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1. Summary
ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) is

localized in the nucleus, where it ADP-ribosylates specific target proteins.

The post-translational modification (PTM) with a single ADP-ribose unit or

with polymeric ADP-ribose (PAR) chains regulates protein function as well

as protein–protein interactions and is implicated in many biological proces-

ses and diseases. SET7/9 (Setd7, KMT7) is a protein methyltransferase that

catalyses lysine monomethylation of histones, but also methylates many non-

histone target proteins such as p53 or DNMT1. Here, we identify ARTD1 as

a new SET7/9 target protein that is methylated at K508 in vitro and in vivo.

ARTD1 auto-modification inhibits its methylation by SET7/9, while auto-

poly-ADP-ribosylation is not impaired by prior methylation of ARTD1.

Moreover, ARTD1 methylation by SET7/9 enhances the synthesis of PAR upon

oxidative stress in vivo. Furthermore, laser irradiation-induced PAR formation

and ARTD1 recruitment to sites of DNA damage in a SET7/9-dependent

manner. Together, these results reveal a novel mechanism for the regulation

of cellular ARTD1 activity by SET7/9 to assure efficient PAR formation upon

cellular stress.
2. Background
ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly named

PARP1, [1]) is a nuclear protein that post-translationally modifies proteins by

transferring the ADP-ribose moiety from NADþ to specific amino acid residues

of target proteins. It is the best described member of the ADP-ribosyltransferase

(ART) protein family, which currently comprises 22 human enzymes [1].

ARTD1 is not only the main nuclear ART, but also the primary acceptor for

polymeric ADP-ribose (PAR). ARTD1 can be ADP-ribosylated at specific

lysine residues and is also modified by acetylation and sumoylation bet-

ween the amino acid residues 481 and 525 [2–4]. Protein modification with a

single ADP-ribose unit or with PAR chains regulates protein function and is

implicated in biological processes such as transcriptional control, cell differen-

tiation or cell-cycle regulation [5,6]. Many cellular functions of ARTD1 are
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brought about by complex formation with partner proteins

or the ADP-ribosylation of target proteins in the cell nucleus

[5,7]. For example, histones or transcription factors are poly-

ADP-ribosylated (PARylated) by ARTD1, which causes

concomitant changes in chromatin structure and DNA

metabolism [8,9].

Genotoxic and cellular stresses activate ARTD1 enzyme

activity [10]. However, the detailed upstream mechanisms

leading to the activation of ARTD1 and the involvement

of PTMs-modulating ARTD1 activity are little understood.

In vitro, the DNA-dependent interaction between the

amino-terminal DNA-binding domain and the catalytic

domain of ARTD1 increased Vmax and decreased the Km
for NADþ [4]. The amount of DNA in this study was kept

at a saturating 1 : 1 ratio (DNA : ARTD1 dimer). It is currently

not clear whether ARTD1 activity and the subsequent PAR

formation under non-saturating DNA levels depend on

additional regulatory mechanisms.

SET7/9 (also called Setd7 or KMT7) was discovered as a

histone methyltransferase that causes monomethylation of

histone 3 lysine 4 (H3K4me1) [11] and is thereby involved

in the regulation of euchromatic gene expression [12–14].

However, SET7/9 has only weak activity on nucleosomes

[15], which implies that the main targets of the enzyme are

non-histone proteins. In agreement with this hypothesis,

numerous non-histone proteins such as Dnmt1 (reduction

in stability), p53 (activation and stabilization), TAF10

(increased affinity for polymerase II), oestrogen receptor a

(activation and stabilization), pRb, p65, MyoD and Tat

protein of HIV1 are methylated by SET7/9 [16–24]. In

addition, a recent study identified up to 90 new non-histone

SET7/9 target peptides and a strong methylation of free H2A

and H2B tails [25]. This promiscuous targeting of different

substrates by SET7/9 suggests a low specificity of the

enzyme. SET7/9 knockout mice are viable and fertile and

loss of SET7/9 does not seem to impair p53-dependent cell-

cycle arrest or apoptosis following DNA damage [26,27],

although SET7/9 was originally thought to regulate p53

activity in human cells [16]. SET7/9 preferentially modifies

positively charged amino acid regions and methylates the

last lysine residue in the motif [K.R] [S.KYARTPN] [K]

[25]. Peptides that do not perfectly match this sequence can

be methylated to a lesser extent. In cells, a strong interaction

of acceptor proteins with the SET7/9 methyltransferase

might stimulate the transfer of a methyl group to weak

target sites. Hence, a weaker methylation does not have to

imply a lower biological importance [25].

SET7/9-mediated monomethylation of non-histone proteins

is a reversible PTM that can be removed by demethyl-

ases such as the lysine-specific demethylase 1 (LSD1) [28,29]

and likely also by the close homologue LSD2. Both proteins

are flavin-dependent demethylases that are specific for

mono- and dimethylated lysines and which are part of

histone modification complexes that control cell-specific gene

expression [30,31].

The study presented here identifies ARTD1 as a new

SET7/9 target protein that is methylated at K508, which

enhances PAR synthesis upon oxidative stress. Similarly,

SET7/9 also affected PAR synthesis and ARTD1 recruitment

to sites of DNA damage in vivo upon laser irradiation. These

results define methylation of ARTD1 by SET7/9 as an

additional regulatory element for cellular ADP-ribosylation

and ARTD1 enzymatic activity.
3. Results and discussion
3.1. ARTD1 is methylated in vitro and in vivo at K508

by SET7/9
Based on methylation profile searches and preliminary

experiments, it was hypothesized that SET7/9 directly methyl-

ates ARTD1. To determine whether SET7/9 indeed modifies

ARTD1, biochemical in vitro methylation assays with purified

proteins were performed. SET7/9 methylated the known

substrate histone H3 as well as full-length ARTD1, while neither

GST nor ARTD2, another member of the ARTD family,

was modified (figure 1a). To localize the modification site, pur-

ified ARTD1 fragments covering the whole amino acid sequence

were methylated by SET7/9 in vitro (figure 1b). The potential

SET7/9 modification site(s) in ARTD1 could be narrowed

down to the auto-modification domain (AD) consisting of

amino acids 373–524, which was strongly methylated in vitro,

while all other tested ARTD1 fragments (containing the DNA-

binding (DBD), WGR or catalytic (CAT) domains) were not

methylated (figure 1b). In silico analysis identified lysine 508

(K508) as the putative target site as it was the only lysine residue

within this region matching the published [KR] [STA] [K(me)]

consensus motif for SET7/9-dependent methylation [18].

Mutation of K508 to arginine (K508R) indeed abolished SET7/9-

dependent methylation of full-length ARTD1 (figure 1c).

ARTD1 K508 was confirmed as the target residue of SET7/9 by

mass spectrometric analysis of recombinant ARTD1 (373–524)

in vitro methylated by SET7/9 (see electronic supplementary

material, figure S1a,b). To confirm methylation of ARTD1 K508

in cells, a polyclonal antibody against a synthetic human

ARTD1 peptide containing monomethylated K508 was genera-

ted. The anti-meARTD1 antibody specifically recognized the

monomethylated peptide (see electronic supplementary mate-

rial, figure S1c) and full-length ARTD1 that was methylated

by SET7/9 in vitro (see electronic supplementary material,

figure S1d), while the methylation-deficient K508R mutant was

not detected (figure 1d). In vivo, the same antibody specifically

detected the methylation of ARTD1 in cells overexpressing

SET7/9 (figure 1e,f ). The antibody did not detect methylation

of overexpressed mouse ARTD1 in mouse cells, which was

most probably owing to sequence differences between human

and mouse ARTD1 at the methylation site.

These results defined ARTD1 as a new target for SET7/9-

dependent methylation in vitro and in vivo and identi-

fied K508 as the main target site for SET7/9-dependent

methylation of ARTD1.

3.2. ARTD1 auto-modification inhibits its methylation
by SET7/9

Interestingly, the SET7/9 target residue K508 lies within a heav-

ily modified region (aa 486–524) of the ARTD1 AD domain that

comprises five acetylation and three ADP-ribosylation sites as

well as one lysine residue that can be sumoylated (see electronic

supplementary material, figure S2). Modification of ARTD1

with SUMO did not affect its ADP-ribosylation activity, but

completely abrogated p300-mediated acetylation of ARTD1,

revealing an intriguing crosstalk of sumoylation and acetylation

on ARTD1 [2]. Crosstalk between different PTMs of the same

modified amino acid residue has been documented in particular

for modifications comprising the histone code [32–34]. It was
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Figure 1. ARTD1 is methylated at K508 by SET7/9 in vitro and in vivo. (a) GST, ARTD1, ARTD2 and H3 were incubated with SET7/9 and 14C-labelled SAM in an in
vitro methylation assay, separated by SDS-PAGE and analysed by autoradiography (14C). Coomassie blue (CB) stained gels are shown below. (b) Full-length
ARTD1 and fragments covering the whole protein were incubated in an in vitro methylation assay and analysed by autoradiography. (c) Decreasing amounts
of WT ARTD1 and K508R ARTD1 were methylated by SET7/9 and analysed by autoradiography. (d ) An antibody directed against a peptide carrying the methylated
lysine residue of ARTD1 was generated and tested in a western blot with in vitro methylated ARTD1 WT and K508R. (e) U2OS cells were transfected with scrambled
siRNA (scr) or siRNA directed against ARTD1. One day later, cells were transfected with an empty vector or with a plasmid containing WT SET7/9. Whole cell extracts
were analysed by western blot on day 3 after knockdown using the same antibody as in (d ). ( f ) U2OS cells were co-transfected with HA-ARTD1 (WT or K508R) and
EGFP or Flag-HA-SET7/9 (WT or H297A). After immunoprecipitation with an anti-HA antibody, whole cell extracts and IP samples were analysed by western blotting
with the indicated antibodies. All experiments were repeated at least twice, gave a similar result, and one representative blot is shown.
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thus tested whether there is crosstalk between PARylation, acety-

lation and SET7/9-dependent methylation of ARTD1 in vitro.

Prior stimulation of recombinant ARTD1 with DNA in the pres-

ence of NADþ and subsequent auto-modification completely

inhibited methylation by SET7/9 (figure 2a). Inhibition of

ADP-ribosylation by 3-aminobenzamide from the beginning

(3-AB; þ) reverted this effect on ARTD1 methylation, while

3-AB addition after auto-modification, but before addition of

SET7/9 (3-AB; +), still resulted in markedly decreased methyl-

ation (figure 2a). Consequently, these experiments suggested

that auto-ADP-ribosylation of ARTD1, but not a possible ADP-

ribosylation of SET7/9 by ARTD1, prevented subsequent

methylation. The sharp band of methylated ARTD1 running at

the height of unmodified ARTD1 strengthened the conclusion

that SET7/9 only methylated ARTD1 that was not or only

slightly ADP-ribosylated.

By contrast, auto-PARylation of ARTD1 was not impaired

by prior methylation of ARTD1 as indicated by the smear of
methylated ARTD1 upon incubation with cold NADþ and

DNA (figure 2b). Similarly, methylation of the 373–524

ARTD1 fragment by SET7/9 did not affect subsequent acety-

lation by p300 (figure 2c(i)). The experiment was controlled

with the enzymatically inactive H297A SET7/9 mutant and

methylation of ARTD1 was confirmed in a parallel experiment

using 14C-SAM (figure 2c(ii)).

These results suggested that SET7/9-dependent methyl-

ation of ARTD1 is influenced by ARTD1 auto-modification,

while neither PARylation itself nor acetylation by p300 is

impaired by the methyl-modification of K508.
3.3. SET7/9-dependent methylation stimulates
ARTD1 activity

In order to test the hypothesis that SET7/9 regulates the

enzymatic activity of ARTD1 in vivo, we first confirmed
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that both enzymes are localized in the nucleus of U2OS cells.

While ARTD1 was only present in the nucleus and enriched

in the nucleoli, SET7/9 was localized throughout the cell

except in the nucleoli (see electronic supplementary material,

figure S3a). Next, Flag-tagged wild-type (WT) SET7/9

was overexpressed and PAR formation following oxidative

stress by H2O2 was determined (see figure 3a and electronic sup-

plementary material, figure S3b). PAR formation was indeed

increased upon overexpression of WT SET7/9 (lanes 2 and 5),

even in unstimulated cells (lane 2), while the enzymatically inac-

tive SET7/9 mutant H297A did not cause this effect (lanes 3

and 6). To prove that SET7/9 stimulated PAR formation, we

analysed mouse fibroblasts lacking SET7/9. Upon H2O2 stimu-

lation, SET7/9-knockout MEFs showed significantly reduced

PAR staining and lower PAR-synthesizing activity as compared

with the WT control cells (see figure 3b,c and electronic sup-

plementary material, figure S3c), suggesting that SET7/9

regulates PAR formation in vivo. This was also confirmed by

SET7/9 knockdown in U2OS cells (see electronic supplementary

material, figure S4a,b). Following oxidative stress by H2O2,

siSET7/9-treated cells formed less PAR than cells transfected

with a control siRNA (see figure 3d and electronic supplemen-

tary material, figure S4c). To further analyse the influence of

SET7/9 on ARTD1 enzymatic activity in cells, nuclear extracts

(NEs) from siRNA-treated U2OS cells (control siRNA or

siRNA directed against SET7/9 or ARTD1) were prepared and

auto-ADP-ribosylation of ARTD1 was tested in vitro in the

presence or absence of exogenous DNA. Downregulation of
SET7/9 reduced the basal ARTD1 activity to levels only

slightly above those in siARTD1 cells (in the absence of

exogenous DNA, figure 3e; electronic supplementary material,

figure S4d). This effect was also seen, but to a lesser extent,

when ARTD1 activity was stimulated by an excess of exogen-

ous DNA, suggesting that SET7/9 methylation regulates

ARTD1, especially in the absence of a strong stimulus.

These results suggested that SET7/9-dependent methylation

stimulates ARTD1-dependent PAR formation in U2OS cells.
3.4. SET7/9-dependent methylation of ARTD1 at
K508 regulates ADP-ribosylation in vivo

To elucidate whether SET7/9-dependent methylation of

ARTD1 at K508 is directly responsible for the observed influence

of SET7/9 on ARTD1-dependent PAR formation in vivo,

ARTD12/2 MLFs were stably genetically complemented with

WT ARTD1 or with two methylation-deficient mutants (K508A

and K508R). The WT and the mutant proteins were comparably

expressed in the NEs, but not detectable in the cytoplasmic

extracts (CEs) or the vector control (pRRL) (figure 4a). NEs con-

taining WT or mutant ARTD1 were incubated with radioactively

labelled NADþ, but without exogenous DNA, and ARTD1 auto-

ADP-ribosylation was assessed. The methylation-deficient

ARTD1 mutants K508A and K508R exhibited markedly reduced

activity in comparison with the WT control (see figure 4b and

electronic supplementary material, figure S5a). Upon addition
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of excess DNA, the methylation-deficient ARTD1 proteins

K508A and K508R still exhibited reduced enzymatic activity,

but the effect was less pronounced as compared with conditions

without exogenous DNA (see figure 4b and electronic sup-

plementary material, figure S5b), again pointing at a SET7/9

methylation effect on ARTD1 activation.

This indicated that the methylation-deficient ARTD1

mutants (K508A and K508R) are enzymatically less active

and provided further evidence that SET7/9-dependent

methylation of ARTD1 at K508 affects its activity.
3.5. Mutation of K508 affects ARTD1 recruitment
to damaged chromatin

The results described above suggested that SET7/9-dependent

methylation of ARTD1 at K508 regulates its enzymatic activity

at basal conditions of low levels of DNA damage and in
response to oxidative stress (figures 1c and 4b). We hypoth-

esized that SET7/9-dependent methylation may influence

ARTD1 activity by affecting its interaction with chromatin,

but SET7/9 downregulation had no effect on the extraction

of ARTD1 under different salt concentrations (see electronic

supplementary material, figure S5c), suggesting that the affi-

nity of ARTD1 to undamaged chromatin was not changed.

However, methylation by SET7/9 may prime ARTD1 for effi-

cient recruitment to sites of DNA damage. In order to study

whether ARTD1 methylation affects its recruitment to sites of

DNA damage in vivo, cells expressing EGFP-tagged WT and

methylation-deficient ARTD1 were analysed by localized fem-

tosecond laser irradiation [35]. This method allows studying the

kinetics of the recruitment of proteins to sites of DNA damage.

The nature of the lesion can be influenced via the irradiation

wavelength: at 775 nm, both DNA strand breaks and UV photo-

products are generated, while at 1050 nm mainly DNA strand

breaks are produced [35]. Irradiation with a wavelength of
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1050 nm caused similar recruitment of WT and K508R ARTD1

(figure 4c) and the release of WT and K508R ARTD1 from

the irradiated sites was comparable (data not shown), suggest-

ing that methylation did not affect recruitment to sites of

DNA damage. However, laser microirradiation of live cells

[36] caused significantly lower recruitment of GFP-labelled

macroH2A1.1 in siSET7/9 cells as compared with WT

(figure 4d), which is indicative of reduced PAR synthesis or

different ADP-ribose structures. In contrast to irradiation with

1050 nm, femtosecond pulses at l ¼ 775 nm caused lower

recruitment of the K508R ARTD1 mutant (figure 4e). It is thus

possible that SET7/9 differentially affects ARTD1 stimulation

depending on the stress level and type of induced DNA

damage. In summary, these findings show that SET7/9-depen-

dent methylation stimulates ARTD1 enzymatic activity in

response to both oxidative and DNA stress.
4. Conclusion
The results presented here suggest that SET7/9 methylates

ARTD1 in vivo and in vitro at lysine K508. The residue K508

was identified as the target site for SET7/9-dependent

methylation by site-directed mutagenesis and mass spec-

trometry, as well as with a specific polyclonal antibody

raised against this methylated site. Methylation of ARTD1

by SET7/9 did not prevent its consecutive ADP-ribosylation,

but affected ARTD1 recruitment to sites of local DNA

damage in vivo. Prior auto-ADP-ribosylation of ARTD1

impaired its methylation by SET7/9. Knockdown of SET7/9

or the expression of methylation-deficient ARTD1 in cells
lacking WT ARTD1 caused reduced PAR formation in vitro
and in vivo. Moreover, overexpression of SET7/9, but not of

its enzymatically inactive mutant enhanced PAR formation

in untreated (basal) and H2O2-treated cells. These findings

identify ARTD1 as a new SET7/9 methylation target and

reveal a previously unknown mechanism for the regulation

of ARTD1 activity in cells.

The stimulatory effect of ARTD1 methylation on PAR for-

mation was most apparent if no exogenous DNA was added

to the reactions that were performed with NEs of SET7/9

knockdown cells or of cells genetically complemented with

a methylation-deficient ARTD1 mutant (the NEs may contain

low amounts of endogenous DNA). The effect was much

weaker under conditions of saturating DNA concentrations

(DNA : ARTD1 dimer ratio greater than 1). Methylation by

SET7/9 may thus represent a priming step that precedes

and facilitates the activation of ARTD1 by DNA or comprises

a DNA damage independent ARTD1 co-regulatory mechan-

ism. We have already provided evidence that DNA double

strand breaks are recognized and bound by the DBD of

ARTD1, which subsequently leads to binding to the CAT

domain, induces structural changes within the catalytic

cleft, increases the affinity for NADþ and stabilizes reaction

intermediates [4]. The identified SET7/9-dependent methyl-

ation site at K508 of ARTD1 lies within the central AD [4].

It is at the first glance surprising that ARTD1 is methylated

in the AD and not in one of the zinc fingers of the DNA-bind-

ing domain or in the catalytic domain of ARTD1, but

nevertheless affected in its enzymatic activity. However, the

AD harbours the ADP-ribose acceptor sites indicating that

this domain has to enter the catalytic cleft of ARTD1 to be
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subsequently modified. SET7/9-dependent methylation may

sensitize ARTD1 for auto-modification by stabilizing the AD

in the catalytic domain of ARTD1 under non-genotoxic con-

ditions or in the presence of minimal DNA damage (fewer

DNA lesions compared with ARTD1 molecules). Alterna-

tively, methylation might induce structural changes, which

affect the binding of the DBD to the CAT, and thus sensitize

the enzyme for a special type of DNA damage (see below).

Likewise, methylated ARTD1 could exhibit higher affinity

for its substrate NADþ, and therefore show increased cataly-

tic activity. Based on this hypothesis, methylation of ARTD1

at K508 by SET7/9 serves as a sensitization step that assures

basal ARTD1 stimulation to assure PAR formation upon oxi-

dative stress. The fact that we observed a similar effect of

SET7/9 on the irradiation-induced PAR formation does not

necessarily imply a similar regulatory mechanism. However,

in order to compare such regulatory mechanisms and

to study ARTD1 stimulation by SET7/9 mechanistically,

structural analyses would be required.

The AD represents a PTM hotspot that is also modified by

ADP-ribosylation, acetylation and sumoylation [2–4]. Inter-

estingly, prior auto-modification of recombinant ARTD1

inhibited subsequent methylation by SET7/9 most probably

through steric hindrance (figure 2a), which is in agreement

with earlier studies providing evidence that the adjacent

lysines 498, 521 and 524 are the acceptor sides for ADP-

ribose [4]. Similarly, a synthetic ARTD1 peptide acetylated

at K508 could not be methylated by SET7/9 (see electronic

supplementary material, figure S5d ). However, the SET7/9-

mediated methylation of ARTD1 did not inhibit its auto-

ADP-ribosylation, indicating that the methylation would not

interfere with the positioning of this domain into the catalytic

domain. The functional relevance of this crosstalk needs to

be further defined. It is intriguing to speculate that ARTD1

auto-modification would hamper K508 methylation to avoid

an additional enhancement of its activity through this modi-

fication. Moreover, this could explain the inefficiency of

SET7/9-dependent methylation to further activate already

stimulated ARTD1 and hints again at a sensitization function

of SET7/9 for ARTD1 under non-stimulatory conditions.

The presence of SET7/9 had no influence on the overall

affinity of ARTD1 for (undamaged) chromatin in vivo. By

contrast, different recruitment of WT and K508R ARTD1 to

sites of local damage in the nucleus was observed. Interest-

ingly, WT and K508R ARTD1 showed similar recruitment

to DNA lesions induced with a wavelength of 1050 nm,

while a clear reduction was observed for the mutant after

treatment with laser pulses at 775 nm (figure 4c,e). This

effect was likely owing to the UV photoproducts generated

at 775 nm or to other differences in the types of lesion

induced by 775 nm versus 1050 nm irradiation. The latter

wavelength mainly induces DNA strand breaks but achieves

a lower overall level of damage than 775 nm at the irradiation

conditions used here [35]. Alternatively, a higher affinity for a

certain type of lesion or chromatin alteration (qualitative

difference) of the methylated ARTD1 protein, as compared

with the unmethylated or the non-methylatable mutant,

could also contribute to this behaviour.

The methylation of ARTD1 in vivo is very difficult to

detect. This indicates either low endogenous levels of

ARTD1 K508 methylation or further di- and trimethylation

at this residue by other methyl transferases. Here, SET7/9

strongly affected ARTD1 activity in the presence of low
amounts of DNA and upon stimulation by H2O2, although

we do not know whether this was due to oxidative damage

of the DNA. ARTD1 and its enzymatic activity are also impor-

tant for chromatin compaction [7,37]. An increased ARTD1

activity might lead to a more open chromatin, allowing

subsequent histone modifications (epigenetic events) chang-

ing the chromatin status and structure. Furthermore, our

studies provide evidence for the involvement of SET7/9 in

the oxidative stress response of the cell. Whether SET7/9 is

similarly required for the response to other signals (e.g.

N-methyl-N0-nitro-N-nitrosoguanidine or phorbol 12-myristate

13-acetate) remains to be investigated. The fact that SET7/9 is

not required for cell-cycle arrest or p53 stabilization in mice

suggests that the methylation-dependent stimulation of PAR

formation is not required for these aspects but serves for

other, yet to be identified, signalling pathways. Most impor-

tantly, the results presented here may indicate DNA-damage

independent induction of ARTD1 activity in vivo and suggest

that ARTD1 methylation stimulates ADP-ribosylation in

response to other cellular stresses that do not necessarily

involve DNA damage [5].
5. Material and methods
5.1. Plasmids and protein expression
pGEX-SET7/9 (52–366) and pcDNA3-SET7/9 (full-length/WT

and H297A) were kindly provided by D. Reinberg (Howard

Hughes Medical Institute, NYU School of Medicine,

New York, NY, USA). pcDNA4-Flag-HA-SET7/9 was created

by subcloning SET7/9 into pcDNA4. pCMV-HA-PARP1 and

pRRL-vectors as described previously [2]. All point mutations

were inserted by site-directed mutagenesis. The construct encod-

ing macroH2A-EGFP was kindly provided by A. Ladurner

(Department of Physiological Chemistry, Ludwig-Maximilians

Universität (LMU) Munich, Munich, Germany).

The baculovirus expression vector BacPak8 (Clontech,

Mountain View, CA, USA) was used for the expression of recom-

binant proteins in Sf21 insect cells, as described previously [38].

Recombinant GST-tagged proteins were expressed in Escherichia
coli. All recombinant proteins were purified by a one-step

affinity chromatography using ProBond resin (Invitrogen, Zug,

Switzerland) for His-tagged and glutathione sepharose (GE

Healthcare, Zurich, Switzerland) for GST-tagged proteins,

according to the manufacturer’s recommendations.
5.2. Antibodies and siRNAs
The following antibodies were used for immunoblotting:

rabbit PARP-1 (H-250, Santa Cruz, Heidelberg, Germany);

rabbit poly(ADP-ribose) (LP96–10, BD Biosciences, Allschwil,

Switzerland); rabbit SET7/9 (no. 2815, Cell Signalling); mouse

Flag (M2, Sigma-Aldrich, Buchs, Switzerland); mouse tubulin

(T6199, Sigma); rabbit PARP (mono methyl K508) (ab92986)

was generated in collaboration with Abcam (Cambridge, UK)

using a synthetic ARTD1 peptide containing the methylated

lysine residue (LSKKSK(me1)GQVKE).

The following FlexiTube siRNAs (QIAGEN, Hombrechti-

kon, Switzerland) were used in RNAi experiments: AllStars

Negative Control, Hs_SET7_3 and Hs_PARP1_6.
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5.3. Tissue culture and transfections
U2OS cells were cultured in Dulbecco’s modified eagle

medium (PAA Laboratories, Pasching, Austria) supplemented

with 10% FCS and penicillin/streptomycin. MLFs were cul-

tured in the same medium supplemented in addition with

non-essential amino acids (Gibco/Invitrogen). The SET7/9

knockout MEFs were obtained from Colby Zaph and were pre-

viously described [26]. Transfections with the indicated

plasmids were performed with TransIT-LT1 (Mirus Bio, Madi-

son, WI, USA) according to the manufacturer’s instructions

and cells were harvested after 48 h. Knockdown was achieved

by reverse transfection of 16 nM siRNA using RNAiMAX

(Invitrogen) according to the manufacturer’s protocol. Cells

were harvested after 3 days. Cells were treated with 1 mM

H2O2 in PBS containing 1 mM MgCl2 for 10 min and with

0.5 mM Adr in normal medium.

Complementation of ARTD1 knockout MLFs was

achieved by retroviral transduction with pRRL-myc-PARP1

vectors containing a blasticidine resistance marker or the

corresponding empty vector. Generation of viruses and

transduction of cells were done as described earlier [39].

5.4. In vitro methylation assays
A 1 mg substrate protein was incubated with 1 mg bacterially

purified GST-SET7/9 in the presence of 0.03 mCi [14C]-SAM

(PerkinElmer) or 0.8 mM cold SAM (Sigma-Aldrich) in

methylation buffer (50 mM Tris–HCl pH8.0, 50 mM NaCl,

10% glycerol, 1 mM PMSF and 1 mM DTT) or PAR buffer

(see section below) for 1 h at 308C. Reactions were stopped

by boiling in 10� SDS-loading buffer and separated by

SDS-PAGE. Gels were stained with Coomassie blue, incuba-

ted in 1 M sodium salicylate for 20 min, dried and exposed

on X-ray films at 2808C. For mass spectrometric analysis,

ARTD1 fragment 373–524 was methylated as described

above, separated by SDS-PAGE, excised from the gel and

digested with Glu-C. Peptides were analysed by MALDI-MS.

5.5. Sequential in vitro modification assays
Sequential ADP-ribosylation and methylation assays were

performed in PAR buffer (50 mM Tris–HCl, 4 mM MgCl2,

250 mM DTT, 1 mg ml21 pepstatin, 1 mg ml21 bestatin and

1 mg ml21 leupeptin). A 10 pmol recombinant ARTD1 was

methylated with 1 mg recombinant GST-SET7/9 as described

above. The ADP-ribosylation was then started by addition

of 5 pmol-activating DNA and 400 mM cold NADþ (Sigma,

after methylation with [14C]-SAM) or 100 mM NADþ spiked

with [32P]-NADþ (Perkin Elmer, after methylation with

cold SAM). ADP-ribosylation reactions were incubated for

5 min at 308C, stopped by addition of 10� SDS-loading

buffer and proteins were separated by SDS-PAGE. Hot

methylation/ADP-ribosylation was assayed by autoradio-

graphy of the Coomassie stained, dried gels, whereas cold

modifications were controlled by immunoblotting with the

indicated antibodies.

In the reverse experiment, 10 pmol ARTD1 was first incu-

bated with activating DNA and 100 mM NADþ for 5 min on

ice. 3-AB (Sigma-Aldrich) was added in a concentration of

8 mM to stop the ADP-ribosylation before the methylation

was started by addition of 1 mg SET7/9 and [14C]-SAM.
The activating DNA used in all assays was an annealed

double-stranded oligomer (50-GGAATTCC-30). For sequential

methylation/acetylation, 1 mg ARTD1 fragment (373–524)

was methylated as described above. Acetylation was then

started by addition of 20 ml HAT reaction mix (50 mM

Tris–HCl pH 8.0, 50 mM NaCl, 10% glycerol, 1 mM DTT,

1 mM sodium butyrate, 1 mM PMSF, 0.5 mg p300 and

75 mM [14C]-AcCoA) and allowed to proceed for 1 h at 308C.

5.6. Cellular extracts and ARTD1 activity assays
Whole cell extracts were prepared in lysis buffer (50 mM

Tris–HCl pH7.5, 400 mM NaCl, 1%Triton and 25 mM

NaF), and chromatin fractions were prepared as described

elsewhere [40].

NEs from U2OS cells and complemented MLFs were

generated as described earlier [41,42]. Five microgram NEs

were incubated in 30 ml reaction buffer (50 mM Tris–HCl,

4 mM MgCl2, 1 mg ml21 pepstatin, 1 mg ml21 bestatin,

1 mg ml21 leupeptin and 250 nM [32P]-NADþ (0.1–0.2 mCi))

in the absence or presence of 5 pmol-activating DNA for

20 min at 308C. Proteins were separated by SDS-PAGE,

and ADP-ribosylation was analysed by autoradiography.

Quantifications were done using the software IMAGEQUANT.

Alternatively, ADP-ribosylation assays were performed

with cold NADþ and modification was assessed by western

blotting with anti-PAR antibody.

5.7. Induction of local DNA damage and imaging
set-up

Local DNA damage was induced by femtosecond laser

irradiation, and recruitment of fluorescently tagged proteins

was recorded as described previously using an LSM 5

Pascal confocal microscope [35,43]. Briefly, cells were

irradiated with femtosecond laser pulses through a 40� oil

immersion lens with a numerical aperture of 1.3 (EC-

Plan-Neo-Fluar, Carl Zeiss) along a 6 mm track within

the nucleus, followed by fluorescence imaging at 488 nm.

The maximum peak irradiance in the focal plane

was 330 GW cm22 (pulse duration 200 fs, repetition rate

40 MHz) for excitation at 775 nm and 1200 GW cm22 (pulse

duration 85 fs, repetition rate 107 MHz) at 1050 nm. Time

series of fluorescence images were quantified with IMAGEJ

(http://rsb.info.nih.gov/ij) as described [43,44].
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