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Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a
nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several
neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and
behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A
promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of
neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the
A
2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will

summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.

1. Microglial Cells Play Crucial Roles in
Neurodegenerative Diseases

The multitaskers microglial cells are active effectors and
regulators of homeostasis in the central nervous system
(CNS). Microglial cells constantly survey the surrounding
environment, and as primary resident immune cells in the
CNS, they respond to the presence of pathogens, stress,
or injury [1]. In fact, for decades, it was believed that in
homeostatic conditions microglial cells were in a nonreactive
resting state, which could be transformed into a reactive state
under pathological conditions. Nevertheless, the crucial role
of microglial cells in the noninjured CNS has become more
evident in recent years, and these cells not only are involved in
immune pathological response but are essential during CNS
development, participating in crucial processes such as in
synaptic pruning [2, 3] and synaptic plasticity [4, 5].Thus, the
so-called resting phenotype should also reflect an active state
and should be replaced by surveillance state [6].

Contrasting to the highly ramified organization presented
by microglia in the surveillance state, reactive microglial cells
are characterized by amoeboid morphology, which favours
phagocytosis [7, 8]. This shift to a more activated phenotype
results in increased release of proinflammatory and cytotoxic
factors, such as tumour necrosis factor (TNF), interleukin-
1𝛽 (IL-1𝛽), nitric oxide (NO), and reactive oxygen species
(ROS) [9], as well as in increased expression of surface
molecules related to the innate immune response, as major
histocompatibility complex (MHC) proteins and antigen-
presenting receptors [10].

When studying microglial cell reactivity in the context
of pathology, one major point is the dichotomy between
their contribution to neuroprotection and neurodegenera-
tion. Microglia activation and production of inflammatory
mediators are known to be a response to neuronal dysfunc-
tion anddeath to control the damage and to promote recovery
(reviewed in [11, 12]). Nevertheless, sustained reactivity of
microglial cells has a detrimental role and contributes to
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neurodegeneration, in which neuronal loss is accompanied
by increased neuroinflammatory conditions [13–16].

In the two last decades, significant advances have been
made in the understanding of the contribution of microglial
cells to CNS diseases. The activation of these cells is recog-
nized as a hallmark of a wide variety of neurodegenerative
diseases, such as Alzheimer’s disease (AD), Parkinson’s dis-
ease (PD), andmultiple sclerosis (MS), and in retinal diseases,
such glaucoma, diabetic retinopathy, and age-relatedmacular
degeneration (reviewed in [9, 17]). Hence, suppression of
microglial-associated deleterious effects has emerged as a
potential therapeutic strategy to prevent neurodegeneration
[18, 19].

2. The Modulation of the Adenosinergic
System for Therapeutic Intervention in
Neurodegenerative Diseases

Adenosine is a ubiquitously expressed purine nucleoside that
acts as a homeostatic factor and a crucial neuromodulator
in the CNS. In physiological conditions, the concentration
of adenosine in the extracellular fluids is low (30–300 nM),
but its levels increase to 10 𝜇M or higher during enhanced
nerve activity, hypoxia, ischemia, or CNS damage [20]. At
high concentrations, adenosine is able tomodulate the release
of excitotoxic mediators, limit calcium influx, hyperpolarize
neurons, and exert modulatory effects on glial cells [21].

Four types of G-coupled receptors coordinate cellular
responses to extracellular adenosine: the inhibitory A

1
and

A
3
receptors and the facilitatory A

2A and A
2B receptors [22].

These receptors are expressed on astrocytes, microglia, and
infiltrating immune cells and regulate the immune response
of these cells in the CNS [23–31]. The actions mediated by
adenosine in the immune cells may be towards neuronal pro-
tection, but adenosine may also promote proinflammatory
response, leading to neuronal damage (reviewed [32]).

In the last decades, the neuroprotective properties of
adenosine in the CNS have been extensively documented
[33–41].The neuromodulatory effects mediated by adenosine
rely on a balanced activation of the inhibitory A

1
receptor

(A
1
R) and excitatory A

2A receptor (A
2AR) [41]. A large body

of evidence points to a neuroprotective role of A
1
R activation,

but this receptor is prone to rapid desensitization, limiting
the time-lapse of action of possible neuroprotective therapies
[41].

Concerning A
2AR, there is an apparent paradox on the

rolemediated by this receptor in inflammation. In the periph-
ery, activation of A

2AR signaling suppresses inflammation
[42], attenuates pulmonary ischemic injury [43, 44], and
improves cardiac dysfunction [45]. In theCNS,A

2AR controls
the release of BDNF from activated microglia [46], and
its blockade prevents hippocampal LPS-induced neuroin-
flammation [47] and prevents IL-1𝛽-induced exacerbation
of neuronal toxicity [48]. Antagonists A

2AR prevent retinal
microglia reactivity, affording protection to retinal neuronal
cells [26, 27]. Importantly, blockade of A

2AR has been shown
to confer neuroprotection against a broad spectrum of CNS
insults [49, 50].

While in the periphery, the activation of A
2AR halts a

rapid immune response (acute), in the CNS the activation
of A
2AR aggravates the inflammatory response (chronic

conditions) (reviewed in [51]). This dual role of A
2AR might

reflect the complexity of actions in distinct cell types present
in the CNS, which may lead to distinct effects upon CNS
injury [41, 52]. The mechanisms by which the blockade
of A
2AR is able to impact neuroprotection remains to be

clarified, but two leading hypotheses have been explored:
the control of glutamate excitotoxicity and the control of
microglia-mediated neuroinflammation [40, 41].

The blockade of A
2AR has emerged as a potential thera-

peutic strategy, based on its ability to regulate proliferation,
chemotaxis, and reactivity of glial cells, affording protection
in several brain diseases (reviewed in [40, 50]).

Although less expressed, A
2BR andA

3
Rmay alsomediate

protective effects in the CNS. By acting on A
2BR, adeno-

sine has been shown to augment the production of IL-10
by microglial and macrophages cells, while preventing the
release of proinflammatory cytokines [53]. The activation of
A
3
R has been shown to afford protective effects, namely, after

brain ischemia [54] and in retinal neurodegeneration [55].

3. Caffeine: An Antagonist of
Adenosine Receptors with Protective
Functions in the CNS

Caffeine (1,3,7-trimethylxanthine) is the most widely con-
sumed psychostimulant substance in theworld,mainly found
in dietary sources, such coffee, tea, and energy drinks [56].
Caffeine has been described as aCNS stimulant that promotes
wakefulness, enhances mood and cognition, and produces
stimulatory effects [57, 58]. In fact, caffeine exerts beneficial
effects on human behaviour, which were notmimicked by the
consumption of decaffeinated drinks [59].

Worldwide, it is estimated that caffeine consumption,
from all sources, is around 70 to 76mg/person/day. A
single cup of coffee provides a dose of 0.4 to 2.5mg/kg of
caffeine, leading to a peak serum concentration of 0.25 to
2mg/L or approximately 1 to 10 𝜇M. In humans, 99% of
caffeine is absorbed from the gastrointestinal tract in about
45min after ingestion [56]. The first metabolic step, which
represents on average 80% of the total process, is via N-3
demethylation to paraxanthine (1,7-dimethylxanthine) by the
cytochrome P450 1A2 enzyme [60] and was recently found
to be associated with the variability of caffeine consumption
between individuals [61]. Other two important products of
caffeinemetabolism are theobromine (3,7-dimethylxanthine)
and theophylline (1,3-dimethylxanthine), which represent
about 16% of the total metabolites [62]. After long-term
consumption of high doses of caffeine, these metabolites
can also contribute to its pharmacological actions, since it
can result in an accumulation of methylxanthines in the
body, due to end-product inhibition of demethylation, and
thereby should be also considered when investigating the
pharmacological actions of caffeine [63].
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Most of the studies about the beneficial effects of cof-
fee have been focused largely on caffeine, but coffee con-
tains over 1,000 components that may have neuroprotec-
tive effects [64–67]. Interestingly, decaffeinated coffee is
protective in Drosophila models of PD [68], suggesting
that other coffee constituents may provide neuroprotection.
Eicosanoyl-5-hydroxytryptamide, a constituent of coffee, has
been demonstrated to ameliorate the phenotype of a PD
model associated with decreased protein aggregation and
phosphorylation, improved neuronal integrity, and reduced
neuroinflammation [69]. Also, chlorogenic acid, trigonelline,
and melanoidins are also able to impact gene transcription
and regulation of body fat percentage [70, 71].

The biochemical mechanisms that underlie the actions of
caffeine are dependent on the dose. In the brain, the molec-
ular targets of caffeine at nontoxic doses are the adenosine
receptors A

1
and A

2A [56].
One of the most recognized actions of caffeine is its

ability to reduce sleep and sleepiness. Caffeine, acting on
A
2AR, promotes wakefulness, as demonstrated by genetic

manipulation of the A
2AR in the nucleus accumbens [72].

Ethanol and caffeinated beverages are frequently con-
sumed in combination, a fact that might be due to the
popular belief that caffeine can offset the acute intoxicating
actions of ethanol. In fact, it has been shown that caffeine
is able to attenuate ethanol-induced motor incoordination
in rats [73], an effect that was also observed with A

1
R

antagonists, but not with antagonists of A
2AR. Interestingly,

caffeine administration also prevents the hypnotic effects
induced by ethanol, an effect suggested to be mediated by
A
2AR antagonism, since knockout (KO)mice for this receptor

display similar behaviour [74].
Caffeine is also associated with alterations in neurotrans-

mitter release and increase neuronal firing (via A
1
R), as well

as enhancing dopaminergic transmission (viaA
2AR), globally

affecting neuronal processes associated with mood and cog-
nition (reviewed in [56]). Caffeine has been shown to control
synaptic plasticity [75], to revert memory impairments [76,
77], and to prevent mood alteration triggered by chronic
stress [78]. Importantly, these effects were also observed
in the presence of selective A

2AR antagonists prompting
the critical role of this receptor to the actions of caffeine.
Indeed, using A

2AR-KO mice, it was recently shown that the
neuroprotective effects of caffeine in a PD model rely on the
presence of A

2AR [79].
Several studies have been demonstrating protective

effects of caffeine in patients and animal models of neu-
rodegenerative diseases, mainly by reducing excitotoxicity,
apoptosis, and neuroinflammation (reviewed in [80]).

4. Modulation of Microglia Reactivity and
Neuroinflammation with Caffeine

Since the late 1990s, several studies have shown that caf-
feine reduces neuroinflammation in models of AD and PD
(reviewed in [80]). Additionally, epidemiological studies have
shown that caffeine might exert neuroprotective effects in
humans [56, 81, 82].

Several studies have also focused their attention on the
ability of caffeine to reduce microglia reactivity. In an in vitro
system, using the murine BV-2 microglia cell line, it was
demonstrated that 2mM caffeine attenuates the expression
of proinflammatory mediators, such as NO and TNF, and
their regulatory genes, elicited by lipopolysaccharide (LPS)
[83], widely known to induce potent neuroinflammatory
responses in the brain [84]. The same study suggests the
modulation of extracellular signal-regulated kinase (ERK)
signaling cascade and consequent NF-𝜅B activation as a
main pathway for caffeine actions [83], which has been
also related to the A

2AR activation-induced macroglial cell
reactivity [85]. In an animal model of inflammation, in
which LPS was infused over a period of two or four weeks
in the brain, caffeine administration (daily intraperitoneal
injection) reduces LPS-induced microglia activation in three
regions of the hippocampus, in a dose-dependent manner
[86].

Importantly, caffeine alters neuronal functioning in phys-
iological brain conditions, increasing the spontaneous firing
(reviewed in [56]). The effects of caffeine in nonneuronal
cells in nonpathological conditions have not been extensively
studied. It was already described that brain sections of
animals administered with caffeine ad libitum in the drink-
ing water have altered microglia density and morphology,
as observed by process retraction and enlargement of the
cell soma, indicating a more reactive phenotype [87]. The
authors suggested that caffeine might prime microglial cells,
impacting the transition from the surveillance to the reactive
state [88]. Notably, in the retina, caffeine intake does not
change microglia reactivity and expression of proinflamma-
tory markers [87].

5. Beneficial Effects of Caffeine in
Alzheimer’s Disease: Neuroinflammation
and Neuroprotection

Alzheimer’s disease is the most common type of dementia
worldwide, clinically characterized by a progressive decline
of cognitive functions and memory deficits [89]. The main
neuropathological hallmarks of AD are extraneuronal depo-
sition of amyloid-beta (A𝛽) protein in the form of plaques
and intraneuronal aggregation of the hyperphosphorylated
microtubule-associated protein tau in the form of filaments,
mainly in the cortex, hippocampus, and amygdala [90].
Furthermore, a strong neuroinflammatory component has
been associated with AD pathology, with increased glial cell
reactivity (microgliosis and astrogliosis), activation of both
classic and alternate pathways of the complement system,
upregulation of inflammatorymarkers, and increased phago-
cytic activity [91, 92].

The presence of A𝛽 oligomers has been described to
lead to microglia-mediated neuroinflammatory response,
with alterations in the phagocytic efficiency and sustained
overproduction of inflammatory mediators, which may con-
tribute to neurotoxicity and neuronal loss [93]. Indeed,
microglia reactivity has been described not only in the
brain, but also in the retinas of AD animal models [94] and
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patients [95]. It remains to be elucidated whether microglia
activation is a cause or a consequence of AD, but the role
of microglia reactivity in the progression of the disease
is unquestionable. Hence, interventions targeted to control
microglial cell reactivity might delay the progression of AD.

Consumption of caffeine has been associated with reduc-
tion in the cognitive decline in healthy subjects (with
advanced age) and also AD patients [96–99]. In AD animal
models the beneficial effects of caffeine intake include amelio-
ration of cognitive impairments [100, 101] and dementia [102].

It has been described that increased caffeine levels in the
plasma are associated with reduced inflammatory cytokine
levels in the hippocampus [103]. Remarkably, chronic admin-
istration of caffeine to a transgenic mouse model of progres-
sive AD-like tau pathology mitigates several proinflamma-
tory and oxidative stress markers in the hippocampus and
prevents the development of spatial memory deficits [104].

Disruption of the blood-brain barrier (BBB) is an early
pathological event in AD [105, 106] and may potentiate the
accumulation of A𝛽 in the brain by allowing the transport
of A𝛽 produced in the periphery [107]. Caffeine admin-
istration protects against AD-associated BBB dysfunction
[106, 108] and reduces glial cell reactivity at sites of BBB
leakage [106]. The effects of caffeine in the control of BBB
integrity have been associated with its antagonistic actions
on adenosine receptors and consequent inhibition of cyclic
adenosine monophosphate (cAMP) activity and control of
calcium intracellular stores [108]. Caffeinemight control AD-
associated increase on inflammatory mediators by reducing
glial cell reactivity on the BBB leakage site [106] through a
reduction in infiltration of immune cells from the periphery
[109].

Moreover, using an animal model showing age-related
CNS alterations that includes cognitive impairment, in-
creased neuroinflammatory markers, and neurodegenera-
tion, chronic administration of caffeine improves memory
deficits and reduces the expression of ROS and proin-
flammatory cytokines TNF and IL-1𝛽, further conferring
antiapoptotic effects [110]. Similarly, the effects of caffeine are
mimicked by selective antagonists of A

2AR [111], suggesting
that the actions of caffeine are mediated by the blockade of
A
2AR. In accordance, both pharmacological blockade and

genetic inactivation of A
2AR afford neuroprotection against

A𝛽 toxicity [112].
These reports reinforce the crucial importance of A

2AR
in A𝛽 toxicity and in the associated microglia reactivity and
neuroinflammatory response in the context of AD, demon-
strating also prophylactic properties of caffeine and the
therapeutic potential of A

2AR antagonists for the treatment
of AD [113].

6. Caffeine Modulates Neuroinflammation
in Parkinson’s Disease: Possible Strategy
for Neuroprotection?

Parkinson’s disease (PD) is the second most common pro-
gressive neurodegenerative disorder. It is characterized by a
progressive loss of dopaminergic neurons of the nigrostriatal

pathway with the occurrence of Lewy bodies (abnormal
deposits of𝛼-synuclein), which clinically translates inmuscu-
lar rigidity, resting tremor, bradykinesia, and postural insta-
bility [114]. The pathogenesis of PD has been also associated
with chronic neuroinflammation [115] and oxidative stress
[116], both contributing to BBB disruption [116, 117].

The brain is particularly susceptible to oxidative stress
due to the high consumption of oxygen [116]. Oxidative stress
has been associated with several neurodegenerative diseases,
including PD. Indeed, there is evidence from postmortem
human samples that oxidative stressmight be a primary insult
that leads to neuronal damage in PD [118, 119]. In substantia
nigra, microglial cells have been proposed to be the main
cells producing oxidative stress products [120], suggesting
the involvement of these cells in the pathophysiology of
PD. The involvement of neuroinflammation in PD was
suggested after observation of increased number of reactive
microglial cells and an upregulation of major histocom-
patibility complex class II (MHC-II) in PD patients [121].
Indeed, reactive microglia and neuroinflammatory response
have been strongly associated with dopaminergic cell loss in
PD (reviewed in [122–124]). Furthermore, elevated levels of
proinflammatory cytokines such as TNF [125], IL-1𝛽, and IL-
6 [126] have been described in the striatum of PD patients.
In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
animal model of PD there is evidence demonstrating the
neurotoxic contribution of microglia-produced TNF [127],
IL-1𝛽 [128], IL-6, and NO [129] to the loss of dopaminer-
gic neurons. These proinflammatory cytokines, along with
factors released from the dying dopaminergic cells, seem
to increase and sustain neuroinflammation, leading to an
irreversible loss of dopaminergic neurons (reviewed in [130]).
Hence, future therapeutic strategies should consider inhibi-
tion of microglia-mediated neuroinflammation, possibly in
combination with neurotropic factors, aiming to delay the
progression of PD.

Epidemiological studies have been associating the con-
sumption of caffeine with reduced risk of developing PD
[131–134]. Using the MPTP mouse model, it was shown that
daily intraperitoneal administration of caffeine attenuates
microglia reactivity and prevents BBB dysregulation, leading
to decreased dopaminergic neuronal loss [135, 136]. Accord-
ingly, even when introduced in the later phases of the neu-
rodegenerative process, caffeine is also able to attenuate the
inflammatory process andmicroglial cell expression of CD68
(a marker of reactive microglia), which suggests its ability
to arrest or delay neuroinflammation and neurodegeneration
[135]. Likewise, caffeine, even in low doses, is able to reverse
functional motor deficits in PD animal models [137, 138].

Although the mechanisms underlying neuroprotection
by caffeine remain a matter of debate, it has been widely
suggested that the neuroprotective effects of caffeine involve
the antagonism of A

2AR [79, 139, 140]. Notably, pharmaco-
logical blockade of A

2AR presents similar protective effects
to the ones observed with caffeine in several experimental
models of PD [35, 140–142]. Indeed, the critical contribution
of A
2AR to caffeine-mediated neuroprotection was recently

demonstrated in mice lacking the A
2AR gene (KO mice) and

exposed to MPTP. In these animals, caffeine had no effect on
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MPTP toxicity, namely, in striatal neuronal loss and motor
activity impairment [79].

The selective A
2AR antagonists istradefylline (KW 6002)

[143] and preladenant (SCH 420814) [144] have been inves-
tigated in the past years in clinical trials for PD. The A

2AR
antagonists significant ameliorate the motor symptoms, but
more studies are required to establish the clinical utility of
these drugs [143, 144].

Taking into account the contribution of microglia-
mediated neuroinflammation in the pathophysiology of PD
and the beneficial effects of caffeine and A

2AR antagonists,
one can hypothesize that pharmacologic blockade of A

2AR
might offer potential therapeutic benefit in PD at the level of
motor alterations, neuroinflammatory response, and neuro-
protection.

7. The Effects of Caffeine in Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune, inflammatory
disease of the CNS and the most common cause of chronic
neurologic disability beginning in early to middle adult
life [145]. The major pathological hallmarks of MS include
dysregulation of BBB, which promotes macrophage and
lymphocyte infiltration, and the presence of sclerotic plaques
in the CNS [146]. In more advanced stages, the degenerative
phase is characterized by demyelination and axonal damage
that results in neuronal functional impairment in the brain
and in the spinal cord. The demyelination process is associ-
ated with inflammation, which can occur through activation
of resident astrocytes and microglia and by the inflammatory
cytokine products of infiltrating immune cells (lymphocytes
or macrophages) [147].

Although the exact role of microglial cells in MS is not
completely elucidated, it is recognized that these cells are
able to sustain and propagate the inflammatory response
during autoimmune inflammation [148]. Reactive microglia,
expressing MHC-II, exert functions of antigen-presenting
cells during MS, therefore promoting the propagation of
the inflammatory process and secretion of cytokine or
chemokine [149]. Indeed, the detrimental role of microglia
activation in MS models has been demonstrated, with the
inhibition of these cells leading to a reduction in the myelin
and axonal damage, and also in neurodegeneration [148, 150–
152].

Nonetheless, microglial cells not only contribute to the
neurodegenerative process, but also play an important role
in the promotion of neuroprotection, downregulation of
inflammatory process, and stimulation of tissue repair. This
complex and dual role might be due to the high hetero-
geneity of myeloid populations (microglia, monocytes, and
infiltrating T-cells), with distinct subtypes and distinct states
of microglia reactivity (M1 and M2) associated with different
pathologic or protective roles [153–155].

As previously mentioned, several reports have implicated
the modulation of adenosine receptors in immune cells to
a suppression of the inflammatory response (reviewed by
[156]). Indeed, the levels of adenosine are reduced in the
plasma of MS patients and the expression of A

2AR and A
1
R

is up- and downregulated, respectively [157, 158]. Studies in

animal models of MS confirmed the decreased expression
of A
1
R in microglial cells and an increase in both pro- and

anti-inflammatory mediators [159, 160]. The administration
of caffeine to these animals restores the levels of A

1
R and

attenuates the neuroinflammatory process and demyelination
[160]. In accordance with studies in animal models of MS,
high consumption of coffee may decrease the risk of devel-
oping MS [65, 161]. The authors suggest the suppression of
the neuroinflammatory process and consequent production
of proinflammatory cytokines as the mechanism underlying
the observed association [65].

Similar to other brain conditions, the levels of A
2AR have

been shown to be upregulated in the brain [162] and in
lymphocytes of MS patients [163]. Activation of A

2AR has
been associated with a strong anti-inflammatory response by
immune cells [156, 164]. Correspondingly, genetic inactiva-
tion of A

2AR has been reported to enhance the inflammatory
cell infiltration and microglial cell activation in cortex,
brainstem, and spinal cord in a MS animal model, also
increasing demyelination and axonal damage [165]. These
results suggest that adenosine acting on A

2AR triggers neuro-
protective effects. Intriguingly, the use of antagonists of A

2AR
also affords neuroprotection in a model of MS by reducing
lymphocyte infiltration [166]. Indeed, a dual role for A

2AR in
autoimmune inflammation has been already described, with
activation of A

2AR leading to prevention of the disease in
the early stages, whereas A

2AR blockade affords protection
in later stages by reducing neuroinflammation [167]. These
results suggest that A

2AR activity can impact the progression
of the disease in multiple cellular and molecular targets,
but we must keep in mind the possibility that the genetic
deletion and pharmacological inactivation of the receptor
produce opposite effects in the pathology. Global genetic
deletion of A

2AR occurs in all cellular elements, whereas
the pharmacological blockade is suggested to target prefer-
entially neutrophils and lymphocytes [168], reducing their
infiltration and therefore exerting neuroprotective effects, as
well as reducing microglia activation [40, 165].Therefore, the
A
2AR has been considered a potential target for therapeutic

approaches in MS. Still, chronic treatment with caffeine
during the degenerative phase of MS animal model provides
neuroprotection regardless of the A

2AR genotype, implying
that, in this disease, caffeine acts in a non-A

2AR-dependent
manner [169].

8. Beneficial Properties of Caffeine
beyond Brain Neurodegenerative Diseases:
A Look into the Retina

Despite the extensive evidence regarding the effects of caf-
feine consumption in the brain, very little is known about
the effects of caffeine consumption in retinal degeneration
[170]. We have shown that caffeine administration reduces
retinal neuroinflammation and microglial reactivity in an
animal model of retinal degeneration induced by ischemia
reperfusion (I-R). Notably, caffeine treatment is also able to
prevent retinal neuronal cell apoptosis in these animals [171].
Accordingly, in animals subjected to I-R, pharmacological
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Figure 1: Caffeine reduces microglia-mediated inflammatory environment on CNS degenerative diseases. Schematic summary of the effects
of caffeine intake on microglia reactivity and the associated CNS degenerative diseases.

blockade of A
2AR prevents microglia reactivity and neuroin-

flammatory response [26]. Using retinal organotypic cultures
and an I-R animal model we demonstrated that blockade
of A
2AR confers neuroprotection in the retinal through

the control of microglia-mediated neuroinflammation [26,
87]. Hence, taking into account the antagonistic effects of
caffeine in the A

2AR, one can hypothesize that protection
against neuronal apoptosis in the retina afforded by caffeine
might also be due to a reduction in microglia reactivity and
neuroinflammatory response.

In addition, very recently, we demonstrated that caffeine
intake prevents microglia-mediated neuroinflammation and
increases the survival of retinal ganglion cells in an animal
model of glaucoma [87], suggesting that caffeine may have
a prophylactic effect in glaucoma. Still, the understanding
of the effects of caffeine and A

2AR antagonists in retinal
neuroinflammation and neurodegeneration is still in a very
early stage, but it appears as a promising therapeutic strategy
for retinal neurodegenerative diseases [170].

9. Conclusions

Coffee is one of themost consumed beverages worldwide and
its consumption has been demonstrated to impact human

health. Taking in account the beneficial properties of caffeine
in neurological and neurodegenerative diseases and the
molecular targets of caffeine in the CNS, it is very important
to elucidate the effects of caffeine to neuroinflammation.

Antagonists of adenosine receptors, namely, of A
2AR,

have been vastly studied in neurodegenerative diseases. One
hypothesis that has been gaining attention to explain the
protective properties of caffeine and A

2AR antagonists is the
control of microglia-mediated neuroinflammation (Figure 1).
Caffeine may block A

2AR in microglial cells thus controlling
exacerbated microglia reactivity and noxious inflammation,
providing neuroprotection. Nevertheless, more studies are
required to elucidate the cellular and molecular mechanisms
of caffeine and itsmetabolites in themodulation ofmicroglia-
mediated neuroinflammation in neurodegenerative disor-
ders.
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Alfaro, “Improvement of postural adjustment steps in hemi-
parkinsonian rats chronically treated with caffeine is mediated
by concurrent blockade of A

1
and A2A adenosine receptors,”

Neuroscience, vol. 166, no. 2, pp. 590–603, 2010.
[139] A.Kalda, L. Yu, E.Oztas, and J.-F. Chen, “Novel neuroprotection

by caffeine and adenosine A
2𝐴

receptor antagonists in animal
models of Parkinson’s disease,” Journal of the Neurological
Sciences, vol. 248, no. 1-2, pp. 9–15, 2006.

[140] J. F. Chen, K. Xu, J. P. Petzer et al., “Neuroprotection by
caffeine and A(2A) adenosine receptor inactivation in a model
of Parkinson’s disease,” The Journal of neuroscience, vol. 21, no.
10, 2001.

[141] M. Pierri, E. Vaudano, T. Sager, and U. Englund, “KW-6002
protects from MPTP induced dopaminergic toxicity in the
mouse,” Neuropharmacology, vol. 48, no. 4, pp. 517–524, 2005.

[142] H. Kase, “Industry forum: progress in pursuit of therapeu-
tic A2A antagonists—the adenosine A2A receptor selective
antagonist KW6002: research and development toward a novel

nondopaminergic therapy for Parkinson’s disease,” Neurology,
vol. 61, no. 11, supplement 1, pp. S97–S100, 2003.

[143] R. Dungo and E. D. Deeks, “Istradefylline: first global approval,”
Drugs, vol. 73, no. 8, pp. 875–882, 2013.

[144] R. A. Hauser, F. Stocchi, O. Rascol et al., “Preladenant as an
adjunctive therapywith levodopa in Parkinsondisease: two ran-
domized clinical trials and lessons learned,” JAMA Neurology,
vol. 72, no. 12, pp. 1491–1500, 2015.
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