen et al. 2006)] with the average probability of 0.499+0.12
(mean + SD). By adding some variability to the function words of
the complement phrase, we aimed to improve the generalizabil-
ity of our results to any natural spoken sentence with varying
subcategorization structures.

To ensure variability in the predictability of the CNs, we
varied the probability of these nouns with the preceding verb
and the complement function word according to Google Books
n-gram frequencies. Note that this variability was controlled
when running the analysis by including the frequency of a word
to which the epoch was aligned to as one of the covariates and
partialling out when correlating the data and model representa-
tional dissimilarity matrices (RDMs) [e.g., SN frequency at epoch
1, verb frequency at epoch 2, and CN (content word) frequency
at epoch 3]. This process resulted in 200 sentences with four
repetitions of the SNP + verb combination (see Fig. 2), consisting
of varying complement structures (i.e., DO, SC, INF, and PP) with
different complement content words. This ensured sufficient
variability between trials in the ease with which the content
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pus Hosm 0 Verb(V) Complement Noun (CN)
LA walker chose the path PP
EpOCh 7 0ms (SN onset) 347ms 432ms  600ms
SN UP *107ms 1§
SN offset +142ms
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V offset +11%ms
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Figure 1. Overview of the epochs in the experiment in relation to the incremental processing: Epoch 1: Activation of SNP constraint; Epoch 2: Modification of SNP
constraint based on the Verb; and Epoch 3: Evaluation of SNP + V constraint on CNs. The epochs were each defined relative to an alignment point (AP) such that Epoch
1is aligned to the SN onset, Epoch 2 is aligned to the verb onset, and Epoch 3 is aligned to the CN onset. Each epoch lasted for 600 ms which included the average
duration of each content word plus 1 SD. UP =the uniqueness point of a word (the earliest point in time when the word can be fully recognized after removing all of

its phonological competitors).

more likely

card less likely

The experienced walker chose ...

_¥ abandon | more likely
to

\ relax

less likely

Figure 2. Design of the experimental stimuli. Each sentence contained a key main
verb (“chose”) followed by a complement function word (“the” or “to”) to vary
the complement in terms of the SCF preference of a preceding verb. A function
word was followed by a noun or a verb that was either consistent with the verb’s
preferred continuation or less preferred continuation.

word in the complement could be integrated into the ongoing
sentential representation, given the constraints provided by the
preceding context. Just as for the lexical frequency, we controlled
for the repetition effect of the SNP + verb combination by includ-
ing it as another covariate. In summary, we partialled out the
effects of 1) lexical frequency of a word to which an epoch is
aligned and 2) repetition of stimuli across trials.

The sentences were spoken by a native female British English
speaker and were recorded in a soundproof booth. In the experi-
ment, participants were asked to listen to these sentences atten-
tively while we recorded their brain activity using EMEG. There
was no explicit task for them to perform since tasks are known
to invoke domain general brain systems over and above any
domain-specific language effects (Campbell and Tyler 2018). All
stimuli were pseudo-randomized and counter-balanced across
participants. We followed the standard procedure for presenting

auditory stimuli as in our previous studies (Kocagoncu et al.
2017; Klimovich-Gray et al. 2019).

Incremental Models of Predictive Processing

In this study, we focused on the two different incremental com-
putations: 1) constraint and 2) evaluation in order to investigate
the neurobiological underpinnings of how the preceding context
guides the interpretation of an upcoming word. To do this,
we combined behavioral data with computational models of
semantics as described below.

Behavioral Studies

To model incrementally evolving constraints over the SNP,
verb, and CN, we conducted two separate behavioral studies.
In the first experiment, 24 participants (who did not take
part in the main experiment or the second behavioral study)
heard each unique SNP (e.g., “The experienced walker ...”)
and provided a sentence continuation after the SNP (e.g., “...
hiked through the mountains,” “ chose a less travelled
path,” etc.). We extracted the main verb from each sentence
continuation and used these data with topic representations
(see Materials and Methods: Stimuli) to capture predicted verb
semantics. In the second experiment, we asked 31 participants
(who did not take part in the main experiment or the first
behavioral study) to provide a sentence continuation after
hearing each unique SNP+verb in our stimuli (e.g, “The
experienced walker chose ...”), for example, “... the shorter
route,” “... the hardest path,” etc. Note that we only used the
noun responses which are considered to be an object of the
preceding verb (e.g., nouns in DO or PP complements which
we refer to as CNs throughout this paper) in order to remove
any syntactic or thematic variability when modeling semantic
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interpretation of the CN. For example, any noun responses in an
SC were removed since they are often treated as a new subject
instead of an object (e.g., “The walking couple heard that the
farm was open to visitors”). On average, this left 18 CN responses
for every stimulus from 31 participants. Any stimulus with less
than 4 responses were excluded from the analysis.

Semantic Modeling

We trained a probabilistic topic model based on LDA (Griffiths
and Steyvers 2004). It develops a generative probabilistic model
that assigns a word to different latent dimensions in a way
that maximizes the posterior of the model. Such latent dimen-
sions are often called “topics” which describe the semantic
content of a word in the form of a probability distribution. In this
study, topic distributions (consisting of 100 topics) associated
with each content word were generated using corpus-based
tensor data (Baroni and Lenci 2010). Instead of using raw co-
occurrence frequency, we used local mutual information from
the tensor because it normalizes the effect of lexical frequency
of individual items when computing the semantic relation (co-
occurrence) between two words. Furthermore, instead of using
all co-occurrence data in the tensor, we only selected specific
subsets in order to capture syntactically licensed semantic rep-
resentation specifically with respect to a word in the context. In
particular, we focused on the incremental and cumulative devel-
opment of the semantic constraint from an SN (agent) to a CN.
To do this, we trained two separate topic models based on the co-
occurrence between 1) SN and verb (SN-V) and 2) the preceding
words including SN and verb and CN (object) (SNV-CN). These
models provided different aspects of semantic representation
relevant for incremental predictive processing as follows: 1) the
first (SN-V) topic model was trained specifically to characterize
the predictive representation of SNs on upcoming verbs and
the specific semantic content of verbs that are syntactically
licensed with respect to the preceding SNs and 2) the second
(SNV-CN) topic model was trained specifically to characterize
the predictive representation of SNs and verbs on CNs and the
specific semantic content of CNs that is syntactically licensed
with respect to the preceding SNs and verbs. See Section 1
in Supplementary Materials for more details regarding model
training and parameter settings. See Supplementary Fig. S1 for
illustrations of SNV-CN topic model.

Modeling Predictive State: Semantic Blends

After obtaining the behavioral responses from the two sentence
completion studies (verbs from the first and CNs from the
second study) and the topic representation associated with a
set of unique responses for each sentence, we combined them
to generate an overall representation across multiple responses
(for either the unique verbs or the CNs) to capture consistent
semantic content shared by the set of verbs predicted by the SNP
or by the CNs predicted by the SNP + verb. In this way, we aimed
to model predictive activation of semantic contents associated
with multiple lexical items based on the preceding context. The
semantic blend was computed as below

blend (words) = P (topic|full context)
= > P(topic|word) P (word|full context),

word

where P(word|full context) is a probabilistic weight associated
with a given word (see Behavioral Studies) and P(topic|word)

is the topic distribution for word (see Incremental Models of
Predictive Processing). Based on this formula, we constructed
three different “blend” vectors.

SN-V verb blend. This blend is designed to model the SNP
constraint on upcoming verbs. We counted the (post-SNP) verb
responses from the first sentence completion study. Then,
the frequency count associated with each unique verb that
was produced by participants was, in turn, used as a weight
to the topic distribution of the verb. From the topic model
trained specifically on the SN-verb co-occurrence data, we
obtained the topic representation of each unique verb which
was weight-combined as expressed in the formula above (i.e.,
P(verb_topic|verb)P (verb/SNP)).
SNV-CN verb blend. Despite being a verb blend, this second
blend model is designed to model the SNP constraint on CNs
(rather than its constraints on the verb), via the set of predicted
verbs obtained from the first behavioral study. We counted the
(post-SNP) verb responses and the frequency count associated
with each unique verb that participants produced as above.
However, we obtained the verb topic distributions from a second
topic model trained specifically on the mixed SN-CN and verb-
CN co-occurrence data, reflecting the predictive representa-
tion on upcoming CNs. Then, each predictive representation
(topic-context distribution) of unique verbs in relation to CNs
was weight-combined as expressed in the formula above (i.e.,
P(CN_topic|verb)P(verb|SNP)).
SNV-CN CN blend. The third blend focused on modeling the
combined constraint of SNP+verb on CNs. To do this, we
counted the (post-SNP + verb) CN responses from the second
sentence completion study. Then, we used the CN topic
distributions from the second topic model trained specifically
on the mixed SN-CN and verb-CN co-occurrence data, reflecting
the topic representation of each unique CN in relation to the
preceding subjects and verbs. Then, just as the other blends,
each topic representation (target-topic distribution) associated
with each unique CN was weight-combined as expressed in the
formula above (i.e., P(CN_topic|CN)P(CN|SNP + verb)).

In summary, we generated the following blends whose
entropy is designed to address how constraints incrementally
change and develop.

1. P(verb_topic|SNP) = > ., P(verb_topic|verb)P(verb|SNP).

2. P(CN_topic|SNP) = " .., P(CN_topic|verb)P(verb|SNP).

3. P(CN_topic|SNP + verb) = > .\ P(CN_topic|CN)P(CN|SNP +
verb).

Modeling Predictive Constraint: Entropy

Entropy is a metric designed to quantify the amount of uncer-
tainty in distributional models. Therefore, entropy of the blend
distributions in this study reflects the strength of semantic con-
straint regarding upcoming words (higher uncertainty = weaker
constraint). However, in any topic models, each topic varies in
terms of the types of words it prefers with different probabilities.
This naturally leads to variations in semantic dispersion across
topics, potentially undermining the estimation of true semantic
entropy. Here, we addressed this issue by linearly combining
entropy with topic dispersion as following:

H(P(x)) = wx*h (P(x)) = Zwi [=P (%)) logP (xp) ],

where w is a vector of semantic dispersion across topics and
h(P(x)) is a vector containing local entropy values. In this paper,
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Figure 3. Reducing entropy in prediction before (left panel) and after (right panel) a verb is incorporated into the SNP context. The topic distributions on the top are the
semantic blends of predicted CNs by SNP and SNP + verb, respectively. Entropy associated with each of the two distributions is also described. The word boxes below

the distributions show a set of preferred words based on the predicted topics.

we denote the term entropy and notation H to refer to this
dispersion-corrected entropy. The semantic dispersion was cal-
culated by averaging pair-wise cosine distances between topic
distributions among every pair of words within a topic (Lyu
et al. 2019). If the target words preferred by a topic have similar
distributions, the average cosine distance will be low. Then, this
“within-topic” semantic dispersion was linearly combined with
the local entropy values to manipulate the contribution of each
topic to the degree of overall constraint strength across topic
candidates. In this way, we effectively controlled for “within-
topic” dispersion when computing “between-topic” constraint.

Each of the semantic blends described above was taken as an
input to the entropy function (Fig. 3), generating three semantic
constraint models which were tested against the spatiotemporal
patterns of neural activity at specific epochs (Table 1).

1. SNP adjacent constraint model on upcoming verbs: entropy
of P(verb_topic|SNP).

2. SNP nonadjacent constraint model on upcoming CNs:
entropy of P(CN_topic|SNP).

3. SNP+verb constraint model on upcoming CNs: entropy of
P(CN_topic|SNP + verb).

Modeling Evaluation: Constraint Mismatch

Semantic evaluation refers to a process of resolving mismatch
between a current input and the predicted candidates based
on the preceding context, leading to an accurate interpre-
tation of the input that fits the context. To model this
process, we quantified the degree of mismatch by comput-
ing cosine distance between the semantic representations
of the predicted CNs and the target CN. As described in
Materials and Methods: Behavioural studies, we excluded any

items that do not contain CN (i.e.,, a noun considered to be
an object of a preceding verb) from the analysis because this
mismatch model requires the target CN to be identified. This
left us with 128 out of 200 trials.

Spatiotemporal Searchlight RSA

In order to determine when and where these constraint models
and associated computations are neurally realized, we used
spatiotemporal searchlight RSA (ssRSA) (Su et al. 2012). Each
searchlight is defined for each vertex at each time-point, pro-
viding a fine-grained spatiotemporal map of neural activity. To
characterize such dynamic pattern of neural activity, we con-
structed model RDMs using specific properties of the blended
distributions across sentences described above. Since all of the
model RDMs in this study were based on the summary metrics
designed to capture various incremental aspects of distribu-
tional semantics, the representational geometry was character-
ized simply by calculating the absolute distance of the metric
values between every pair of trials. Each of these model RDMs
was, then, compared with the patterns expressed by the neural
RDMs constructed by correlation distance between every pair of
trials for each searchlight across space and time (see Fig. 4). The
size of each searchlight was set as a spatial radius of 10 mm and
a temporal radius of 30 ms.

ssRSA was performed within a language mask, which
included all anatomical regions in a set of regions encompassing
bilateral fronto-temporo-parietal regions, using the Harvard-
Oxford cortical atlas (Kocagoncu et al. 2017; Lyu et al. 2019).
See Figure 4 for surface rendering of this language mask. These
regions are reliably shown to be involved in language processing
(Binder et al. 2009; Price 2010, 2012).
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Figure 4. A schematic illustration of the searchlight RSA of spatiotemporal source-space EMEG data. The bilateral language mask used in this study is surface-rendered
onto the brain template in the figure for visualization. Since the source-space EMEG data inherently vary across time and space, we calculated the similarity of the
spatio-temporal patterns of brain activities for different trials based on measurements within each searchlight sphere with a spatial radius of 10 mm and a temporal
radius of 30 ms. We used 1—Pearson’s correlation between pairs of trials as the distance metric to compute an RDM for each searchlight, yielding a searchlight map
of data RDMs. Each data RDM is then correlated with each model RDM using Spearman’s correlation. This Spearman’s correlation was computed for each subject and
the significance of the correlation at each searchlight location was tested using one-sample t-test (HO: Spearman correlation will be zero). The figure illustrates this

process, yielding a time-course of t-values across spatiotemporal searchlights.

EMEG Recordings and MRI Acquisition

MEG data were recorded on a VectorView system (Elekta Neu-
romag) using 306 sensors (102 magnetometers and 204 pla-
nar gradiometers), located in a magnetically shielded room at
the MRC Cognition and Brain Science Unit, Cambridge, UK. In
conjunction with the MEG recordings, we recorded EEG signals
using an MEG compatible EEG cap (Easycap, Falk Minow Services)
with 70 electrodes, plus external electrodes and a nose reference.
To monitor head movement in the MEG helmet, five head posi-
tioning indicator (HPI) coils attached to the scalp recorded head
position every 200 ms. Blinks and eye movements were recorded
by electro-oculogram (EOG) placed above and beneath the left
eye and beside the left and right outer canthi. Cardio-vascular
effects were recorded by electro-cardiogram (ECG) attached to
right shoulder blade and left torso. To be able to co-register
the EEG and MEG data to anatomical structural scans for each
participant, the positions of the HPI coils and EEG electrodes
were digitized relative to three anatomical landmarks (nasion,
left and right peri-auricular points). In addition, a participant’s
head shape was digitized across the head. MEG signals were
recorded with a sampling rate of 1000 Hz and any signals below
0.03 Hz were high-pass filtered.

To localize the EEG and MEG data to sources on the cortical
surface, structural MRI scans were acquired for each partici-
pant in a separate session using 1-mm isotropic resolution T-
weighted MPRAGE on a Siemens 3 T Prisma scanner (Siemens
Medical Solutions) located at the Cognition and Brain Science
Unit, Cambridge, UK.

EMEG Preprocessing

The raw MEG data were max-filtered (Elekta-Neuromag) to
remove bad channels, to compensate for head movement using
signal space separation techniques (Taulu and Simola 2006).
Statistical parametric mapping 8 (SPM8; Welcome Institute
of Imaging Neuroscience) was used to complete the remaining
stages of EMEG preprocessing [except for independent compo-
nent (IC) analysis artifact rejection]. First, a low-pass filter at
40 Hz was applied to the data using a fifth-order bidirectional
Butterworth digital filter. In order to remove any physiologically
driven artifacts such as blinks or cardiac signals recorded by EOG
and ECG, the data signals were decomposed into ICs and each
IC was correlated with VEOG, hEOG, and ECG channels. Any ICs
showing very high temporal correlation (correlation >0.3) with
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any of these channels were removed and the remaining ICs were
then visually inspected to ensure that no artifact component
remained. The remaining ICs were then used to reconstruct the
data.

Next, three separate analysis epochs were generated by align-
ing the data to the onset of each of the three points of interest in
each sentence (see Fig. 1). The duration of each epoch (0-600 ms)
was consistent across all three epochs. This duration was chosen
to cover the average duration of each word + 1 SD described in
Figure 1. One epoch was aligned to the SN, another to the verb,
and a third to the CN. We also calculated the uniqueness point
(UP) of each of these words from CELEX database (Baayen et al.
1993) to relate the timing of neural effects to when the word is
recognized.

After epoching, each channel was baseline-corrected by sub-
tracting the time-averaged data from a baseline period —200 to
0 ms relative to sentence onset (i.e., a period of silence immedi-
ately preceding the sentence). Finally, automatic artifact rejec-
tion was used to identify trials for which 15% or more sensors in
any one of the three sensor types exceeded amplitude threshold
(6e—11 T for magnetometers, 3e—12 T/m for gradiometers, and
2e—04 V for EEG), and these trials were rejected [an average of 15
trials were rejected (SD =13.43)].

EMEG Source Reconstruction

Source reconstruction aims to estimate the regional response
within a brain using the EMEG data recorded outside the
scalp. We first transformed the participants’ structural MRI
images into an MNI template brain, which was then inverse-
transformed to construct individual scalp and cortical meshes
by warping canonical meshes of the MNI template brain to the
original MRI space (Mattout et al. 2007). The MRI co-ordinates
from individual scalp and cortical meshes were co-registered
with the MEG sensor and EEG electrode co-ordinates by aligning
fiducial points and the digitized head shape to the outer scalp
mesh. A single-shell conductor model and a boundary element
model were used as forward models for MEG and EEG recordings,
respectively (the defaults in SPM8). We source-reconstructed
our data based on the minimum-norm assumption in SPM8 as
a prior on the source covariance (Lopez et al. 2014). This source
prior was empirically adapted to maximize the model evidence,
which, in turn, was used to compute the Maximum A Posterior
(MAP) source estimate.

Statistics and Multiple Comparisons Correction

Using the correlation time-courses for the model and data RDMs
across subjects, we calculated a time-course of one-tailed t-
statistic for every vertex (Fig. 4). From this point-wise statistic,
we applied the cluster forming threshold (CFT) of P=0.01 and
binarized the time-courses into clusters from a set of tempo-
rally and spatially contiguous vertices (data-points). Then, we
summed t-values across each of the vertices within a cluster
to compute a cluster-summed t-value. In this way, we aimed
to emphasize the neural clusters that are spatiotemporally dis-
tributed, while each of the vertices in the clusters shows P-value
less than 0.01.

For multiple comparisons correction across time-points
which are not independent of one another, we ran permutation
statistics (Maris and Oostenveld 2007) on the CFT output. Under
the null hypothesis that our model is not correlated with the
data (r=0), we randomly permuted the sign of correlation values

across different subjects and ran one-sample t-test for every
time-point. For each randomization, this null time-course of
t-values was converted to the time course of cluster-summed t-
statistics. This random permutation process was repeated 1000
times and the cluster with the maximum t-value across all data-
points for every run was saved. This process gives 1000 cluster-
level t-values under the null hypothesis and the significance of
the observed cluster-level t-values were evaluated with respect
to this null distribution.

Results

Using RSA and model RDMs of semantic constraint and mis-
match, we probed source-localized EMEG data capturing the
real-time electrophysiological activity of the brain to determine
the spatiotemporal properties of the cumulative incremental
effects of semantic constraints. For this purpose, we directly
compared the strength of semantic constraints generated by
the SNP on verbs and CNs, as quantified by the entropy of
P(verb_topic|SNP) and P(CN_topic|SNP), against the multivari-
ate patterns of neural activity over space and time. Then, we
looked at the effects of the combined SNP + verb constraint by
computing entropy of P(CN_topic|SNP + verb). In this way, we
aimed to investigate the timing and neural regions that are
related to generating semantic constraints prior to a target word
(i.e., verb or CN). At last, to measure the predictive effects of
the incrementally developed constraint on the processing of the
CN semantics, we constructed a constraint mismatch model to
examine the neural effects of semantic evaluation. We report
significant (P <0.05) and marginally significant (0.05 <P <0.06)
effects of the models sequentially as the sentence unfolds over
time. Note that all of these reported results have large effect
sizes (d > 0.8; See Fig. S2 in Supplementary Materials Section 2).

SNP’s Adjacent Semantic Constraint (Entropy)
on Upcoming Verb

We anticipated that the semantics of the SNP (e.g., “The experi-
enced walker”) would generate rich constraints on the upcoming
speech. To test this hypothesis, we constructed models cap-
turing the strength of constraints generated by the SNP (e.g.,
entropy of P(verb_topic|SNP) in this section and P(CN_topic|SNP)
in the section below). Using these entropy models, we aimed to
assess the earliness of predictive computations and how they
develop throughout a sentence. The results (Fig. 5a) show that
the constraints on the verb generated by the SNP are signifi-
cantly activated around the UP (347 + 107 ms after the onset) of
the SN as it is recognized, lasting around 300 ms from 290 to
600 ms, and are seen primarily in RH mid-anterior middle and
inferior temporal areas (P =0.032). This effect continued until the
end of the SN (Epoch 1) and was not significant in Epoch 2, sug-
gesting that listeners are actively constraining upcoming verbs
as soon as they recognize the SNP and that these constraints
involve only RH temporal regions.

SNP’s Nonadjacent Semantic Constraint (Entropy)
on CN

When examining constraints on nonadjacent words in a sen-
tence (in this case, SNP constraints on the CN), we need to
consider the semantic relation between the context (SNP) and
the target (CN) while taking into account any words that inter-
vene between them (in this case, the verb). Using the Bayesian
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Figure 5. Results of the ssRSA with the constraint and mismatch models across three epochs described in Figure 1. Each panel shows the results for different models,
corresponding to each subsection in the Results. All clusters were corrected by permutation statistics with the CFT of P=0.01 and cluster-wise significance threshold
of P=0.05 (note that marginally significant clusters with P-values between 0.05 and 0.06 are also reported). A horizontal bar in black indicates the duration of the given
cluster. The three alignment points [SN (subject noun), verb, and CN onsets] are indicated by long vertical dotted lines. UP stands for “uniqueness point” estimated by
the CELEX database and the shaded region in gray around the mean UP reflects +1 SD from the onset. Similarly, the mean offset of each word is also marked and the
region shaded by gray hatch lines around the mean offset reflects +1 SD from the onset.

approach, we computed the nonadjacent SNP constraint on CNs
by taking into account the set of verbs that were predicted
by hearing the SNP in the first behavioral completion study:
> verb P(CN_topic|verb)P(verb|SNP). This mathematical formula-
tion reflects the SNP constraint on CN semantics via the set
of verbs predicted by the SNP collected from the first behav-
ioral study. This set of predicted verbs can be thought of as
a process of semantic competition among partially activated
semantic candidates. This is similar conceptually to the notion
of cohort competition for spoken language comprehension [see
(Marslen-Wilson 1987) which claims that multiple, partially acti-
vated word candidates initiated by the accumulating speech
input as a word is heard momentarily compete with each other
until the word is recognized]. Applying topic modeling to these
predicted verbs enables us to model the SNP’s constraints on the
CN taking into account the scope of the SNP’s prediction on the
intervening verb.

Similar to the SNP’s constraint on verbs, this nonadjacent
constraint appeared around the UP of the SN starting from 270
to 590 ms after the SN onset (Fig. 5b). It involved early, relatively
short-lived effects in bilateral anterior and middle temporal

cortex [left hemisphere (LH): P=0.026 from 280 to 510 ms; RH:
P=0.039 from 280 to 530 ms], which overlapped with effects in
right inferior frontal areas (P=0.026 from 270 to 590 ms; see
Fig. 5b). Note that these are the results from Epoch 1 aligned to
the SN onset.

In a further analysis, we tested the spatiotemporal patterns
of neural activity with the same nonadjacent SNP constraint
model in Epoch 2 (Fig. 5b). We found a significant SNP semantic
constraint effect on the CN but only in the right inferior frontal
gyrus (RIFG) from the verb onset (P=0.01; Fig.5), lasting for
380 ms (1 SD after the mean UP), suggestive of competitive
processing. We discuss the differential role of RIFG from the RH
temporal regions in light of the constraints that they activate in
the Discussion.

SNP + Verb’s Semantic Constraint (Entropy) on CN

The analysis above examined the effect of the constraints
imposed by the SNP on the CN mediated through verbs predicted
in the behavioral test. In this section, we investigate the changes
in the semantic constraint on CN as the SNP context becomes
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enriched by combining with its adjacent verb (i.e., after the
cohort competition among the verb candidates has ceased, a
process reflected in the blend model). To do this, we tested the
effect of the SNP + verb constraint model on CNs [i.e., entropy of
P(CN_topic|SNP+verb)],in order to elucidate the neurobiological
basis of the development of incremental constraints (Fig. 5c).
Our results showed that right mid-anterior middle and inferior
temporal areas again played a role in constraining the CNs from
60 ms after the verb onset and lasting around 500 ms (P=0.002;
Fig. 5¢). This early constraint effect likely reflects the constraint
driven by the event generated by the SNP, which could be largely
consistent with the constraint imposed by the verb, especially
when the verb is light in terms of its semantic constraint as
in the majority of our sentence stimuli (see Discussion). In
addition, we also found a significant cluster in left anterior
middle and inferior temporal regions from 270 to 470 ms
(P=0.025) and a marginally significant cluster in left inferior
frontal gyrus [LIFG (BA47/45); P=0.06]. Based on the involvement
of LATL and LBA47/45 in constraining upcoming CNs around the
UP of the verb, we speculate that their role is to unify the verb
into the broad semantic constraint setup by the SNP, essentially
leading to a reduction in uncertainty in the constraint (see Fig. 3
and Fig. S3-1 in Supplementary Materials Section 3).

The effect of the combined SNP + verb constraint persisted
into Epoch 3 during which the CN is heard. This lasted until
370 ms into the CN, which is around the UP. However, this
transition was associated with more posterior LH regions in mid-
dle temporal gyrus (MTG) and angular gyrus (P=0.031; Fig. 5c).
This anterior-to-posterior transition may underscore the pro-
cess from constructing to utilizing the context-driven semantic
constraint when hearing the CN in a sentence.

Semantic Mismatch between the Target CN and the
Predicted CNs by the SNP + Verb Context

Our final analysis was aimed at demonstrating how the prior
SNP + verb constraint facilitates the interpretation of the CN in
light of its preceding context. To do this, we computed the cosine
distance between topic representation of the target CN (i.e.,
P(CN_topic|CN)) and blend representation across the predicted
CNs by the preceding SNP + verb context (i.e., P(CN_topic|SNP +
verb)). This model reflects the degree of mismatch between
the predicted and the target semantics of the complement.
This measure can be viewed as an index of semantic eval-
uation as it indicates the difficulty of processing the CN in
light of the preceding context. Using this model, we observed
a cluster marginally significant (P=0.058) in LH posterior MTG
from 370 to 520 ms after the CN onset (Fig. 5d). The timing of
this mismatch effect emerges just after the constraint effect
disappears, suggesting that the constraint is evaluated against
the CN as soon as the predictive process terminates and the
CN is fully identified. This last piece of evidence sheds light on
the predictive computations actively engaged by listeners while
incrementally processing the subject, verb, and object, which are
critical components of understanding the message that speaker
conveys.

Discussion

The goal of the present study was to understand the neu-
ral dynamics of cognitive processes as listeners incrementally
interpret the spoken sentences that they hear. The compu-
tations involved in this process include: 1) the activation of
the semantic constraints generated by the semantic content

of each word in a sentence as it is heard based on activated
broad scenarios [or event structures]; 2) how and when these
constraints affect processing of the upcoming speech; and 3)
the incremental fine-tuning and evaluation of the semantic
constraint on each new word, integrating it into the developing
semantic representation. During the experiment, listeners heard
sentences consisting of an SNP, followed by a verb, and then
a CN where the SNP and the verb varied in the cumulative
probabilistic constraints they generated on the upcoming com-
plement. We tested for the timing and neural location of these
computations by recording real-time brain activity using EMEG
and analyzing the spatiotemporal fit of patterns of probabilistic
topic models with source-localized neural activity across an
extensive set of bilateral frontal, parietal, and temporal regions.

Our summary of the results with respect to the timing of
effects throughout the entire sentence reveals the rapid tran-
sitions of information processing in the brain as each word (SN,
verb, and CN) incrementally unfolds over time. Such transitions
highlight the underlying neural computations not only involved
in processing individual words, but also in combining them with
the prior context to develop a representation of the meaning of
the sentence (see Fig. 3 and Fig. S3-1in Supplementary Materials
Section 3). More specifically, our results revealed the spatiotem-
poral dynamics of incremental semantic computations in the
brain: 1) the early activation of semantic constraints gener-
ated by the SNP primarily engaged RH mid-anterior temporal
areas whereas activating the non-adjacent constraint on CNs
additionally recruited the RIFG and left temporal regions; 2)
as the verb is recognized, the RH clusters started to decline
but new clusters emerged in anterior left IFG (LIFG) and left
anterior temporal lobe (LATL), actively constraining CNs based
on the combined SNP + verb context; 3) as the target word (CN)
starts to be heard, the locus of the SNP + verb constraint moved
posteriorly into the left posterior MTG (LpMTG) and LAG which
lasted until the CN is recognized. Here, we discuss our results
in relation to incremental processing issues from the SNP to the
CN (see Fig. 6).

Early Activation of the SNP Constraints

Our results revealed that different aspects of SNP constraints
are activated between the point at which the SNP is recog-
nized (i.e., the UP of SN) and its offset ~100 ms later and that
these computations recruit different brain areas. First, the SNP
constraint on upcoming verbs (Fig. 5a) appeared only in mid-
anterior portions of right middle/inferior temporal gyri (RMT-
G/ITG), whereas the SNP constraint on upcoming CNs (Fig. 5b)
involved more extensive regions including right ATL (RATL),
RIFG, and LH temporal cortex. The important similarities and
differences in the neurobiological basis of these constraints
are 1) the core regions involved in constructing both types of
constraints, which included RH anterior MTG/ITG regions, and
2) only the nonadjacent SNP constraint on CNs elicited activa-
tion in the RIFG which lasted all the way until the verb was
recognized in Epoch 2.

These regions are plausibly involved in generating and
maintaining the event representations, which are naturally
generated at the beginning of sentences and form a basis for
semantic constraints on upcoming speech (Marslen-Wilson
et al. 1993; Nieuwland and Van Berkum 2006). Various studies
(Marslen-Wilson and Tyler 1980; Kamide et al. 2003) have
shown that listeners use multiple sources of information at
the earliest possible opportunity to establish the fullest possible
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Figure 6. Vertex-wise peak t-value across three different epochs, summarizing the time-course of t-statistics. Above the surface rendering of each effect, cognitive
implications of incremental constraints are illustrated: 1) activation of broad constraints primarily in right mid-anterior temporal lobe, which additionally engages
left temporal and right inferior frontal regions possibly due to the grammatical category and adjacency of a word (CN) being constrained; 2) developing constraints
recruits LIFG-LATL regions that reduce the amount of uncertainty (competition) in the activated constraints; and 3) as a constrained word (CN) is being heard, the
specific constraint interacts with the bottom-up input, facilitating its processing in posterior middle temporal and inferior parietal areas.

interpretation of what they are hearing and demonstrate that
such processes are not restricted to the syntactic structure
of language. One of the prediction principles (Altmann and
Mirkovi¢ 2009) that underpin human language comprehension
states that the mapping between the unfolding sentence and
the event representation enables listeners to predict both how
the language will unfold and how the real-world event will
unfold, rendering prediction impossible to stand alone without
incrementally developing event representations.

In line with these claims, our results revealed consistent
activations of RH mid-anterior temporal regions for different
semantic constraints, likely reflecting the broad scenarios acti-
vated by the SNP. This claim is further supported by three
major findings from our main and complementary analyses,
possibly indicating that they are activated from the same set of
scenarios drawn by the SNP: 1) the same activation timing for
different SNP constraints around the UP of an SN; 2) a common
subspace existing between different SNP constraints (see Fig. S4
in Supplementary Materials Section 4); and 3) the joint semantic
constraint of the SNP on verb and CN (i.e., the early event-level
constraint) elicited a significant activity pattern in the RH mid-
anterior temporal regions as well (see Fig. S5 in Supplementary
Materials Section 5).

The activation of RH regions has been consistently reported
when drawing coherent “message-level” interpretations in

speech comprehension (Beeman and Chiarello 1998; Beeman
et al. 2000; Jung-Beeman 2005), consistent with studies claiming
the importance of RH in processing linguistic context (Kircher
et al. 2001; Bookheimer 2002). These findings have been
supported by previous ERP studies showing that the RH plays
an important role in interpreting individual words with respect
to a larger-scale context (Federmeier and Kutas 1999; Wlotko
and Federmeier 2007; Federmeier et al. 2008), emphasizing the
role of RH in processing context-driven semantic relationships
(Federmeier et al. 2008). Hence, the early effect in the right
temporal regions in the current study are likely related to the
process of generating constraint driven by the SNP context,
setting up the event-level scenarios of what is likely to be talked
about (Elman 2011).

However, two additional areas in the LH temporal lobe and
RIFG were engaged in constraining the nonadjacent CN based
on the SNP context (Fig. 5b). The two critical differences between
the SNP constraints are 1) the grammatical category of con-
strained words and 2) adjacency with respect to the SNP con-
text. Previous studies have shown the engagement of the LH
temporal regions when processing nouns compared with when
processing verbs (Siri et al. 2007; Vigliocco et al. 2011).

Unlike the bilateral temporal regions, the RIFG cluster
remained significant after the verb onset until the verb was
recognized. Consistent with this finding, recent studies have
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reported RIFG as a part of the extensive network involved in
constraining an upcoming word (Willems et al. 2015) and resolv-
ing semantic competition (Kocagoncu et al. 2017). More gener-
ally, this region has been involved in semantic maintenance
and cognitive control (Shivde and Thompson-Schill 2004; Gajar-
do-Vidal et al. 2018), activating when processing an indetermi-
nate sentence which can be interpreted in many different ways
(de Almeida et al. 2016) or when encountering a word with multi-
ple meanings in a spoken sentence (Rodd et al. 2005; Mason and
Just 2007). Therefore, the SNP constraint effect in RIFG during the
verb likely reflects the maintenance of the SNP semantic con-
straint while resolving competition as the verb is being heard.

Evolving Constraint

The essence of incremental speech comprehension is that each
word is interpreted in a context-relevant manner and the con-
straint derived from the prior context is updated to be more
specific and informative on the upcoming words in the sen-
tence as more words are heard (Kuperberg and Jaeger 2016). To
investigate this incremental development (i.e., how the prior
SNP constraint on CNs evolves as a verb is recognized), we
constructed a model that captures the semantic constraint on
CNs based on the full SNP+ verb context. Our results showed
that the effect of the SNP + verb constraint appears at 60 ms after
the verb onset in the right mid-anterior MTG/ITG regions which
extended to LATL and LIFG peaking around 400 ms after the verb
onset (i.e., close to the mean verb offset). As the target word
(i.e., CN) is being heard, the cluster moved into more posterior
areas involving LMTG and LAG, which lasted until the CN is
recognized (Fig. 5¢). These transitions across time may highlight
differential roles engaged by these regions when constraining
the CN. For example, as discussed above, the early RH temporal
effect most likely reflects the broad constraint on CN, primarily
set up by the SNP (i.e., in natural language comprehension, it is
highly unlikely that an incoming verb is completely incongruent
with the activated scenarios). Then, the ventral fronto-temporal
network in LH including LIFG (BA47/45) and LATL additionally
engages in constraining the CN as the verb is recognized.

The broad scenarios activated by the SNP become more fine-
tuned as the semantics of the verb is combined with the SNP
context. According to the timing of LIFG-LATL activations, these
regions may play an important role in resolving uncertainty by
updating the sentential meaning so that it becomes more spe-
cific. Further support for this argument comes from a comple-
mentary analysis (see Fig. S3-2 and Fig. S3-3 in Supplementary
Materials Section 3) showing a statistically significant reduc-
tion in entropy between the SNP constraint and the SNP + verb
constraint, which reflects an important aspect of incremen-
tal speech comprehension (Hale 2006) (see Fig.3). As LATL is
directly connected to LBA47 via the uncinate fasciculus (Catani
et al. 2005), our results suggest that the interaction within the
anteroventral fronto-temporal network is involved in developing
more informative constraint based on the combined context of
SNP + verb.

After the onset of the target word (CN), we observed a sig-
nificant cluster moving into more posterior regions including
LpMTG and LAG until around the UP of the CN. The transition
and timing of this cluster may reflect the facilitatory effect
of the contextual (SNP + verb) constraint on activating seman-
tic content of the CN as these regions are often involved in
activating lexical-semantic content (Hickok and Poeppel 2007)
and combining it into the preceding context at both phrasal

and sentential levels (Humphries et al. 2007; Schell et al. 2017;
Lyu et al. 2019). Therefore, such anterior (BA47/45 and LATL) to
posterior (LpMTG/LAG) transition likely reflects the top-down
(i.e., the SNP + verb constraint), bottom-up (i.e., speech input of
the CN) interaction, in order to generate a coherent semantic
interpretation of the CN with respect to the preceding SNP + verb
context.

Constraint Evaluation

Developing an event representation requires each word in a
sentence to be interpreted in the context of the prior context.
This process, in turn, requires semantically evaluating each
word with respect to the prior constraint, indexed by the degree
of mismatch between the context and an upcoming word. To
address this issue, we tested the effect of contextual (SNP + verb)
constraint on the interpretation of the target word (CN) by quan-
tifying the degree of mismatch between the sentential context
and the target word in terms of the spatiotemporal patterns
of neural activity after the CN onset. We found that activity
patterns in LpMTG were sensitive to the mismatch between
the constrained and the actual topic representation from 370 to
520 ms (Fig. 5d). Interestingly, this timing occurred immediately
after the constraint effect disappeared.

In the literature, LpMTG is commonly reported in studies of
semantics (Price 2010) and is typically known as the source of
the N400 effect (Lau et al. 2008; Kutas and Federmeier 2011).
A recent study reported predictability (e.g., “runny nose” vs.
“dainty nose”) estimated from corpus data modulated the N400
component in LpMTG (Lau and Namyst 2019), reducing the
necessity of activating the stored lexical representation of the
target word (CN in our study) when it is strongly constrained by
the context (i.e., high predictability).

This argument is further supported by our previous study
(Lyu et al. 2019) where the semantic representation of a CN
was strongly modulated by the preceding verb; for example, the
verb in context (e.g., the man “ate”) pruned the less relevant
CN topics, allowing listeners to interpret the CN (e.g., “apple”)
more specifically with the CN topics that were supported by the
preceding verb (e.g., topics related to “food” but not those related
to “shape” or “color”). While the exact computational details of
the mismatch effect remain elusive, our findings suggest that
listeners not only develop semantic constraints on upcoming
words but they also use these constraints to efficiently derive
the context-relevant interpretation of upcoming words such
as the CN. Combined with other constraint effects discussed
above, these results clearly illustrate the incremental stages
of predictive processing that enables listeners to construct the
message-level interpretation from the three crucial components
in a sentence (SNP, verb, and CN).

Implications for Future Studies

Previous studies have explained neuroimaging data using com-
putational models to quantify entropy at lexical (Frank et al.
2015; Willems et al. 2015) and phonological levels (Donhauser
and Baillet 2020). In these studies, neural network models with
a recurrent architecture were commonly employed to gener-
ate a context-dependent linguistic prediction as a probability
distribution from which entropy can be computed. On top of
these studies, the current study examined the semantic aspect
of incremental language prediction using entropy of topic distri-
butions, designed to express the co-occurrence relation among
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words in different grammatical categories through estimating
the expected posterior of the multinomial parameters (see Sup-
plementary Material Section 1). In this section, we motivate
the choice of our computational model and approach while
discussing its limitations and directions for future studies.

Recent advances in the field of computer science have estab-
lished a number of different computational algorithms to con-
struct distributional semantic models, optimally reflecting the
content of each lexical item in a set of latent dimensions.
Perhaps, the currently most popular algorithm is the neural
network training with a recurrent architecture, including recur-
rent neural network (RNN) and long short-term memory (LSTM).
However, we chose to use topic modeling based on LDA to exploit
its two critical aspects.

1. It produces a semantic vector of a word as a probability distri-
bution over latent semantic dimensions (topics). This allows
us to construct our incremental models under the Bayesian
computational framework (Kuperberg and Jaeger 2016), a
useful approach for understanding predictive processing in
language.

2. It explicitly depicts the semantic relations between words
in different positions in a sentence. Our implementation of
topic modeling, which treats SNs and verbs as “documents”
and CNs as “words,” is specifically designed to explain
semantic prediction and updates based on key words in the
context.

Its explanatory value as a predictive model is one of its
biggest assets, making it particularly attractive in the field of
psycho- and neuro-linguistics. Nonetheless, one critical limita-
tion of this approach is that it is not an incremental model by
itself, unlike RNN or LSTM. To address this issue, we introduced
the method of blending a set of topic vectors based on Cloze
probabilities calculated from sentence completion studies.

Despite the popularity of Cloze probability as a direct behav-
ioral measure of human prediction, its application entails high
subjective bias, often affected by confounding factors such as
familiarity (Smith and Levy 2011). Although Cloze probability
was significantly related to corpus probability, it also signifi-
cantly deviated from the corpus probability with greater entropy
in responses, making Cloze a suboptimal estimate of linguis-
tic prediction which has been successful in explaining neural
responses (Delong et al. 2005; Kutas and Federmeier 2011).
Moreover, another confounding factor of Cloze is that the predic-
tion may well be driven by a pragmatic inferential process, not
purely by semantic associations. Hence, it remains controversial
whether the basis of the incremental prediction is semantic or
pragmatic in nature. Despite the objective and accurate proba-
bility estimates that large-scale corpora offer, there is a practical
limitation of applying the corpus probability as the number
of words increases in the model (i.e., increasing N in an N-
gram probability). Even with large-scale corpora, the estimation
of co-occurrence probability becomes very difficult with N> 3.
With our stimuli containing 6-7 words before the CN (e.g., “The
experienced walker chose the path”), computing a conditional
probability becomes impossible.

Taken together, future studies need to develop a self-
explanatory incremental model, allowing us to character-
ize evolving representations. Recent developments of more
sophisticated models such as generative pretraining (Radford
et al. 2018) have shown impressive performance on making
output predictions, but their multilayered internal represen-
tations are highly complex and lack an explanatory value to

provide insights into predictive processing in the human brain.
Quantifying different aspects of representation that incremen-
tally evolve over time in these models will initiate more model-
driven decoding research on brain data, shedding light on the
neurobiological basis of incremental speech comprehension.
At last, although we constrained our search space within a
language mask to characterize linguistic aspects of predictive
processing and specific computations involved in constraining
upcoming words, other brain networks involved in different
cognitive functions, such as attention and/or memory, may
also be involved in such linguistic processes of understanding
speech. With the ultimate goal of expanding our research
to discourse and narrative comprehension, such whole-brain
analysis will contribute to understanding the interactive nature
of cognitive processes during language comprehension.

Finally, there have been growing efforts to elucidate the
interactive nature of cognition, bringing multiple domains of
cognition such as language and memory into a unifying frame-
work (Duff and Brown-Schmidt 2017). For example, develop-
ing an event representation involves the episodic realization
(e.g., “orange” in “She peeled an orange, and ate it quickly”)
of a semantic type (e.g., “orange” in general). The role of such
episodic-semantic interface during natural language compre-
hension is extensively discussed in a recent account (Altmann
2017), claiming the hippocampal structures as one of the neu-
robiological bases for encoding distinct episodes (McClelland
et al. 1995). While we have shown that incremental predictive
processes can be characterized even with such generic linguistic
stimuli, we advocate the need for more specific stimuli in a
narrative context in order to distinguish an episodic token from
a semantic type. In this way, the stimuli would have suffi-
cient variability to provide the distinguishable representational
geometry between them, allowing researchers to investigate
the interactive event dynamics beyond combinatorial semantics
from semantic memory alone.

As a final remark, this study focused on presenting a possible
approach to investigate one of the core processes (i.e., predic-
tion) of human event cognition during natural speech compre-
hension. Future studies will need to expand this research to
investigate other central cognitive processes involved in under-
standing the event dynamics and illuminate its neurobiological
underpinnings, likely recruiting multiple interactive networks in
the brain outside the language network.

Conclusion

In this study, we demonstrated the neurobiological basis of
incremental predictive language processing by characterizing
the spatiotemporal dynamics of source-localized EMEG data
with ssRSA using rich co-occurrence computational semantic
models based on topic modeling combined with human behav-
ioral data.

To summarize our results, an extensive bilateral fronto-
temporo-parietal network is actively engaged in generating
and developing incremental semantic constraints on upcoming
words (see Fig. 6). Our results highlight the temporal progression
of semantic constraint development: 1) an RH fronto-temporal
network initially generates possible scenarios as the SNP is
heard which, in turn, 2) recruits a LH fronto-temporal network
as the scenarios get enriched as subsequent words are heard
(a verb in this case), and (3) terminating in a LH posterior
temporo-parietal network as the target word (CN) is recognized.
To our knowledge, none of the neurobiological models of
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speech comprehension have explained this range of sequential
temporal relationships among multiple regions in the language
network during incremental speech comprehension, largely due
to the lack of evidence for characterizing the spatiotemporal
dynamics of neural activity. Further research is needed to
understand the detailed neural mechanisms underpinning
these important effects.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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