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Abstract

Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has
been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a
complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of
structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We
investigated the relationship between global structural brain network properties, general intelligence and age in a group of
43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence
Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using
deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering
coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network
properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a
subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings
suggest that general intelligence and global properties of structural brain networks may not be generally associated in
cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network
properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network
deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural
changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of
cognitive reserve or brain resilience.
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Introduction

The main cognitive domains, including memory, attention,

executive function, and information processing speed, are

delimitable but not independent from each other. Individuals

who perform well in one cognitive domain tend to do well in

others. The common variance that is shared among cognitive

domains is captured by the construct of general intelligence [1–3].

General intelligence has been shown to be a robust predictor of

several life outcomes, including educational and occupational

success, health-conscious behavior and mortality [1,4,5]. More-

over, general intelligence is known to attenuate the degree of age-

associated cognitive decline and the risk of developing late-onset

Alzheimer’s disease (AD) and has thus been proposed to be an

important component of cognitive reserve [6–9].

In the last decade, neuroscientific research has strongly

contributed to the understanding of the biological basis of human

general intelligence. Quantitative genetic studies have shown basic

genetic influences on intelligence [2,10]. However, estimates of

how much of the variance in general intelligence can be attributed

to genetic variations range from 30 to 80% [2].

Besides genetic analyses, brain imaging studies contributed

significantly to a better understanding of the biological basis of

general intelligence. Structural and functional MRI studies have

converged in identifying widespread parieto-frontal and temporal

gray matter regions that were associated with intelligence

[2,11,12]. Furthermore, there is evidence that intelligence relies

on white matter connections between these gray matter regions

forming a network that provides communication and integration

of processes. [2,13–15]. Thus structural brain networks may be the

neurophysiological basis for general intelligence. Graph theory

provides methods to describe and quantify organizational prop-

erties of these networks, which may have an impact on intelligence

[16,17].

Inspired by these findings, Li and colleagues reconstructed

global structural brain networks in healthy young subjects using

DTI tractography and assessed and quantified them with graph

theoretical methods [14]. By demonstrating significant correlations

between intelligence and network properties the authors provide

first evidence for an association between the efficiency of brain

structural networks and intelligence. Their findings are supported

by another study by Zalesky and colleagues using a similar

methodology as well as by a study investigating functional brain

networks and intellectual performance by van den Heuvel and

colleagues [18,19].
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Studies on normal aging demonstrated extensive WM degen-

eration accompanied by a reduction of network connectivity,

exacerbated in old age [20–23]. Moreover, although general

intelligence has been shown to be quite stable throughout the life-

span [2], declines in intelligence scores with advancing age have

repeatedly been reported [24]. Against the background of the

observed association between the efficiency of brain structural

networks and intelligence [14], age-related network alterations

might contribute to age-related decline of general cognitive

abilities, particularly in old age. However, investigations of the

brain’s structural network and its relationship to general intelli-

gence have not yet been applied to elderly. The current study was

conducted to investigate age-related alterations of the global

structural brain network, as measured by the combination of DTI

tractography and MRI with graph analysis, and their effects on

general intelligence in a group of younger and advanced,

cognitively healthy elderly subjects.

Materials and Methods

Subjects
A sample of 43 cognitively healthy elderly aged 60 to 85 years

had agreed to participate in the study that was conducted at the

Department of Psychiatry and Psychotherapy, University Medical

Center of Mainz, Germany. Subjects were recruited through

advertisement in a local newspaper, as well as notices in medical

practices and public institutions. The study has been approved by

the local Ethics Committee of the Landesärztekammer Rheinland-

Pfalz (state medical association of Rhineland-Palatinate) and all

subjects gave written informed consent. Participants were living

independently in the community and underwent a preceding

psychiatric screening interview (DIA-SSQ) [25] in combination

with International Diagnosis Checklists (IDCL) [26]. Subjects were

excluded if they had suffered from any psychiatric, neurologic or

cognitive disease prior to the study or if they were taking

medication known to influence cognitive performance. All

participants underwent comprehensive neuropsychological testing

and Diffusion Tensor Imaging (DTI). Sample characteristics are

shown in Table 1.

Intelligence Scores
To assess general intelligence, we applied four subtests

(Similarities, Arithmetic, Picture Completion, and Digit Symbol)

of the revised Hamburg-Wechsler-Intelligence-Test (HAWIE-R)

which is the German version of the Wechsler Adult Intelligence

Scale-Revised (WAIS-R) [27]. This short form provides a reliable

estimation of the Full Scale IQ [28].

MRI Data Acquisition and Processing
Diffusion-weighted imaging was conducted on a Siemens 3T

TrioTim MRI scanner (Siemens, Erlangen, Germany) using a

single shot spin-echo echoplanar based sequence (30 directions;

b = 1000 s/mm2; matrix 1286128; section thickness, 3mm; voxel

size, 1.561.563 mm3; TR/TE, 7100 ms/102 ms). The data were

corrected for subject motion and eddy currents using FSL 5.0

(FMRIB Analysis Group, Oxford, UK, http://www.fmrib.ox.ac.

uk/fsl), gradients were adjusted accordingly [29]. Non-brain voxels

were removed using FSL-BET [30]. A single diffusion tensor was

fitted to each voxel using CAMINO v2 (Microstructural Imaging

Group, University College London, UK, http://cmic.cs.ucl.ac.

uk/camino/) and maps of the DTI index fractional anisotropy

(FA) were calculated from its eigenvalues [31] for subsequent

tractography. Additionally, two diffusion tensors were fitted

[32,33] to voxels likely containing fiber crossings as indicated by

spherical harmonic fiber crossing detection [34].

Reconstruction of the Individual Structural Brain
Networks

Definition of the network’s nodes. The nodes of the

structural brain networks were defined as the 111 cortical and

subcortical anatomical brain areas in the Harvard-Oxford

probabilistic brain atlas that is available with FSL 5.0 [35,36].

In order to avoid overlapping between the brain areas, each area

was thresholded at a probability of 0.35 and subsequently

binarized [37].

To segment each subject’s brain in DTI space, DTI images

were first coregistered to T1 images using FSL-FLIRT. The T1

images were then spatially normalized to MNI space using the

DARTEL pipeline [38] in SPM8 (http://www.fil.ion.ucl.ac.uk/

spm/software/spm8). Finally, the thresholded and binarized brain

areas of the atlas were warped to DTI native space using the

inverse transformations from DARTEL and the coregistration.

The atlas brain areas thus transformed to each subject’s native

DTI space were then used as the network nodes in the subsequent

reconstruction of the structural network.

Reconstruction of the networks’ edges. For this step

whole brain tractography was performed in every subject using a

deterministic streamline fiber tractography algorithm with a fixed

step size as implemented in CAMINO. We have previously

employed this algorithm successfully for the reconstruction of the

bilateral cingulate bundles in Alzheimer’s Disease [39]. All voxels

with FA $0.2 were used as seed points, FA and curvature

thresholds were set to 0.2 and 60u respectively. Crossing fibers

were taken into account by this tractography algorithm by

considering two diffusion tensors in voxels that likely contain

crossing fibers. Subsequently, for each pair of nodes, i.e.

segmented brain regions from the atlas, those streamlines were

extracted from the whole brain tractogram that intersect both of

Table 1. Demographic characteristics and intelligence of the sample.

Age group N (female/male) Age Years of education WAIS-R IQ

Younger elderly (,75yrs) 28 (12/16) 65.264.1 1363.7 139615

Advanced elderly ($75yrs) 15 (13/2) 79.163.6 10.963.0 136617

Total sample 43 (25/18) 70.067.8 12.363.6 138616

P-value .006a* ,.001b* .033b* .990b

Mean 6 standard deviation. Younger elderly: subjects aged 60 to 74. Advanced elderly: Subjects aged 75 to 85. P-value: a, chi-square test. b, Mann-Whitney test.
*significant differences between groups, alpha = 0.05.
doi:10.1371/journal.pone.0086258.t001
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the two nodes. The number of the streamlines connecting two

nodes were taken as the respective edge weight [14]. The resulting

undirected, weighted brain graphs of each of the 43 subjects were

represented as a 111 6 111 connectivity matrix W(i), its entries

w(i)
pq containing the edge weight between nodes p and q in the

brain graph of subject i respectively where i = 1 … n, n = 43 and

p,q = 1 … 111. As the brain graphs are undirected, the 43

connectivity matrices W(i) are symmetric, i.e. w(i)
pq = w(i)

qp. Self

connections were set to zero with w(i)
pq = 0 where p = q. Addition-

ally, subsequent analyses were repeated for binarized networks

that were calculated by setting all non-zero connection weights to

one. Results are reported in Table S2. For a graphical

representation of the resulting network, please see Figure 1.

Although tractography has been shown numerous times to

reconstruct WM fiber pathways with reasonable accuracy [40,41],

the possibility of false positives remains in the reconstruction of

connections between two brain areas. Therefore we chose to use a

fixed threshold of three streamlines on the entries w(i)
pq of each of

the 43 subjects’ connectivity matrix as has been done before in

brain graphs reconstructed from deterministic tractography

[14,42,43]. To investigate the influence of the threshold choice,

we repeated subsequent analyses with thresholds of 1, 2, 4 and 5

fibers per connection [14]. Results are shown as supplementary

information in Table S1.

Additionally, we applied a rigorous statistical pruning algorithm

that is based on the Holm-Bonferroni method to the brain graphs

and has recently been proposed by Ivković et al. [44]. For each

connection, the pruning algorithm attempts to refute the

assumption that the distribution of connection weights across the

sample has an expected value of zero. This is done by performing

a z-test of the variance of the connection weights over the whole

sample against a normal distribution centered at zero, whose

variance is derived from all of the n matrices’ remaining non zero

entries. If the assumption that both distributions are similar cannot

be refuted, the connection is pruned in every subject’s graph by

setting the corresponding n entries w(i)
pq to zero. After testing all

connections, the algorithm starts over. It will stop if none of the

matrices’ entries have changed during the previous run. For each

z-test, the p-value threshold was set to 0.001 [44]. Please note that

the resulting brain graphs are still weighted and undirected and

connections may be different across subjects, as some graphs may

contain connections where other subjects’ graphs do not.

Furthermore, the uncertainty in orientation of streamlines

reconstructed by tractography is increased in voxels of lower FA

and also accumulates in longer streamlines [45–47]. In order to

take this uncertainty into account, we chose to calculate specific

edge weights w(i)*
pq for the pruning procedure according to the

formula w(i)�
pq ~s(i)

pq
:FA

(i)

pq
:1=�ll(i)

pq, where s(i)
pq denotes the number,

FA
(i)

pq the mean FA and 1=�ll(i)
pq the inverse of the mean length in

mm of the streamlines connecting node p and q.

Quantification of the Brain Networks
The topological properties of the brain networks can be

described using measures from graph theory. In this study, we

chose to calculate clustering coefficient, mean shortest path length

Figure 1. Structural network reconstructed in a male subject aged 73 years. Network nodes are shown as spheres that correspond to brain
areas as defined by the Harvard-Oxford atlas. Connections are shown as blue lines, where wider lines indicate higher edge weights.
doi:10.1371/journal.pone.0086258.g001
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and global efficiency, as they have been show to be associated with

intelligence in a previous study by Li et al. [14] as well as c, l and

s to report on the brain networks’ small world properties.

Clustering Coefficient
The clustering coefficient measures the network’s tendency to

form dense local clusters and will be higher in networks with many

such clusters. For weighted networks, there are several proposals

for the calculation of the clustering coefficient [48]. In this study,

we chose to calculate the clustering coefficient according to the

extension proposed by Onnela et al. [49], as it takes the degree of

the central node as well as all edge weights in the cluster into

account. Thus the clustering coefficient of a node r was calculated

as

C(r)~
1

kr(kt{1)

X
p,q[N(r)
p=q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wpqwprwrq

3
p

ð1Þ

where kr is the degree of node r, N(r) is the subset of all nodes

directly connected to node r and �wwpq is the edge weight between

nodes p and q normalized by division through the maximum edge

weight in the subject’s connectivity matrix [44]. For binary

networks, the clustering coefficient was calculated as

C(r)~
E(r)

1
2

kr(kt{1)
ð2Þ

Where E(r) is the set of all edges connected to nodes in N(r).

The clustering coefficient for each subject’s brain graph was

then calculated as

C(i)~
1

N (i)j j
X

r[ N(i)j j C
(i)
(r) ð3Þ

where N(i) is the set of nodes in the network of subject i.

Mean Shortest Path Length
This measure quantifies the shortest path length between each

pair of nodes in the network. Higher weights and more

connections will typically decrease the mean shortest path length.

For the calculation of the shortest path between each pair of

nodes, the distance associated with each edge was set to dpq = 1/wpq

[50]. The mean shortest path length for each subject was then

calculated as.

L(i)~
1

N (i)j j: N (i)j j{1ð Þ
X

p,q[N(i)

p=q

d(i)
pq ð4Þ

Global Efficiency
Global efficiency is usually understood as a measure for the

network’s capacity to transfer information efficiently [51] and will

be increased in a network with higher edge weights and shorter

paths. Global efficiency is calculated from the shortest paths d (i)
pq as

E
(i)
global~

1

N (i)j j: N (i)j j{1ð Þ
X

p,q[N(i)

p=q

1

d
(i)
pq

ð5Þ

Small Worldness
Small world attributes have been reported as a characteristic

property of brain networks previously [16]. For the sake of

comparability, we chose to evaluate them in our study as well.

Networks are usually characterized as having small world

properties if their clustering coefficients are higher than those of

a random network, while their path lengths are comparable to that

of a random network’s. The small world indices s, c and l were

thus calculated as:

s~
c

l
~

C
Crand

�
L

Lrand

ð6Þ

For each subject, 5000 random networks were constructed by

randomly permuting the weights of the connectivity matrix while

preserving its symmetry and keeping self-connections fixed as zero

(Ivkovich und andere). Notably, the resulting random networks

have the same number of edges, the same nodes and the same

edge weights as the original networks, however edges will

randomly connect different nodes. Subsequently, the clustering

coefficient Crand and mean shortest path length Lrand of the random

network were then calculated as the average across the 5000

random permutations for each subject.

Statistical Analysis
Partial correlations between the network measures and age were

calculated in the total sample using years of education and gender

as covariates. To investigate the relationship of intelligence scores

and network measures, partial correlations were calculated in the

total sample using age, years of education and gender as

covariates.

In order to investigate whether the relationship of intelligence

scores and network measures is altered in more advanced age, we

additionally dichotomized the total sample into a group of younger

elderly aged 60 to 74 years years and a group of advanced elderly

aged 75 to 85 years (see Table 1 for demographical characteristics

of the total sample and age groups). Age, years of education,

intelligence scores and network measures were tested for normal

distribution in both age groups using the Kolmogorov-Smirnov

test. Additionally, homoscedasticity was ascertained using the

Levene-test. We performed t-test for independent samples on

normally distributed and non-parametric Mann-Whitney test on

non-normally distributed variables to test for differences between

the groups of younger and advanced elderly. Partial correlations

between network measures and intelligence scores were calculated

in the age groups as in the total sample using age, gender and years

of education as covariates.

As there were only two men in the group of advanced elderly,

gender was included as a covariate for all partial correlations.

Additionally, we repeated the calculation of partial correlations

between intelligence scores and network measures in the both age

groups considering only the female subjects (Younger elderly,

n = 12. Advanced elderly, n = 13).

The threshold for statistical significance for all tests was set to

p = 0.05. To correct for multiple comparisons, the p-values were

Holm-Bonferroni-corrected.

Results

Topological Properties of the Structural Brain Networks
We successfully reconstructed structural brain networks in each

subject using a fixed connection threshold of at least 3 connecting

fibers per edge and subsequent statistical pruning. The resulting

Brain Networks and Intelligence in Normal Aging
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networks showed overall small world characteristics for all subjects

with a mean s of 2.760.31, mean c of 5.760.17 and mean l of

2.160.23, although the path length was higher than in the random

networks.

Differences between Groups
Table 2 shows the absolute mean values and standard deviation

of clustering coefficient, mean shortest path length and global

efficiency. Global efficiency was decreased in the advanced elderly

whereas mean shortest path length was increased. No significant

group difference was found for the clustering coefficient.

Association of Network Measures with Age
While controlling for years of education and gender, a

significant correlation with age was found in the total sample for

the network measures clustering coefficient (p = 0.014), mean

shortest paths (0.011) and global efficiency (0.033). The correla-

tions remained significant after Holm-Bonferroni correction with

alpha = 0.05/3 = 0.017, 0.05/2 = 0.025 and 0.05 respectively.

Association of Network Measures and Intelligence Scores
As shown in Table 3, no significant partial correlations of the

network measures and intelligence scores were observed in the

total sample or in the group of younger elderly. However, in the

subgroup of advanced elderly significant correlations were

observed, where a higher clustering coefficient and global

efficiency as well as lower mean shortest path length were

associated with higher intelligence scores. Notably, these results

remain statistically significant after Holm-Bonferroni-correction.

Please see Figure 2 for scatter plots and superimposed regression

lines.

Results of correlation analyses for networks calculated with

connection weight thresholds 1 to 5 as well as binarized networks

are shown in Tables S1 and S2 respectively.

Additional Analyses
Considering only female subjects, the relationship of intelligence

scores and network measures was unchanged compared to the

main analysis after Holm-Bonferroni-correction. The p-values for

clustering coefficient, mean shortest path length and global

efficiency were in the total sample 0.457, 0.071 and 0.251

respectively. For the group of younger elderly they were 0.090,

0.619 and 0.563, for the group of advanced elderly they were

0.008, 0.010 and 0.049 respectively (respective p-value thresholds:

alpha = 0.05/3 = 0.017, alpha = 0.05/2 = 0.025 and alpha = 0.05).

Discussion

In this study we were able to successfully reconstruct weighted

structural brain networks in 43 subjects aged 60 to 85 using DTI

and deterministic fiber tractography. Small world properties were

recorded for the networks and their topological properties were

associated with age. Our most important finding was that

structural brain networks’ properties and intelligence (WAIS-R

scores) were not correlated in the total sample, yet they were

significantly correlated in a subsample of subjects aged 75 years

and above. This finding suggests that an age-associated degener-

ation of network properties impacts on intelligence in advanced

age.

Topological Properties of the Networks
Small world properties could be demonstrated in various kinds

of biological networks. Specifically, small world properties were

found in human brain networks based on both structural and

functional imaging data [16]. Likewise, the networks reconstructed

in this study show some small-world properties such as s= 2.7.1

and c= 5.7 » 1. However, although l is defined as < 1 [17] we

measured l at 2.1 for the present networks. Increased l has been

reported in networks using the number of streamlines as edge

weights before [14]. We think that the limitations of the

tractography algorithm may be chiefly responsible for this result.

As streamline deviations due to the uncertainty in streamline

orientation accumulates [47], fewer streamlines may be recon-

structed in longer WM pathways. However, long-range pathways

connecting locally dense clusters are crucial for short paths in small

world networks [52], thus lower edge weights in these long-range

paths may lead to overall longer path length in the network. In

confirmation of this view, after binarizing (setting all edge weights

wpq .0 to 1) the networks reconstructed in this study, we measured

l at 1.3, which conforms to the definition of small-world attributes

(data not shown).

Changes of Network Measures with Aging
The network measures clustering coefficient and global

efficiency were negatively correlated with age across groups. As

global efficiency and mean shortest path length are inversely

related, we accordingly found a positive correlation for the mean

shortest path length with age. These findings show disconnections

in the structural brain network that occur locally as well as globally

and result in overall longer paths across brain regions. This was an

expected finding, as the extensive WM degeneration that has been

demonstrated in aging by several studies [53–56] implies

significant alterations of the brain networks topological properties.

Furthermore, Gong et al. were able to demonstrate age-related

alterations of structural brain networks as well, showing both local

and global alterations [23]. Yet they also found preserved global

efficiency in aging. However, we do believe that this finding is not

directly comparable to our data, as their sample included subjects

of a different age range from 19 to 85 years.

Table 2. Comparison of network measures.

Age group Clustering Coefficient Mean Shortest Path Length Global Efficiency

Younger elderly (,75yrs) .02656.0065 .07316.0130 31.865.3

Advanced elderly ($75yrs) .02256.0059 .08716.0183 26.464.1

Total sample .02516.0065 .07806.0163 29.965.5

P-value .053 .006 ** .001 *

Mean values 6 standard deviation. Younger elderly: subjects aged 60 to 74. Advanced elderly: Subjects aged 75 to 85. P-value: t-test for independent samples.
Significant group differences after Holm-Bonferroni correction: * alpha = 0.05/3 = 0.017,** alpha = 0.05/2 = 0.025.
doi:10.1371/journal.pone.0086258.t002
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Changes of Intelligence Scores with Aging
Although general intelligence has been shown to be quite stable

throughout the life-span [2], declines in intelligence scores with

advancing age have repeatedly been observed [24]. In line with

these results the group of younger elderly showed slightly higher

intelligence scores than the group of advanced elderly in our study.

However, this difference was not statistically significant. Of note,

our study was based on a sample of homogeneous, highly

intelligent subjects (mean WAIS-R IQ scores: younger elder-

ly = 139; advanced elderly = 136). Higher levels of general

intelligence have been shown to be related to lower levels of

age-related cognitive decline [7,8]. The high level of general

cognitive abilities of both age groups in our study may have led to

a rather slight age-related decline of intelligence scores and thus

explain the lack of a statistically significant difference between both

groups.

Relationship between Intelligence and Network
Measures

There is a growing consensus that intelligence is not based on a

single narrowly defined region in the brain but rather on a group

of frontal, parietal and temporal GM regions that have been

identified using morphometry. These regions are connected by

highly myelinated WM pathways and there is evidence that their

integrity is related to cognitive ability. The view that intelligence is

dependent upon a distributed network of brain areas has also been

confirmed by functional MRI studies [2]. On the basis of this

evidence, Li et al. have shown that topological properties of

Figure 2. Results of partial correlation analyses investigating the association of network measures and intelligence scores. Left
column: younger elderly (,75yrs). Middle column: advanced elderly ($75yrs). Right column: total sample. Correlations for the advanced elderly were
significant. Abbreviations: WAIS-R IQ, revised Wechsler Adult Intelligence Scale intelligence scores.
doi:10.1371/journal.pone.0086258.g002
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structural brain networks are associated with intelligence in a

group of healthy young subjects [14].

The association between structural network properties and

intelligence in the group of advanced elderly in this study are in

agreement with these prior findings. Since intelligence emerges

from a network structure of several interconnected brain areas, it

seems reasonable that intelligence will be affected by disruptions of

the network’s connections that are more likely in a group of

advanced elderly given the extensive WM degeneration in aging.

Interestingly, we did not find this association in the total sample

or the group of younger elderly. A reasonable explanation for this

finding is a threshold based relationship of the brain’s structural

network with intelligence – thus an effect on intelligence would

only manifest once the network’s topology has deteriorated beyond

a certain point, at which inter-regional processing in the brain is

sufficiently impaired. Since WM degenerates at an accelerating

rate in aging [57], subjects in advanced age will more likely have

structural networks deteriorated beyond the point at which effects

on intelligence become manifest. However, the high level of

intelligence scores in our sample implies very well connected

structural networks. A sample consisting of subjects with average

intelligence scores might exhibit structural networks closer to or

below the presumed threshold such that network deterioration has

a detectable effect on intelligence already at a younger age.

Furthermore, recent findings from fMRI indicate a reorganiza-

tion of the brain’s functional networks in normal aging [58]. It is

reasonable to assume that this reorganization represents an

attempt of functional compensation in the face of GM atrophy

and dysfunction. Based on this assumption, the proposition of a

threshold based relationship of the structural network with

intelligence may be extended by proposing that functional

compensation is dependent on a sufficient ‘‘infrastructure’’

provided by the structural network. If the structural network has

deteriorated beyond a critical point, functional compensation may

be impaired and effects on intelligence scores will be evident.

Following this hypothesis, future studies may investigate the joint

alterations of functional and structural brain networks in aging and

their effect on cognition.

Methodological Considerations/limitations
A number of methodological issues in this study need to be

addressed. First, the deterministic tractography algorithm used in

this study has been extended to take into account likely fiber

crossings (see section MRI data acquisition and processing).

However, it is possible that some connections between brain areas

were missed. Second, even though we employed a rigorous

statistical pruning method recently proposed, some false connec-

tions may remain in the reconstructed networks. Third, due to the

cross sectional design of our study, potential cohort effects may

have influenced results. Future studies should investigate the effects

of longitudinal changes of structural brain networks on cognition.

Fourth, tractography stopping criteria were fixed at values we had

used before to successfully reconstruct major WM pathways in our

data sample. As no gold standard has been established for

tractography stopping criteria to date, other studies have used

different parameters. Thus our results are of limited comparability

with these studies. Fifth, the effect of outliers on the results of

group comparisons of demographical characteristics may be

underestimated due to the use of non-parametric tests. Sixth, the

findings of this paper are confined to global structural network

properties. Future studies should investigate network metrics

quantifying specific local properties of structural networks and

functionally defined subnetworks.

Conclusions

In this study we investigated the association of global properties

of structural brain networks and general intelligence in a group of

cognitively healthy elderly aged 60 to 85 years. Interestingly, an

association of network properties and general intelligence was not

observed in the total sample. However, in a subgroup of subjects

aged 75 years and above, we were able to demonstrate an

association of age-related alterations of the network properties and

general intelligence. More specifically, high local clustering and

global efficiency as well as overall short paths between brain areas

were correlated with higher intelligence scores. We therefore

propose a threshold based relationship of structural brain network

properties and intelligence. Network alterations that occur in aging

may only have an effect on general intelligence once the

characteristics of the network have deteriorated such that efficient

communication and integrated processing between grey matter

regions is impaired. Vice versa, the maintenance of intelligence

seems to be independent from age-associated brain network

degeneration to some extent. This individual ‘‘network buffering

function’’ or ‘‘network compensation capability’’ might be a

surrogate of cognitive reserve or brain resilience in normal aging

which deserves to be further studied.
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Table 3. Results of partial correlation analyses.

Age group Network measure WAIS-R IQ

PCC p-value

Clustering Coefficient 2.206 .323

Younger elderly
(,75yrs)

Mean Shortest Path Length .068 .746

Global Efficiency 2.009 .966

Clustering Coefficient .752 .005*

Advanced elderly
($75yrs)

Mean Shortest Path Length 2.721 .008**

Global Efficiency .589 .044***

Clustering Coefficient .066 .685

Total sample Mean Shortest Path Length 2.229 .156

Global Efficiency .204 .208

Partial correlations of network measures and intelligence controlling for age,
years of education and gender. Younger elderly: subjects aged 60 to 74.
Advanced elderly: Subjects aged 75 to 85. WAIS-R IQ: The Wechsler Adult
Intelligence Scale-revised (WAIS-R). PCC: partial correlation coefficient.
Significant partial correlations after Holm-Bonferroni correction: *alpha = 0.05/
3 = 0.017, **alpha = 0.05/2 = 0.025, ***alpha = 0.05.
doi:10.1371/journal.pone.0086258.t003
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