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Abstract: Inflammatory skin diseases, including psoriasis and atopic dermatitis, affect around one
quarter to one third of the world population. Systemic cyclosporine A, an immunosuppressant agent,
is included in the current therapeutic armamentarium of these diseases. Despite being highly effective,
it is associated with several side effects, and its topical administration is limited by its high molecular
weight and poor water solubility. To overcome these limitations, cyclosporine A was incorporated
into solid lipid nanoparticles obtained from Softisan® 649, a commonly used cosmetic ingredient,
aiming to develop a vehicle for application to the skin. The nanoparticles presented sizes of around
200 nm, low polydispersity, negative surface charge, and stability when stored for 8 weeks at room
temperature or 4 ◦C. An effective incorporation of 88% of cyclosporine A within the nanoparticles was
observed, without affecting its morphology. After the freeze-drying process, the Softisan® 649-based
nanoparticles formed an oleogel. Skin permeation studies using pig ear as a model revealed low
permeation of the applied cyclosporine A in the freeze-dried form of the nanoparticles in relation to
free drug and the freshly prepared nanoparticles. About 1.0 mg of cyclosporine A was delivered to
the skin with reduced transdermal permeation. These results confirm local delivery of cyclosporine
A, indicating its promising topical administration.

Keywords: cellular uptake; Franz-cell permeation; keratinocytes; pig ear skin; pseudoplastic
properties; solid lipid nanoparticles

1. Introduction

Severe inflammatory skin diseases, such as psoriasis and atopic dermatitis, are difficult to control
with only topical therapy [1]. In most cases, the use of systemic agents, including immunosuppressants
(corticosteroids, cyclosporine, methotrexate, azathioprine) or biologic agents, is needed to effectively
control the skin disease. However, oral or parental administration of these drugs is associated with
several non-specific interactions, variation of plasma levels, and rapid elimination. This results in the
need for multiple administrations, risk of side effects, the possibility of repeated doses, gastrointestinal
disorders, and higher dose amounts in order to achieve a therapeutic response [2].
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Despite some risks associated with the use of nanotechnology, these drug delivery systems have
been shown to increase the effectiveness of the drug, limiting unwanted side effects [3]. In the past
few years, nanoparticles have given a new purpose to drugs that presented problems in terms of
undesirable side effects, poor water solubility and consequently low bioavailability [4,5]. Solid lipid
nanoparticles are one type of the designed drug carriers that can help to overcome some drug-related
problems, and they have been extensively reviewed [6,7]. These systems are composed of a lipid
that is solid at room temperature and stabilized with a surfactant layer, presenting the possibility to
incorporate different drugs and prevent its degradation by controlled release [8].

Solid lipid nanoparticles (SLN) have been reported as possible formulations for cutaneous
application, especially taking advantage of the interaction with the skin’s lipids for better drug
penetration [9–14]. The use of these systems can be a solution to avoid the toxicity of prolonged use of
potent immunosuppressive agents, such as cyclosporine A, in the treatment of severe inflammatory
skin diseases.

Cyclosporine A (CsA) (Figure 1A) is a widely used immunosuppressive drug that was first
used to prevent transplant rejection and later approved by FDA for the treatment of psoriasis [15,16].
This compound is a calcineurin inhibitor that acts selectively on T cells, interfering in the transcription
of interleukin-2, which is crucial for full activation of T-cell pathway [17]. CsA has been demonstrated
to be highly effective, in the treatment of several inflammatory skin disses, such as atopic dermatitis,
psoriasis, pyoderma gangrenosum and chronic idiopathic urticaria, with a rapid onset of action [15].
Despite its great therapeutic potential, CsA-associated side effects are dose-dependent and are closely
related to the duration of the applied treatment [18,19]. Hence, topical application represents a solution
to overcome this drawback. Given the physicochemical characteristics of CsA, namely its large
molecular weight (1202 Da) [20,21] and high lipophilicity (Log P 2.92) [22,23], the skin permeation is
a challenge.

Figure 1. Structures of CsA (A) and Softisan® 649 (B).

To address this problem and to avoid systemic toxicity, many efforts have been made towards
research on lipid nanoparticles for topical delivery of CsA. Lopes and co-workers reported monoolein
as a solution to enhance the skin penetration of CsA, with reduced transdermal delivery and low
systemic effects [24]. Later, Varia et al., tested different lipid matrices to incorporate CsA with high
entrapment efficiency percentages (83–97%), reporting a sustained drug release of 7.95% or 41.12%
at the end of 20 h, depending on the type of matrix [25]. Kim and coworkers observed in an in vivo
murine model the decrease in T helper 2 cell-related cytokines, suggesting that SLN are effective
CsA carriers to be applied in allergy-related skin disorders [26]. Guada and colleagues also provided
some information on different and stable SLN combinations for oral administration of CsA [27],
as well as the study for a controlled CsA release profile and low side effects [28–30]. Other types
of nanosystems, such as polymeric nanoparticles or micelles, were also used to entrap and deliver
CsA by different routes [20,31–35]. Recent topical strategies for CsA delivery focus on the design
of PLGA-based nanocapsules to treat severe atopic dermatitis [36] and the preparation of liposomal
carriers as ultraflexible systems to assist the topical absorption of CsA [37]. Recently, our research
group disclosed the potential of SLN in improved dermal delivery of CsA in relation to nanostructured
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lipid carriers [38]. SLN of Lipocire DM/ Pluronic F-127 retained CsA in the skin layers with reduced
permeation to avoid systemic side effects.

Softisan® 649 (Figure 1B), a lanolin substitute widely used in the cosmetic industry, is an option as
a solid lipid to produce SLN. It is based on pure vegetable and synthetic-based raw materials it has no
antioxidants, preservatives, residual solvents and paraffins, pesticide residues and allergenic potential.
Compared to lanolin, Softisan® 649 is non-occlusive, has a superior adhesion to skin and mucosae,
low water content (<0.25%), high water-binding capacity, and good film-forming properties [39].
Softisan® 649 was first proposed as a vehicle for patch testing in 1986 [40], and its use as a reliable
lanolin substitute was supported a few years later [41]. Besides its common use in baby care and
lip products, protective creams and sun care, Softisan® 649 has also been reported in the literature
in antibacterial ointments [42,43], as a semi-solid lipophilic vehicle for oral capsules [44], and for
anti-infective coatings for medical implants [45]. Given the clinical interest in delivering CsA through
the skin and the potential of cosmetic ingredients in skin research, the SLN obtained with Softisan®

649 were explored in the present work as skin delivery systems for CsA.

2. Materials and Methods

2.1. Materials

Softisan® 649 was purchased from IOI Oleo GmbH (Witten, Germany), tween 80®, cyclosporine
A and coumarin 6 were obtained from Sigma-Aldrich (St Louis, MO, USA). All other chemicals and
solvents were of analytical grade acquired from Sigma-Aldrich (St Louis, MO, USA) unless stated
otherwise. Aqueous solutions were prepared with double-deionized water (Arium Pro, Sartorius AG,
Göttingen, Germany), which possesses conductivity values <0.1 µS cm−1. For cell culture, fetal bovine
serum (FBS), penicillin-streptomycin (10,000 U/mL) mixture, Dulbecco’s Modified Eagle’s Medium
(DMEM), Hank’s Balanced Salt Solution (HBSS) and trypsin-EDTA 0.25% were acquired from Gibco®

(Invitrogen Corporation, Massachusetts, USA). HaCaT human keratinocyte cell line and L929 fibroblast
cell line were purchased from Cell Lines Service (CLS, Eppelheim, Germany).

2.2. Preparation of Solid Lipid Nanoparticles

CsA-loaded SLN and unloaded SLN were prepared using the hot ultrasonication method. The lipid
phase composed of Softisan® 649 (150 mg), tween 80® (50 mg) and CsA (15 mg) was heated to 65 ◦C in
a water bath. After lipid melting 7 mL of water were added to the lipid phase and then homogenized
using a probe-sonicator (VCX130, Sonics & Materials, 115 Newtown, CT, USA) with amplitude
frequency of 70% during 5 min, in order to obtain a nanoemulsion. Unloaded SLN were prepared
usingds a similar method, without the presence of drug. For cellular uptake assays, SLN were loaded
with 1.5 mg of coumarin 6 (C6) upon addition to the lipid phase during the preparation procedure.

2.3. Characterization of Solid Lipid Nanoparticles

2.3.1. Average Size and Surface Potential Determination

The mean size, polydispersity index (PDI) and zeta potential of the formulations were determined
using a ZetaPALS zeta potential analyzer (Brookhaven Instruments Corporation; Holtsville, NY,
USA) [38]. Samples where diluted in double deionized water (1:100), which is the same aqueous
phase used to prepare the nanoparticles prior each determination. In particle size measurements,
6 runs of 2 min were performed using Dynamic Light Scattering technique at 20 ◦C for each assay by
the multimodal analysis of ZetaPALS Particle Sizing Software. Zeta potential of the nanoparticles
was determined by the Electrophoretic Light Scattering technique with an electrode operating at a
scattering angle of 90◦ at 20 ◦C. For each assay, 6 runs of 10 cycles were performed.
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2.3.2. Morphology Assessment

The morphology of the nanoparticles was observed by Transmission Electron Microscopy (Jeol
JEM-1400; JEOL, Ltd., Tokyo, Japan). In each measurement, one drop (ca. 20 µL) of each sample was
placed on a copper grid for 1 min. Then, 10 µL of 0.75% (w/v) uranyl acetate were added as contrast
agent and left 30 sec in contact. The excess was removed with filter paper and the grid was exposed at
the accelerating voltage of 60 kV for analysis and images capture.

2.3.3. Quantification of the Entrapment Efficiency and Drug Loading

Entrapment efficiency (EE) of CsA in SLN was determined by UV spectrophotometry. A dilution
of SLN formulations in double-deionized water was centrifuged (Allegra® X-15R, Beckman Coulter,
California, USA) through centrifugal filter units (Amicon® Ultra Centrifugal Filters, Ultracel—50 KDa,
Darmstadt, Germany) at 3500 rpm, 20 ◦C, during 10 min or until complete separation between the SLN
retained in the filter unit and the aqueous phase corresponding to the filtrate with unentrapped CsA.
The filter unit was then turned over to a tube and centrifuged again at 3500 rpm, 20 ◦C for 10 min to
recover the nanoparticles. The collected nanoparticles were then destroyed with absolute ethanol to
release the entrapped CsA. Another step of centrifugation enabled to pellet the lipids and the CsA
in the supernatant was quantified by UV–vis spectrophotometry (Jasco V-660 Spectrophotometer,
Piscataway, NJ, USA) at 202 nm. Considering the drug initially added to the SLN formulation it was
possible to determine the amount of drug incorporated in the SLN, and thus the entrapment efficiency,
using the following equation:

EE(%) =
Entrapped drug

Total initial drug amount
× 100 (1)

and the drug loading (DL) by:

DL(%) =
Entrapped drug

Total formulation mass
× 100 (2)

2.3.4. Freeze-Drying

In the current work, the nanoparticles were frozen overnight at −80 ◦C (Deep Freezer, GFL®,
Burgwedel, Germany). After this procedure, the nanoparticles were lyophilized using a freeze drier
(LyoQuest −85 plus v.407, Telstar® Life Science Solutions, Terrassa, Spain) for 72 h at −80 ◦C under
0.40 mbar of pressure.

2.3.5. Fourier-Infrared Spectroscopy Evaluation

The freeze-dried nanoformulations with and without CsA, the Softisan® 649 and CsA were
evaluated using a FTIR Spectrophotometer (FrontierTM, PerkinElmer; Santa Clara, CA, USA) equipped
with a diamond crystal. The samples were transferred directly into the ATR compartment, and the
result was obtained by combining the 16 scans. A background run (to remove the background noise
of the instrument) was carried out as a negative control. Spectra were recorded between 4000 and
600 cm−1 with spectral resolution of 4 cm−1.

2.3.6. Storage Stability Studies

To assess the storage stability of the formulations through time, regular measurements of size,
PDI, zeta potential and drug content were performed over a period of 8 weeks. Formulations were
stored in sealed glass vials protected from light at 4 ◦C and at 25 ◦C to compare the results.
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2.4. Rheological Properties

The rheological properties were evaluated for the freeze-dried samples of unloaded and
CsA-loaded nanoformulations were analyzed on a rheometer (Malvern Kinexus Lab+; Malvern
Instruments; Worcestershire, UK) using a shear rate table method (0.1 to 100.0 s−1, 10 samples per
decade). The analysis was conducted with a plate–plate configuration (geometry PU20 SR4367) with a
1 mm gap at 25 ◦C (Peltier Plate Cartridge). The rheological properties were studied by continuous
shear operation, which was performed to evaluate the shear stress (Pa) as a function of shear rate (s−1).
The data were collected using the rSpace software® (Kinexus 1.75: PSS0211-17).

2.5. Cellular Studies

2.5.1. Cell Culture Conditions

Fibroblasts (L929 cell line) and keratinocytes (HaCaT cell line) were cultured in DMEM
supplemented with 10% FBS (v/v) and 1% penicillin/streptomycin (v/v). Cells were maintained
in a 37 ◦C and 5% CO2 atmosphere (Unitherm CO2 Incubator 3503 Uniequip; Planegg, Germany).
When reaching 90% confluence, L929 cells were physically detached from the cell culture flask using a
scrapper (NuncTM Cell Screppers, Thermofisher Scientific; Waltham, MA, USA) and HaCaT Cells were
chemically detached using trypsin-EDTA 0.25% (w/v).

2.5.2. Cell Viability Assays

The cytotoxicity assays of the SLN were conducted using 3-(4,5-Dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay. Briefly, L929 and HaCaT were incubated with different
concentrations of the SLN at 37 ◦C for 24 h, at a density of 5.0 × 104 cells per well in a 96-well plate.
Cells were treated with 1% (v/v) triton X-100 as positive control for cytotoxicity. Then, the cells were
incubated with MTT solution (0.5 mg mL−1) for 2 h at 37 ◦C. At the end of the incubation, the MTT
solution in each well was replaced by 100 µL of DMSO to dissolve the formazan-containing crystals.
The plate was shaken for 30 s at room temperature, prior measuring the absorbance of each well
at 570 nm and 630 nm (for background subtraction) in a SynergyTM HT Multimode plate reader
(BioTek® Instruments Inc., Winooski, VT, USA). The percentage of cell viability was compared to
control wells treated with only culture medium by the ratio of corrected absorbance measured for the
tested conditions and the untreated cells. All experiments were performed in triplicate.

2.5.3. Cell Uptake Assays

For studying the uptake process of the SLN by HaCaT cells, the cells were seeded in a 24-well
plate at a concentration of 2 × 105 cells per well. Cells were incubated with C6-labeled SLN at different
concentrations in DMEM at different time intervals. Before flow cytometer analysis in a BD Accuri
C6 (BD Biosciences, Erembodegem, Belgium), the cells were washed twice with HBSS, recovered
with trypsin-EDTA 0.25% (w/v), and resuspended in 200 µL of HBSS. Dead cells were excluded with
propidium iodide staining by adding 2 µL from a 1 mg mL−1 (in water) working solution. Trypan
blue at 1 mg mL−1 was added to quench the C6 signal from the non-internalized SLN that were only
adsorbed on the cell surface. At least 10,000 events were recorded for each sample.

2.6. In Vitro Skin Permeation Assay

The skin permeation was tested with CsA-loaded SLN using a Franz cell assembly (9 mm
unjacketed Franz Diffusion Cell with 5 mL receptor volume, o-ring joint, clear glass, clamp, and stir-bar;
PermeGear, Inc., USA). Pig ear skin was used as model barrier. The donor medium consisted of
0.5 mL with 1 mg CsA-loaded SLN, free CsA or 100 mg of freeze-dried CsA-loaded nanoformulation.
The receptor medium was 4.7 mL of HEPES buffer (pH 7.4) with 10% ethanol, to allow CsA dissolution.
The available diffusion area between chambers was 0.785 cm2. The stirring rate and temperature
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of receptor medium were respectively kept at 400 rpm and 37 ◦C (IKAMAG®, Staufen, Germany).
At defined intervals of 1 h, 1 mL aliquots of the receptor medium were collected and immediately
replaced with equal volumes of fresh buffer. Each sample was quantified by UV–vis spectrophotometry
(Jasco V-660 Spectrophotometer, Piscataway, NJ, USA).

2.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism Software (Version 7 for Windows;
GraphPad Software Inc, San Diego, CA, USA).

3. Results and Discussion

3.1. Physicochemical Characterization of Softisan® 649/Tween® 80-Based Nanoparticles

After using hot ultrasonication method to prepare unloaded and CsA loaded nanoparticles,
the physicochemical characterization was obtained, and the results obtained are summarized in Table 1.
The formulations presented an average size around 200 nm, which is within the adequate size range
for topical delivery [46]. The polydispersity index for the prepared nanoparticles was below 0.2,
a representative value of formulations with a narrow range of particle sizes. Table 1 data evidenced
zeta potential values for SLN of −15 ± 4 mV, and −22 ± 2 mV upon the incorporation of CsA, indicating
the need to verify their colloidal stability during storage. It is well established that when surface values
are equal to or higher than |30| mV, the nanoparticles have electrostatic stabilization and low tendency
to aggregate [47]. The CsA entrapment efficiency was around 88% (approximately 13 mg in 7 mL of
SLN), with a drug loading of approximately 7%.

Table 1. Physicochemical characterization of nanoparticles.

Size (nm) PDI ζ-Potential (mV) EE (%) DL (%)

SLN 200 ± 4 0.12 ± 0.03 −15 ± 4 - -
CsA-SLN 216 ± 5 0.11 ± 0.02 −22 ± 2 88 ± 3 6.6 ± 0.2

Data expressed as mean ± standard deviation (n = 6).

3.2. Morphology Analysis

The morphology of the nanoparticles was evaluated by transmission electron microscopy (TEM).
Figure 2 show SLN with spherical appearance, and that entrapment of CsA did not affect the
nanoparticle’s morphology.

Figure 2. Morphology of (A) SLN and (B) CsA-SLN.
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3.3. Fourier-Infrared Spectroscopy Evaluation

The FTIR analysis was performed after freeze-drying nanoparticles to validate the CsA
incorporation into the lipid nanoparticles (Figure 3C). The freshly prepared CsA-loaded SLN (Figure 3A)
after the freeze-drying process exhibited a gel-like appearance (Figure 3B). The characteristic peaks of
the analyzed compounds are detailed in Figure 3C. As represented in the spectra of CsA, the main
peaks are related with N–H (3300 cm−1) and amide I C=O (1625 cm−1) [48]. Softisan® 649 is mainly
characterized by alkyl C–H (2920 cm−1) and ester C=O (1740 cm−1) [49]. As expected, the spectrum
of SLN is very similar to the spectrum of Softisan® 649. The combination of characteristic peaks
of Softisan® 649 and free CsA appears in the spectrum of CsA loaded nanoparticles, and no new
bonds appear, indicating that cyclosporine was successfully incorporated without altering its chemical
structure or the structure of the nanoparticles.

Figure 3. CsA-SLN freshly prepared (A) and after freeze-drying process (B) and FTIR spectra (C) of reference
compounds (Softisan® 649 and CsA) and freeze-dried nanoformulations (SLN and CsA-loaded SLN).

3.4. Assessment of the Storage Stability

Storage stability was evaluated at room temperature and 4 ◦C in terms of particle size, PDI and
zeta potential over 8 weeks. Figure 4 show the size of unloaded and CsA-loaded SLN remain constant
during the period of study at both temperatures. In terms of polydispersity values, which are in all
cases below 0.2, it is possible to find the same trend suggesting low tendency for aggregation. The zeta
potential was the most variable parameter with significant changes due to increasing negative values
over time. This variation may be attributed to the multiple structural configurations of Softisan®

649 molecules. Softisan® 649 is a mix of fatty acid esters with a melting point of approximately
35 ◦C [49]. However, it is submitted to heat (60 ◦C) to facilitate the CsA dissolution in the production of
nanoparticles, which means it will take a longer time to reach a stable conformation and position of the
matrix. In fact, with longer periods of time, the more negative the values become, reaching −30 mV in
both conditions for all formulations, which indicates higher colloidal stability. Despite these significant
changes, the stability does not seem to be affected when considering data from size and PDI.
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Figure 4. Storage stability of formulations at room temperature and 4 ◦C over 8 weeks. Size and Zeta
Potential data: SLN at room temperature (black bars) and 4 ◦C (dark grey bars); CsA-loaded SLN at
room temperature (grey bars) and 4 ◦C (light grey bars). PDI data: SLN at room temperature (white
circle) and 4 ◦C (white open circle); CsA-loaded SLN at room temperature (black square) and 4 ◦C
(black open square). Each result represents the mean ± standard deviation for n = 3 samples. * P < 0.05;
** P < 0.01; *** P < 0.001; **** P < 0.0001.

3.5. Cellular Studies

3.5.1. Cell Viability

Biocompatibility of lipid nanoparticles was confirmed as recommended by ISO 10993 on “Biological
evaluation of medical devices” using the L929 fibroblasts cell line. For a more representative analysis
according to the purpose of the study, the same assay was performed in HaCaT keratinocytes, a skin
characteristic cell line. According to ISO 10993-5, if the cell viability is lower than 70% of the control,
there is a cytotoxic effect.

Analyzing Figure 5, it is possible to observe biocompatibility and safety of SLNs up to
concentrations of 6 mg mL−1 in lipid for both cell lines, corresponding to a CsA concentration
of approximately 0.6 mg mL−1. In previous studies performed by the group, free CsA was toxic for
L929 when using concentrations higher than 35 µg mL−1 and for HaCaT using concentrations higher
than 17.5 µg mL−1 [38]. For the higher tested lipid concentrations (8 and 10 mg mL−1) containing
0.8 and 1 mg mL−1 in CsA, respectively, cell viability decreased to values below 70%, indicating a
cytotoxic effect that was more evident in keratinocytes (Figure 5B) than in fibroblasts (Figure 5A), when
compared to the control cells. Compared to other studies involving SLN, we were able to confirm
non-cytotoxicity at higher concentrations (up to 6 mg mL−1 in lipid loaded with 0.6 mg mL−1 of CsA),
revealing the biocompatibility of the designed nanoparticles [26,50].
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Figure 5. Cellular viability determined by the metabolic activity of (A) L929 fibroblasts and (B) HaCaT
keratinocytes upon 24 h of exposure to both unloaded (black bars) and CsA-loaded SLN (grey bars). The dotted
line represents 70% of cell viability as a reference for non-toxic concentrations. Each result represents the
mean ± standard deviation for n = 4 replicates of 3 assays. * P < 0.05; ** P < 0.01; **** P < 0.0001.

3.5.2. Softisan® 649/Tween® 80-Based Nanoparticles Internalization by Keratinocytes

The cellular uptake of C6-loaded SLN was assessed using flow cytometry. According to kinetic
analysis (Figure 6A), it is possible to see an increase of mean fluorescence over time, due to an increasing
accumulation of nanoparticles within the cells. Flow cytometry data showed a time-dependent
accumulation (Figure 6A). The internalization process is fast, since nanoparticle translocation is
detected after 15 min of nanoparticle’ incubation and continues to increase until achieving a plateau
after 90 min. A concentration-dependent internalization was observed, with a saturation plateau at a
low nanoparticle concentration of 0.5 mg mL−1 in lipid (Figure 6B).

Figure 6. Cellular uptake for C6-loaded SLN in HaCaT cells. (A) Effect of incubation time on
nanoparticle internalization at 0.05 mg mL−1 in lipid; (B) Effect of concentration on nanoparticle
internalization at 37 ◦C for 1 h; (C) Role of energy in endocytosis of C6-SLN at 0.05 mg mL−1 in lipid,
in relation to 37 ◦C cellular C6 fluorescence. Data expressed as mean ± standard deviation (n = 6).
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Overall, the internalization routes for nanoparticles to enter cells can be divided into active and
passive pathways. The influence of temperature on cellular uptake is often tested to evaluate the
active transport that is reduced under low temperature (4 ◦C), and thus nanoparticles are internalized
via energy-dependent transport (endocytosis) or energy-independent mechanisms (non-endocytic
pathways). In this work, HaCaT cells were incubated at two inhibitory conditions of active transport:
4 ◦C and sodium azide [51]. At 4 ◦C, energy-dependent uptake and passive diffusion are hampered
due to cell membrane rigidity, and in the presence of sodium azide the active transport is blocked due
to inhibition of electron transport chain in the mitochondria, thus impairing the active uptake.

Figure 6C shows the relative cellular uptake in percentage, assuming that normal internalization
(37 ◦C) fluorescence of cells in the absence of any inhibitor was 100%. There is no statistical difference
between the internalization of the control and the inhibitory conditions, revealing that Softisan®

649/Tween® 80 nanoparticles enter keratinocytes by an energy-independent process. The quick
translocation of the designed SLN into HaCaT might be related to its nanometric size, but this feature
does not seem to affect the viability of cells as observed with other lipid compositions [52].

The overall data suggests that SLN quickly translocate into the cells, saturating at very low
concentrations by an energy-independent process, so these systems will easily and safely interact with
keratinocytes in a topical application scenario.

3.6. Rheological Properties of Freeze-Dried Nanoformulations

At the end of the freeze-drying process, the unloaded and CsA loaded Softisan® 649/Tween®

80-based SLN formed a gel-like matrix. The morphology of freeze-dried samples was not checked,
yet the observed nanoparticle structure in the freshly prepared samples may have changed. During the
freeze-drying process, the water was removed, and given the composition of the Softisan® 649/Tween®

80 nanoparticles, an oleogel was formed. Since oleogels have also been considered to be a good base
for transdermal formulations [53], the freeze-dried Softisan® 649/Tween® 80 nanoformulations were
assessed for skin application (Figure 3B), and thus rheological properties were evaluated. The flow
curves describing the measurement of shear stress (Pa) with increasing shear rate (s−1) are shown
in Figure 7. Unloaded and CsA-loaded nanoformulations presented shear thinning behavior: shear
stress increases (Figure 7) and shear viscosity decreases with increasing shear rate (data not shown).
Pseudoplasticity is important for topical systems, because with increasing shear stress the material will
flow better through skin, providing a good skin penetration of the active substances. The presence of
CsA in the Softisan® 649 oleogel does not seem to affect its thixotropic properties, due to the similarity
in terms of shear stress and viscosity responses.

Figure 7. Flow curves for unloaded (black dots) and CsA-loaded nanoformulation (grey squares)
regarding shear stress.

3.7. In Vitro CsA Skin Permeation Studies

To evaluate the permeation of CsA through the skin, the Franz cell diffusion assay was applied.
Pig ear skin was chosen as model barrier due to its similarity with human skin in terms of morphology
and function [54,55]. Since the permeation detection was needed, HEPES buffer (pH 7.4) with
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10% ethanol was used to mimic physiological conditions in the basolateral compartment, without
compromising CsA solubility. Figure 8 shows the obtained results for the 6 h experiment on skin
permeation analysis.

Figure 8. Permeation extent through pig ear skin of free CsA (black circles), CsA-loaded SLN
(open squares) and freeze-dried CsA-loaded nanoformulation (open triangles) under skin conditions.
Data expressed as mean ± standard deviation of n = 4 replicates for each tested condition. * P < 0.05;
** P < 0.01; **** P < 0.0001.

The results reveal an increase in the permeation of CsA upon incorporation in the nanoparticles
and a reduced permeation of drug within the oleogel in comparison to the percentage of permeated free
drug. The CsA present in the oleogel form of the nanoparticles exhibits constant permeation after the
first hour of assay. By the end of 6 h of assay, only 15% of CsA permeated through pig ear skin from the
freeze-dried nanoformulations in contrast to the ca. 80% permeation observed with the free CsA. On the
other hand, the CsA-loaded nanoparticles present a fast diffusion through the skin and immediate
effect, suggesting that Softisan® 649 might act as a penetration enhancer compound to be applied
in order to overcome the high molecular weight and lipophilicity of CsA in skin delivery. The main
drawback of this permeation profile is the CsA amount, which could reach systemic distribution with
the inherent side effects of the compound. Due to the enhanced skin penetration of the chosen lipid
when it is in liquid form, CsA-SLN are transported across the full skin, showing a statistically higher
permeation than free CsA after 4 h of assay. However, when the CsA-loaded nanoformulations are
freeze-dried, the particle acquires an occlusive function, which enables skin penetration, maintaining a
local effect. This suggests that freeze-dried Softisan® 649/Tween® 80 nanoformulations might result in
a local release profile, limiting the amount of CsA that reaches physiological media, and consequently
lowers the undesired systemic side effects of the drug, as shown in previous studies [56].

CsA deposition after 6 h from the freeze-dried Softisan® 649/Tween® 80 nanoformulations
exceeded 1.0 mg/cm2. This outcome surpasses other literature reports of CsA loaded in nanoparticles
for skin delivery using porcine skin [24,33,57,58], most probably given the high CsA content in the
freeze-dried nanoformulation (6.6%), and the presence, in the receptor medium, of ethanol to assure
skin conditions. The latter may have increased skin permeability by diffusing into the tissue from the
dermis, as evidenced by the presence of ca. 15% CsA in the receiver compartment after 6 h. Other
effects contributing to this increase in penetration may occur, such as increased diffusive flux into the
skin of the oleogel compared to the nanoparticles. Skin delivery of CsA from a monoolein/propylene
glycol formulation was around 100 µg/cm2. In another study, nano-dispersions of monoolein/ oleic
acid containing 0.6% (w/w) of CsA lead to 61 µg/cm2 deposition after 12 h application [24]. Micelles
of MPEG-dihexPLA delivered supra-therapeutic amounts of CsA to porcine skin (1.1 ± 0.5 µg/cm2)
after 1 h of contact [33]. Protamine-based nanosystems deposited ca 100 µg/cm2 of CsA upon 24 h
of application in 2–3-day-old pigs [57]. Higher deposition values of CsA in the skin (ca. 450 µg/cm2)
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were reported for amorphous nanoparticles loaded with 5% of drug [58] corresponding to almost half
of the achieved amount delivered with freeze-dried Softisan® 649/Tween® 80 nanoformulations.

In conclusion, the freeze-dried Softisan® 649/Tween® 80 nanoformulation appears to be a better
delivery system for CsA than other nanoparticle-based system reported in literature. It allows delivery
and retention of CsA in the skin, avoiding its transdermal permeation and potential systemic exposure
to the drug in vivo. Nevertheless, a validation in diseased human skin is necessary, as the barrier
function in severe inflammatory skin diseases can be highly modified. Softisan® 649/Tween® 80
nanoformulation has the advantage of being a repurposing of a safe cosmetic ingredient into an
innovative formulation in drug delivery, with good biocompatibility and skin deposition of the
loaded drug.

4. Conclusions

In this work, Softisan® 649/Tween® 80-based nanoformulations loaded with CsA are proposed
as a solution to allow the penetration of CsA into the skin barrier. To the best of our knowledge,
Softisan® 649 has not been reported in the production of CsA nanoparticles, despite being a very
well-known cosmetic ingredient with several topical applications. The characteristics of this lipid
are very interesting with the objective of topical administration of CsA, acting as an enhancer for the
penetration of drugs already used in the clinic, but which reveal problems related to high molecular
weight or high lipophilicity, such as CsA.

The nanoparticles were successfully produced and characterized, presenting suitable size for
topical delivery, low polydispersity index values and negative surface charges with incorporation
of CsA in the nanoparticle structure reaching about 7% of drug loading capacity. Given that 88% of
CsA was successfully entrapped into the designed SLN, it was possible to increase the drug aqueous
solubility by 157-fold, when considering the experimental value of 0.012 mg mL−1 [59]. Biocompatibility
studies revealed safe usable concentrations up to 0.6 mg mL−1 of CsA, equivalent to 6 mg mL−1 in lipid.
Freeze-drying process of the CsA-loaded SLN resulted in an oleogel with pseudoplastic behaviors.
Due to the disclosed in vitro controlled permeation profile of freeze-dried CsA-loaded nanoformulation
and considering their rheological properties, it is possible to consider this new vehicle for topical
administration of CsA, avoiding its systemic side effects. This delivery system presents an advantage
over conventional SLN of direct application to the skin, avoiding the mandatory incorporation of
colloidal nanoparticles in a vehicle (gel, ointment, cream). We believe that the incorporation of CsA
into the SLN based on Softisan® 649 and Tween® 80 associated with the freeze-drying process may
bring new strategies for the topical administration of CsA in the management of severe skin diseases.
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