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The fungal pathogens Aspergillus fumigatus and Candida albicans are major health threats for immune-compromised
patients. Normally, macrophages and neutrophil granulocytes phagocytose inhaled Aspergillus conidia in the two-
dimensional (2-D) environment of the alveolar lumen or Candida growing in tissue microabscesses, which are
composed of a three-dimensional (3-D) extracellular matrix. However, neither the cellular dynamics, the per-cell
efficiency, the outcome of this interaction, nor the environmental impact on this process are known. Live imaging
shows that the interaction of phagocytes with Aspergillus or Candida in 2-D liquid cultures or 3-D collagen
environments is a dynamic process that includes phagocytosis, dragging, or the mere touching of fungal elements.
Neutrophils and alveolar macrophages efficiently phagocytosed or dragged Aspergillus conidia in 2-D, while in 3-D
their function was severely impaired. The reverse was found for phagocytosis of Candida. The phagocytosis rate was
very low in 2-D, while in 3-D most neutrophils internalized multiple yeasts. In competitive assays, neutrophils primarily
incorporated Aspergillus conidia in 2-D and Candida yeasts in 3-D despite frequent touching of the other pathogen.
Thus, phagocytes show activity best in the environment where a pathogen is naturally encountered. This could explain
why “delocalized” Aspergillus infections such as hematogeneous spread are almost uncontrollable diseases, even in
immunocompetent individuals.
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Introduction

The frequency of invasive mycoses due to opportunistic
fungal pathogens has increased significantly over the past
decades. These infections are associated with high morbidity
and mortality. They directly correlate with increasing patient
populations that are at risk for developing invasive fungal
infections. These populations include individuals undergoing
solid-organ transplantation, bone marrow transplantation,
and major surgery, as well as those with AIDS, neoplastic
disease, immunosuppressive therapy, advanced age, and
premature birth [1-3]. In this context, Aspergillus fumigatus
can be regarded as the primary mold pathogen.

Conidia of A. fumigatus are constantly inhaled. However, in
immunocompetent individuals, mucociliary clearance and
phagocytic defense prevent the disease. Alveolar macro-
phages (AMs) are the major phagocytes of lung alveoli. They,
along with polymorphonuclear neutrophils (PMNs), which
are recruited during inflammation, are responsible for
phagocytosis of A. fumigatus [1,4-6]. AMs Kkill conidia by
producing reactive oxygen species [7]. The conidia that
escape from the AMs germinate, but are attacked by PMNs
that adhere to the surface of the hyphae and kill them by
secretion of reactive oxygen species and degranulation [8-
14]. In addition, PMNs are also able to kill resting or swollen
conidia [1,6]. Furthermore, A. fumigatus antigens induce the
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activation and maturation of dendritic cells (DCs) [8]. A
dysfunctional immune system, however, provides an oppor-
tunity for conidia to germinate and invade lung tissue [6,9].
Candida albicans is a normal component of mucosal flora,
which in immunocompromised individuals can transform
itself into an invasive pathogen [10]. The primary defense of
the mucosal flora is formed by PMNs [11], which are rapidly
recruited to the sites of infections [12] and phagocytose the
fungus in the tissue environment of microabscesses [13].
The process of A. fumigatus phagocytosis has been analyzed
in detail using AMs from mice [7] or humans [14,15],
macrophage cell lines [15,16], or DCs from the mouse [17].
In addition, the interaction of PMNs with hyphae in the
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Author Summary

Aspergillus fumigatus and Candida albicans are the most common of
all human pathogenic fungal germs. Normally, inhaled Aspergillus
spores are destroyed by alveolar macrophages and polymorphonu-
clear neutrophils (PMNs), both of which are lung phagocytes, i.e.,
cells that kill inhaled microbes by ingestion. In contrast, C. albicans is
a normal constituent of the human gut flora that is controlled by
tissue-resident PMNSs. If immune control is lost, both fungi grow into
the surrounding tissue and cause life-threatening infections. To
investigate how phagocytes function in the disparate environments
of lung air sacs (lacking a definite matrix-composition [two-
dimensional (2-D)]) or mucosal tissues (providing a three-dimen-
sional [3-D] space), the authors mimicked 2-D and 3-D environments
and analyzed the process of ingestion, called phagocytosis, by PMNs
and other phagocytes. Phagocytosis was a dynamic cellular process
where distinct cells showed vastly different behavior. The environ-
mental setup (2-D versus 3-D) had a profound impact on the cell’s
ability to phagocytose. Aspergillus conidia were much better
ingested in 2-D systems, while Candida yeasts were only ingested
in 3-D systems, even if the other pathogen was present. This was
true for different 2-D and 3-D systems and for both cells of mice and
humans. Besides providing a comprehensive analysis of the cellular
movements underlying phagocytosis, the results also suggest an
evolution of phagocytes to optimally recognize fungal pathogens in
the environment of natural infection.

presence of platelets has been studied [18]. However, none of
these studies enabled the direct observation of the process
itself by live cell imaging, since the available techniques did
not allow the direct distinction between phagocyte and fungal
components. Also, live cell imaging of phagocytosis of Candida
has not been performed to our knowledge. Cell motility,
however, is an essential requirement for the function of
phagocytes. Defects in the cellular dynamics as a basis for
defects in function are well known. One such example is that
inhibition of the cytoskeleton of DCs [17] or AMs [15] severely
inhibits the ability of these cells to phagocytose Aspergillus
conidia. And genetic defects in actin polymerization are
associated with increased susceptibility to infections [19].

Furthermore, it is generally assumed that physical contact
between a phagocyte and a conidium inevitably leads to
phagocytosis of the latter. Thus, it is unclear why previous
studies addressing phagocytosis of A. fumigatus in vitro only
found 50% of the phagocytes carrying conidia, while 50% of
cells did not [7]. In addition, although PMNs are not very
efficient at phagocytosing A. fumigatus in vitro, patients
suffering from neutropenia are at a higher risk for develop-
ing invasive aspergilloses. Thus, mechanisms distinct from
phagocytosis must exist, which allow PMNSs to control fungal
growth in the lung.

Finally, until now studies on phagocytosis have ignored the
location in the body at which this process occurs. One of the
major features of in vivo phagocytosis is its almost ubiquitous
three-dimensionality, in other words, the spatial arrangement
of extracellular matrix proteins that acts as a scaffold for the
attachment and movement of cells [20]. While conventional
experimental setups, where cells are cultured in dishes
covered with a liquid medium, constitute a two-dimensional
(2-D) system that does not allow migration in space, we mimic
more physiological conditions by providing a three-dimen-
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Phagocytosis of Fungi in 2-D and 3-D

sional (3-D) collagen matrix as a substratum for cell migration
and cell-cell communication [21,22]. We have previously used
this system to demonstrate strong differences in the
interaction of T cells with antigen presenting cells in 3-D
versus 2-D environments [23]. Subsequently, the results have
been confirmed by us [24] and others [25-27] in true
lymphatic tissue.

However, in vivo 2-D movements can also be observed, and
phagocytosis of pathogens at the surface of a lung alveolus
[28] is a prominent example of this. The inner part of an
alveolus is a surface composed of type-I epithelial cells, which
is covered by a water-based hypophase and a thin film of
surfactant produced by type-II epithelial cells. Hypophase
and surfactant form the surface-lining layer (SLL) [29]. The
SLL is not a solid, migration-supporting scaffold but rather is
thin (in the range of 50 nm [30]) and devoid of prominent
internal structures [30-32]. Inhaled particles such as A.
fumigatus conidia are drawn beneath the SLL, pressed to the
epithelial surface by surface tension, and then are phagocy-
tosed [30,33]. Normal cellular motility is essential for this
process, as impaired motility in the thick mucus isolated from
the lungs of individuals with cystic fibrosis is associated with
decreased phagocytic activity of PMNs [34]. In contrast,
alveolar DCs, the major antigen-presenting cells of the lung,
must be able to phagocytose conidia from the interstitial
tissue between alveoli, which is composed of collagenous
fibers [35], and thereafter migrate from the lung into draining
lymph nodes to present pathogenic antigens to T cells [17].

Thus, this study was performed to obtain a dynamic picture
of the phagocytosis of A. fumigatus and C. albicans by the main
immune-effector cells. The goal was to directly compare the
phagocytic efficiency on a per cell basis to elucidate the fate
of individual fungal elements and finally study the role of
environmental cues on the observed mechanisms.

Results

Generation of an A. fumigatus Strain Expressing DsRed2

The labeling of C. albicans with carboxyfluorescein-succini-
midyl-ester (CFSE) was a reliable procedure and yielded
bright and stable fluorescent cells useful for live cell imaging
(Figure 1H). However, the same protocol did not work
sufficiently for A. fumigatus. Thus, we generated a strain of A.
Jfumigatus with bright and stable endogenous fluorescence by
producing the red fluorescent protein DsRed?2 using the acuD
promoter, which gave conidia with strong red fluorescence,
and which is differentially regulated in hyphae of A. fumigatus
[36].

The 5’ sequence, including the ATG start codon and
codons encoding some N-terminal amino acids of the
isocitrate lyase gene acuD, was fused in frame with the DsRed2
gene. All strains with an integration of the acuDp-DsRed2
plasmid exhibited detectable fluorescence well. One of the
strains, designated AcuD-DsRed2-9, was selected for further
investigations. Southern analysis revealed that the strain
contained two copies of the plasmid integrated at ectopic
sites into the genome (unpublished data).

The expression of the DsRed2 gene fusions was monitored
by growing the transformants in Aspergillus minimal medium
(AMM) for 7 h (germlings), or 16 h (hyphae), and on AMM
agar plates for 5 d with different carbon sources at 37 °C.
Different developmental stages of A. fumigatus, i.e., conidia,
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Figure 1. Fluorescence of A. fumigatus and C. albicans Strains Under Different Growth Conditions

A transgenic strain of A. fumigatus expressing DsRed2 under the control of the isocitrate lyase promoter (acuDp) was generated. To investigate the
intensity of fluorescence as well as the dependency of the transgene expression on the carbon source, A. fumigatus was cultivated in AMM containing
either glucose (A, C, and F) or ethanol (B, D, and E) as the sole carbon source. Different developmental stages were analyzed by light (panels 1) and
fluorescence microscopy (panels 2). Resting conidia were derived from sporulating cultures on AMM agar plates containing glucose (A). Conidia were
incubated in AMM for 7 h and 16 h to yield germlings (B and E) and hyphae (C and D), respectively. Identically treated wild-type conidia/hyphae are
shown in (D). Fluorescence was observed irrespective of the carbon source in resting conidia. By contrast, germlings and hyphae only showed
fluorescence when grown on ethanol. To test whether phagocytosis could activate the acuD promoter, we observed conidia germinating within
macrophages 6 h after phagocytosis by J774 macrophages (G). An overlay is shown of the transmission light image, a DAPI stain for the nucleus (blue)
and the red fluorescence of germinating conidia (G). To obtain green fluorescent C. albicans yeast cells, a number of cells were stained with the green
cytoplasmic dye CFSE. A transmission light image (H1) and a fluorescence image (H2) of a fresh preparation of CFSE" C. albicans yeast cells are shown.

Bar =5 pum.
doi:10.1371/journal.ppat.0030013.g001

germlings, and hyphae, were studied. Conidia of AcuD-
DsRed2-9 were derived from sporulating cultures on AMM
agar plates and displayed strong fluorescence of stably
deposited DsRed?2 irrespective of the carbon source used
(Figure 1A shows glucose, unpublished data with ethanol as
carbon source). In contrast to conidia, fluorescence of
germlings and hyphae was dependent on the carbon source.
Strong fluorescence was observed in germlings and hyphae
during cultivation on ethanol (Figure 1B and 1E). Cultivation
of the fungus on glucose only led to faint, residual
fluorescence in germlings (Figure 1C) whereas hyphae showed
no fluorescence (Figure 1F), as did conidia or hyphae of the
wild-type controls (Figure 1D). The observed slight fluores-
cence of germlings was possibly due to diffusion of the stable
DsRed2 from red conidia into germlings. The carbon source-
dependent expression pattern of DsRed2 observed here,
verified that the isocitrate lyase promoter is exclusively active
during growth conditions that require the glyoxylate cycle,
i.e.,, with ethanol or C2-generating carbon sources. Further-
more, bright fluorescence was observed when the conidia
germinated in macrophages (Figure 1G), suggesting that
isocitrate lyase plays a significant role while growing in
macrophages.
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Live Imaging of DsRed2-Labeled Conidia Interacting with
the Major Phagocytes Demonstrates Strong Influence of
the Spatial Dimension of the Environment on
Phagocytosis

Analysis of living cells by time-lapse microscopy and single-
cell tracking showed that despite dynamic lamellipodia at the
cell perimeter, neither AMs nor J774 cells migrated with a
high velocity in either 2-D or 3-D environments (Figure 2A).
This is in accordance with our earlier data on macrophage
migration [21]. PMNs and DCs, in contrast, efficiently
migrated in both 2-D and 3-D environments; however,
migration in the 3-D environment was somewhat slower than
that in the 2-D environment. The percentage of cells in a
tracked population migrating at any given time (activity) was
significantly higher for AMs, J774 cells, and DCs in 2-D versus
3-D systems. Conversely, a significantly higher number of
PMNs was found to be more mobile in 3-D systems than in 2-
D systems (Figure 2B). By analyzing tracks of single cells, we
found that the migration of immune cells was almost
perfectly random in all directions (Figure 2C and 2D).

The interaction of phagocytes with conidia of A. fumigatus
was a highly dynamic process. In 2-D environments, actively
migrating PMNs and DCs could be observed touching and
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Figure 2. The Migration of Phagocytic Cells in 2-D and 3-D Environments

Unstimulated cells (except J774 cells, which were stimulated overnight with 2.5 U/ml interferon-y before use) were embedded along with A. fumigatus
conidia within 3-D collagen matrices or within a 2-D liquid based chamber, and cell movements were recorded for 2 h by time-lapse video microscopy.
The migration of 40 to 60 individual cells for each cell type was quantified by computer-assisted, single-cell tracking.

(A and B) The average velocity (in um/min) (A) and activity (percentage of migrating cells at a given time point) (B) were calculated from the tracks and
are shown here as a comparison between different cell types. Data represent the average of three independent experiments.

(C) Representative tracks of 40 PMNs were analyzed in a 3-D collagen matrix or in a 2-D media-based system.

(D) The same cell tracks as depicted in (C) have been redrawn to artificially start at the center of the graph, and each individual step in each track was
analyzed for its length and orientation within the four quadrants. This made it possible to measure the distance of all steps that were made into each
quadrant. The numbers indicate the percentage of the total distance covered by all tracked cells in each of the four quadrants in 3-D and 2-D systems,
showing almost random migration (perfect random migration would result in 25% distance in each quadrant). **, p < 0.01; n.s., not significant. Error

bars represent standard deviation (SD).
doi:10.1371/journal.ppat.0030013.g002

phagocytosing multiple conidia within 1.5 h of observation
(Figure 3A; Videos S1 and S2). Phagocytosis by AMs was less
dynamic. Here, cells produced slight membrane protrusions
towards nearby conidia before ingesting them (Figure 3A;
Video S3). The phagocytosis of the macrophage cell line J774
was morphologically very similar to that of AMs. Here, we also
observed that a single successful phagocytosis event could
prime cells for more rapid additional phagocytosis events
(Video S4).

However, when transferred into a 3-D tissue-based envi-
ronment, PMNs, AMs, and J774 cells were impaired in their
ability to phagocytose conidia. This was observed despite
frequent touching that could even lead to a slight displace-
ment of individual conidia (Figure 3B; Video S5). DCs, in
contrast, were equally efficient at ingesting conidia in 3-D as
compared with the 2-D environment (Figure 3B; Video S6). A
quantification of these phenomena showed that DCs were the
most efficient cells for the phagocytosis of conidia, both in 2-
D and 3-D environments, while all other phagocytes
efficiently phagocytosed in a 2-D environment but were
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severely limited in their capacity for phagocytosis in 3-D
(Figure 3C).

Dragging as a Major Mechanism for the Interaction of
PMNs and DCs with Conidia of Aspergillus

A frequent characteristic of phagocyte-conidium interac-
tion was the dragging of conidia over long distances without
obvious phagocytosis. This was especially pronounced in
PMNs in 2-D environments and, to a lesser extent, also with
DCs (Figure 4A; Videos S7 and S8). The dragging of multiple
conidia by a single PMN often led to the formation of large
aggregates of nonphagocytosed conidia in the center sur-
rounded by several PMNs on the periphery (Figure 4A; Video
S7). High-resolution electron microscopy showed that drag-
ging cells could generate surface extensions that were
reminiscent of phagocytic cups to individual conidia, while
other conidia on the same cell were merely attached to the
cell surface without the induction of membrane protrusions
(Figure 4B). Three dimensional reconstructions of confocal z
stacks of PMNs incubated with conidia for 1 h clearly showed
conidia completely internalized, and those conidia simply
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Figure 3. Phagocytosis of A. fumigatus Conidia by Different Phagocytes Is Dependent on the Dimensionality of the Environment

(A) A pure fraction of immune cells and conidia was incorporated in a 2-D liquid-based system and subjected to time-lapse video microscopy. Panels
show ingestion of conidia (marked by red arrows) by PMNs, AMs, and DCs. All cells were imaged over a period of 3 h.

(B) Image sequences from PMNs, AMs, and DCs shown with A. fumigatus conidia in a 3-D collagen matrix. The left column time series displays the
interaction of a red A. fumigatus conidium (indicated by red arrow) with a PMN and the latter’s inability to ingest or drag the conidium despite contact.
The middle column shows the unsuccessful interaction of an AM over a period of 2 h. The right column shows the efficient uptake of four conidia by a
DC during a 3-h period. Bar = 25 um.

(C) A histogram quantitatively showing the influence of the environment (3-D, solid bar; 2-D, white bar) on the phagocytic ability of different cell types.
The number of cells that had internalized conidia was counted 30 min after the start of imaging. The data represent the average of the percentage of
cells internalizing conidia from three independent experiments, representing a total of 433 DCs in collagen, 356 DCs in media, 77 AMs in collagen, 229
AMs in media, 706 PMNs in collagen, 458 PMNs in media, 367 J774 cells in collagen, and 212 J774 cells in media. *, p < 0.05; **, p < 0.01; n.s., not

significant. Error bars indicate SD.
doi:10.1371/journal.ppat.0030013.g003

attached to the surface of a cell (Figure 4C; Video S9). Due to
their inherently low mobility, neither AMs nor J774 cells
dragged conidia.

The Environment Directly Influences Touching, Dragging,
and Phagocytosis of Individual Cells

To study the frequency of conidium-phagocyte encoun-
ters, we analyzed the physical interaction of single cells with
individual conidia in time-lapse video sequences (Figure 5).
These analyses showed that touching rates between all types
of phagocytes and conidia were higher in 2-D than in 3-D
environments, reaching mean values between one to three
contacts per cell per hour (Figure 5A). Individual DCs were
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found touching as many as ten conidia in 1 h in 2-D systems
(Figure 5A). The percentage of cells touching conidia was
consistently higher in 2-D environments, although, with the
exception of AMs, these differences were not large enough to
reach the level of significance (Table 1).

The continuous filming of cells interacting with conidia
also allowed the analysis of the fate of touched conidia. Thus
we calculated the rate of touches (phagocytosis touching
index [PTI]) that finally ended in successful phagocytosis as
shown in Videos S5-S8. These analyses showed, that for J774
cells, the PTI was lower in 3-D compared with that in 2-D
environments. For AMs, the PTI in the 3-D environment was
zero, meaning that none of the observed touches between
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Figure 4. Dragging Is a Major Interaction Type of DC or PMN with Conidia of A. fumigatus

(A) Time series from videos of A. fumigatus conidia and PMNs and DCs in 2-D and in 3-D systems show dragging as an alternative way of interaction
between phagocytes and A. fumigatus conidia. The conidia are dragged by the PMNs in the form of a cluster. DCs are able to drag conidia over several
micrometers (shown in green). Bar =25 pm.

(B) Electron microscope images of DCs (i) and (ii) and PMN (iii) and (iv) are shown interacting with conidia, which were pseudocolored blue to enhance
contrast. Dragging and ongoing phagocytosis as seen in time-lapse imaging is evident in the form of several conidia attached to a single DC or PMN
(shown here in green arrows), as well as in the process of being incorporated into (indicated by red arrows) a single DC or PMN in the high resolution
electron microscopy image (Bar=5 pum). (ii) shows an attached conidium to a DC, and (iv) shows a conidium being phagocytosed by a PMN (Bar =2um).
(C) Attached and internalized conidia associated with the same PMN. PMNs were fixed and permeabilized during interaction with DsRed conidia.
Subsequently, cells were stained with Alexa 488 labeled phalloidin. Two-color confocal microscopy was used to obtain a z stack covering the entire cell
thickness. Shown is the transmission light image (i) as well as two views of a voxel rendering of composite red (fungus) green (actin) fluorescence
images. (ii) corresponds to the same view as (i) and (iii) corresponds to a 180-degree rotation in the plane of the paper showing that five conidia are
entirely covered by actin cytoskeleton pockets, while the sixth conidium is in the process of being phagocytosed as depicted by actin protrusions
(arrowheads). These protrusions correspond to those depicted in (B) (iv). The conidium marked with an asterisk is not visible in the fluorescence image
due to the loss of fluorescence. Also refer to Video S9.

doi:10.1371/journal.ppat.0030013.9004

AMs and conidia led to phagocytosis. For PMNs, fewer cells
with an intermediate PTI were found in 3-D environments as
compared with those in 2-D environments. At the same time,
cells with a PTI of one remained equally as frequent. These
differences, however, were not significant. Also, the PTI
values of DCs did not change significantly with the environ-
ment (Figure 5B).

In the same way, we also analyzed the rate of touches that
were followed by dragging the conidia rather than by
phagocytosis (dragging touching index [DTI]). Here, the
efficient dragging of conidia by PMNs in the 2-D environment
was almost completely lost in the 3-D environment (Figure
5C). These data indicated that after transfer from a 2-D into a
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3-D environment, physical contact formation between PMNs,
AMs, and J774 cells with conidia was impaired, leading to
strong defects in dragging and phagocytosis by these cells.

Phagocytosis of C. albicans Is Optimal in 3-D
Environments

AMs are exclusively located and function in the lungs,
whereas PMNs can exert their activity in all tissues. Thus, we
asked whether the defect in productive interaction with A.
Jfumigatus conidia in 3-D environments was a general inability
of PMNs to function in 3-D environments, or whether the
type of pathogen determined cellular activity. Therefore, we
measured the phagocytosis of the tissue-invading fungus C.
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Figure 5. The Physical Interaction of A. fumigatus Conidia and Several Phagocytes Is Strongly Influenced by the Dimensionality of the Environment

(A) Column scatter plots showing the number of contacts between phagocytes and conidia per hour in 2-D and 3-D environments. Each dot represents
all observable contacts of an individual cell with conidia within a given video. As observation times for single cells vary greatly due to movements in and
out of focus, values have been normalized on the average number of contacts per hour. Individual conidia touching cells as detected in (A) were
subsequently followed for their fates. This could be simple release, dragging, or phagocytosis.

Dots in (B) show the rate of conidia that have been successfully phagocytosed relative to the number of conidia that have been touched by a cell (PTI).
Each dot represents the value for one single cell. All cell types have been investigated for their PTl in 2-D and in 3-D environments.

(C) DTl values for the four cell types in 2-D and in 3-D environments. Evaluation of the DTl is analogous to the evaluation of the PTI with dragging as the
physical interaction scored.

Significance values (indicated over 3-D figures) have been obtained using the Mann-Whitney nonparametric U-test except where written in italics. Here
the Mann-Whitney U-test was not applicable, and p-values were derived from the Wilcoxon rank sum test. Alternately, the Mann-Whitney U-test was
performed after assigning arbitrary small values to the 0 entries. This yielded results similar to those of the Wilcoxon rank sum test (p-values not shown).

The horizontal bars in each column scatter plot indicate median. The vertical lines represent interquartile ranges.

doi:10.1371/journal.ppat.0030013.g005

albicans by PMNs and the macrophage cell line RAW 264.7,
which is derived from peritoneal (i.e., tissue-associated)
macrophages [37]. Live cell imaging showed intense contacts
of both PMNs and RAW cells with yeast cells of C. albicans in 2-
D (Figure 6A; Videos S10 and S11) as well as in 3-D
environments (Figure 6B; Videos S12 and S13). Nevertheless,
only a few PMNs or RAW cells were found carrying C. albicans
intracellularly in the 2-D environment, while the number of
cells carrying single or multiple yeast cells in 3-D systems was
almost four times higher when compared to the 2-D systems
(Figure 6C). Videos also showed the tendency of both PMNs
(Video S12) and RAW cells (Video S13) to catch C. albicans
cells even from great distances, while frequent contacts
between phagocytes and C. albicans in 2-D environments led
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to no apparent physical association or a directional change of
morphology of the cells.

Due to the previous observation that one completed
phagocytosis event could increase the frequency of subse-
quent events (Video S4), we reasoned that successful
interaction with one pathogen might enable PMNs to
phagocytose the other pathogen en route, even within the
“wrong” environment. To test this assumption, we set up
competitive phagocytosis assays, where PMNs were allowed to
interact with a mixture of A. fumigatus conidia and C. albicans
yeast cells in both 2-D and 3-D environments. Again, imaging
showed intensive contacts of PMNs with both fungal elements
in both environments. However, in 2-D environments, PMNs
selectively chose A. fumigatus conidia in a manner indistin-
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Table 1. Percentage of All Cells with at Least One Contact with A. fumigatus Conidia in 2-D and 3-D

Cell Type Cells Counted Percentage Cells with > One Contact p-Values
2-D 3-D 2-D 3-D t-Test MWU-Test
PMN 66 81 79.7 = 17.5 64.6 = 27.5 0.2163 03929
AM 63 33 787 £ 195 38.1 £ 56 0.0035 0.0357
1774 37 79 883 = 12.5 51.1 = 283 0.0455 0.1143
DC 38 57 95.8 = 7.2 794 * 177 0.0990 0.2286

Data is representative of three independent experiments.
t-Test, Student’s t-test; MWU-Test, nonparametric Mann-Whitney U-test.
doi:10.1371/journal.ppat.0030013.t001

guishable from the situation with conidia alone (Figure 7A;
Video S14), while in 3-D environments very efficient
phagocytosis of C. albicans occurred despite clearly detectable
contacts to nearby A. fumigatus conidia by the same PMN
(Figure 7B; Video S15). A quantification of these results
showed that even in competitive phagocytosis assays, indi-
vidual PMNs could phagocytose one pathogen very efficiently
while simultaneously ignoring the other (Figure 7C).

It was possible that the contact with collagen fibers, rather
than the dimensionality, was responsible for the observed
differences in phagocytosis. To test this assumption, we
analyzed the phagocytosis of either A. fumigatus or C. albicans
by PMNs on slides coated with collagen. Here, cells were in
intimate contact with collagen fibers, but were not embedded
three-dimensionally within the matrices. Interestingly, on
collagen-coated slides, PMNs were as efficient in interacting
with A. fumigatus conidia as observed before in our conven-
tional (plastic dish-based) 2-D system. Accordingly, C. albicans
yeast cells could not be phagocytosed by PMNs on collagen-
coated slides (Figure 7D). This suggested that it was indeed 3-
D embedding within collagen that caused the observed
differences in interaction/phagocytosis. The next question
was whether this was a specific function of 3-D gels based on
type-I collagen only. To test this, we measured interaction of
PMNs with A. fumigatus conidia or C. albicans yeast cells in 3-D
matrices composed of Matrigel (a basement membrane
entirely devoid of type-I collagen). Its main constituents are
laminin and type-IV collagen. Confirming our previous
assumptions, the interaction of PMNs with both fungal
pathogens within 3-D matrices composed of Matrigel was
indistinguishable from what had been observed before within
3-D collagen (Figure 7E). In addition, when incubated on
slides coated with Matrigel (analogous to the experiment
depicted in Figure 7D), the cellular behavior again was
identical to what had been observed in the other 2-D systems
(unpublished data). These results suggest that it is indeed the
dimensionality of the environment that critically influences
the interaction of phagocytes with fungal pathogens.

Finally, it was important to investigate whether the
observed phenomena were restricted to mouse phagocytes
only. To analyze this, we investigated the interaction of
human peripheral blood PMNs from three independent
healthy donors with both fungal pathogens and in 2-D and
3-D environments. We found that the behavior of human cells
closely mimicked the murine PMNs, in that phagocytosis of A.
fumigatus was much better in the 2-D compared to the 3-D

@ PLoS Pathogens | www.plospathogens.org

environment. We also noted that the interaction with C.
albicans was exactly the opposite (Figure 7F). Thus, the
dependence of phagocytes, at least of PMNs, on the
dimensionality of the environment appears to be a general
phenomenon not restricted to only mouse cells.

Discussion

In this study we analyzed the cellular dynamics underlying
the interaction and phagocytosis of two important fungal
pathogens, A. fumigatus and C. albicans, using the major
phagocytes of the mammalian body. Continuous imaging,
which is indispensable for these studies, requires the reliable
identification of both cells and fungi under constant light
exposure. Expression of DsRed2 under control of the acuD-
promoter resulted in bright, stable fluorescence in conidia of
A. fumigatus, which is necessary for long-term live-cell imaging
analyses. At the same time, this transgenic fungus confirmed
our earlier data on the environmental conditions leading to
activity of the acuD-promoter [36], and thus adds additional
proof to the efficacy of the fluorescent reporter gene strategy
for studies on the activity of novel promoter elements in
filamentous fungi [38]. The fact that the acuD-promoter was
active during germination of conidia and outgrowth of
macrophages made this promoter a valuable tool for
following phagocytosis of conidia in cells.

The acuDp-DsRed2 transgenic A. fumigatus made it possible
to capture dynamic pictures of the phagocytosis process of
conidia by the main cell types that interact with the fungus
during natural infection [39]. This also made it possible to
evaluate the fate of individual conidia and cells over a period
of several hours and, finally, an assessment of phagocytic
efficiency on a per cell basis could be conducted. The data
indicate that the majority of cells were not able to
phagocytose each conidium they touched. Although a
number of cells, especially among AMs, were 100% successful
(each contact led to phagocytosis of the touched conidium), a
larger fraction of contacts between phagocytes and conidia
did not end in phagocytosis, but rather in the release of
conidia by the phagocytes. This could be observed not only
with cells that had not phagocytosed any conidium, but also
with cells that had already successfully phagocytosed conidia
before. Hence, phagocytosis is not always the consequence of
physical contact between a phagocyte and a pathogen, but
could result from other, yet undisclosed, factors within the
phagocyte and pathogen that need to coincide for phagocy-
tosis to occur. This might explain why, in conventional
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Figure 6. Phagocytosis of C. albicans by PMN and RAW Cells Is Enhanced in 3-D Environments

(A) Image sequences from videos with PMN and RAW cells interacting with C. albicans in a 2-D system. Bar =25 um. The images show several contacts
between the cells and the fungus (red arrows) without any ingestion or dragging.

(B) Time series showing efficient uptake of C. albicans (red arrows) by PMN and RAW macrophages. Image sequences from videos with PMN and RAW
cells interacting with C. albicans in a 3-D collagen matrix. Bar = 25 pm. Interactions were observed over a period of 3 h.

(C) Quantitative representation of the effect of the environment on the phagocytosis of C. albicans by PMN and RAW cells in 2-D and in 3-D
environments. The number of cells that had internalized C. albicans cells was counted 30 min after the start of imaging. The data represent the average
percentage of cells internalizing yeasts from three independent experiments, representing a total of 241 PMNs in collagen, 187 in media, and 141 RAW

macrophages in collagen, 97 in media. **, p < 0.01. Error bars represent SD.

doi:10.1371/journal.ppat.0030013.9006

phagocytosis assays of conidia, only ~50% of AMs finally
carry conidia [7], and after infection in vivo only 40%-50% of
all airway DCs showed ingested conidia [17].

In addition, live microscopy also detected a novel,
previously unrecognized means of phagocyte-pathogen in-
teraction: the dragging of large numbers of conidial elements
by individual cells without phagocytosing them. This was
especially prominent among PMNs. The dragging of conidia
by highly motile PMNs could lead to the collection of almost
all conidia visible within a given field of view and to the
formation of aggregates of conidia surrounded by highly
motile PMNs. By this means, PMNs, which are not as efficient
in phagocytosing conidia as AMs, might take control over
large numbers of inhaled conidia. These aggregates have been
isolated recently from infected murine lungs and shown to be
associated with large amounts of reactive oxygen species [40],
which could be a possible mechanism employed by PMNs to
control Aspergillus infection [41]. Future work is needed to
show whether such aggregates between PMNs and conidia can
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also be isolated from the lungs of humans exposed to
Aspergillus conidia. The lack of PMN-Aspergillus aggregates
in patients succumbing to the infection might explain why
neutropenia is an especially dangerous condition for in-
fection with A. fumigatus.

The most important finding of this study was the strong
dependence of the phagocytic efficiency of PMNs and AMs
(excluding DCs) on the dimensionality (i.e., 2-D or 3-D) of the
environment, which was retained irrespective of the presence
or absence of collagen. It is well known that in vivo DCs must
take up conidia from airways and then migrate through the
interstitial lung tissue to reach draining lymph nodes for
antigen presentation to T cells [17,35,42]. Thus, DCs must be
able to function in both environments. However, PMNs and
AMs interact with inhaled conidia in the lung alveolus on the
surface of the alveolar epithelium beneath a very thin, liquid
SLL [30], a situation representing a typical 2-D environment.
Nevertheless, the ability to phagocytose C. albicans shows that
PMNs are not generally unable to function in 3-D environ-
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Figure 7. Phagocytosis of A. fumigatus and C. albicans |s Dependent on the Dimensionality of the Environment

PMNs were incorporated along with A. fumigatus conidia and C. albicans yeast cells in the same system (2-D or 3-D), and the interactions were observed
over a period of 3 h.

(A) A PMN selectively taking up and dragging A. fumigatus conidia despite several contacts with C. albicans yeasts in a 2-D liquid system. Bar = 25um.
(B) Time series of a PMN selectively taking up three C. albicans cells despite touching at least four A. fumigatus conidia in 3-D (red arrows). Bar =25 um.
(C) Quantitative representation of cells with internalized A. fumigatus conidia or C. albicans yeast cells or both in 2-D or 3-D systems. Data represent the
average percentage of cells carrying conidia and/or yeasts from three independent experiments, representing 140 PMNs in collagen and 217 PMNs in
media with error bars denoting SD. **, p < 0.01.

(D) Quantitative comparison of the percentage of PMNs internalizing conidia or yeasts over collagen coated slides. The graph represents data from
three independent experiments. Error bars denote SD. **, p < 0.001.

(E) Average percentage of PMNs internalizing A. fumigatus or C. albicans in Matrigel (solid bar) and in media (open bar). Data represent the average from
three independent experiments. Error bars indicate SD. **, p < 0.001 for both pathogens in 2-D and in 3-D environments.

(F) Average percentage of PMNs derived from peripheral human blood with internalized conidia or yeasts in 2-D or 3-D systems. Data represent the

average of cells taken from three healthy blood donors, each analyzed for all four conditions. Error bars indicate SD. **, p < 0.001.

doi:10.1371/journal.ppat.0030013.g007

ments. Strikingly, hyphae, the tissue invasive form of A.
fumigatus, were also efficiently attacked by a large number of
PMNs in our 3-D environment (unpublished data). In the light
of these observations, it is tempting to speculate that
phagocytes may have co-evolved with different pathogens or
even with their morphotypes in a way to optimally recognize
them in the environment where the encounter within the
mammalian body is most likely to occur. The ability to
differentiate between C. albicans morphotypes also was
previously demonstrated for DCs [43], albeit only for 2-D
environments. The inability of PMNs to recognize pathogens
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in the inappropriate environment may have important
consequences. For example, mice, which can accept a lung
infection with 2 X 10® A. fumigatus conidia without notable
dysfunction [44], are killed by 5 X 10° conidia when
administered intravenously [45]. Thus, mice are >40 times
as sensitive to the same infection when the infection occurs in
a non-natural environment despite the presence of a large
number of PMNs in the bloodstream. This might also explain
why the transition from a local to systemic infection, which
occurs by hematogeneous spread of A. fumigatus, shows such
high mortality [9].
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Currently, the molecular explanation for these findings is
puzzling. It has been shown that human macrophages can
more efficiently phagocytose and kill bacteria [46] or Candida
[13] in contact with a type-I collagen gel. This was associated
with increased Fc-receptor or complement-receptor-medi-
ated uptake and induction of phagolysosomal fusion after
contact with collagen. However, the same effects obviously
cannot account for the decrease in activity of PMNs against A.
fumigatus in collagen. Generally, the cellular receptors
responsible for ingestion of A. fumigatus by phagocytes are
poorly defined. It has been shown that surfactant is important
for this process [47]. However, since purified cells were used,
participation of surfactant in the processes described here
can be excluded. Previously it had been shown that PMNs
were able to rapidly change their transcriptional profile in
response to the environment [48]. Thus, the de novo
expression, or down-regulation of receptors in 3-D compared
to 2-D environments is likely. The same holds true for the
pathogens themselves. For example, a simple temperature
shift was shown to alter the expression of several hundred
genes in A. fumigatus [49], so it is very likely that genes are
differentially expressed in A. fumigatus after transfer of the
culture from liquid culture into collagen. Such an adaptation
might account for the inability of phagocytes to recognize the
fungus in this environment. The ability to adapt the
transcriptional profile to the environment was also shown
in C. albicans [10,50]. Thus, future work needs to define genetic
alterations in both the pathogen and the phagocyte in
relation to the environment in order to obtain a complete
understanding of the cellular processes underlying dragging,
phagocytosis, and the killing of fungal pathogens in 2-D and
3-D environmental niches.

Materials and Methods

Fungal and bacterial strains. CEA17 is a uracil-auxotrophic A.
fumigatus strain, which encodes a mutated pyrG gene [51]. The A.
Sfumigatus strain AcuDp-DsRed2 was derived from the CEA17 strain
following transformation with plasmid pacuDp-DsRed2-pyrG. The
strain carries two copies of the acuDp-DsRed2 gene fusion integrated
ectopically into the genome. Vectors and plasmids were propagated in
Escherichia coli XL1 Blue MRF' (A(mcrA)183 A(merCB-hsdSMR-mrr)173
endAl supE44 thi-1 recAl gyrA96 relAl lac [F' proAB lacl’ ZAM15 Tnl0
(Tet™)]) (Fermentas, http:/lwww.fermentas.com).

Fungal cultivation conditions. For the cultivation of A. fumigatus
strains, AMM with 1% (w/v) glucose or 50 mmol ethanol as a carbon
source was used [52]. Conidial suspensions were obtained from AMM
agar plates after 5 d of cultivation [52]. Fungal and bacterial strains
were grown at 37 °C. Spore suspensions were prepared as described
without the addition of antibiotics [52]. E. coli strains were grown on
LB agar plates or in LB medium at 37 °C. Ampicillin was added to give
a final concentration of 100 pg/ml. C. albicans (based on SCb314,
obtained from R. Calderone, Georgetown University) was grown to
stationary phase in YPD medium (Sigma, http://www.sigmaaldrich.
com/Brands/Sigma.html) at 30 °C with orbital shaking at 160 rpm. For
fluorescence labeling, 1 X 108 yeasts were harvested by centrifugation
(16,000g, 5 min, 24 °C), washed twice in 1 ml PBS, and stained with
CFSE (0.5 pmol in 1 ml PBS/0.1% DMSO) (Invitrogen, http:/fwww.
invitrogen.com) for 1.5 h at 37 °C. Yeast cells were washed three times
in PBS to remove remaining dye before use.

Generation of recombinant plasmids. An A. fumigatus sequence
containing the promoter from the acuD gene encoding isocitrate
lyase [36] was used. The pDsRed2 vector was obtained from
Clontech (http:/lwww.clontech.com). The A. fumigatus pyrG gene was
used as a selection marker [53]. The pyrG gene was synthesized by
PCR amplification using the oligonucleotides pyrG_Afum__notl__1
(6’-GCGGCCGCACAGCTATGCGACCG-3') and pyrG_Afum__no-
t__2 (5'-GCGGCCGCATATCTCTGGTTGGAG-3"), which encode
Notl restriction sites (underlined) and chromosomal DNA of A.
fumigatus as the template. For generation of the acuDp-DsRed2 gene
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fusion the 5’ sequence of the A. fumigatus isocitrate lyase gene (942
bp), including the ATG, was amplified by PCR, using oligonucleo-
tides AfAcuD__upst__Bam (5'-CGGATCCGAAGGACAGGAAC-3")
and AcuD__rev__Kpnl (5'-CTGGATCCAAACCCATTGTGACAGGT
ATGAAGAGG-3") and chromosomal DNA of A. fumigatus as the
template. The oligonucleotides encoded BamHI and Kpnl sites at
the 5" and 3’ ends, respectively (underlined). The PCR fragment was
cloned into the pCR2.1 vector. The resulting plasmid was digested
with BamHI and Kpnl. The DNA fragment obtained was ligated
into plasmid pDsRed2, which had also been digested with BamHI
and Kpnl, to give the plasmid pacuDp-DsRed2. The PCR amplified
pyrG gene was integrated into plasmid pacuDp-DsRed2 by ligation
into its single Notl site to yield plasmid pacuDp-DsRed2-pyrG
(Figure 1B). Transformation of A. fumigatus was performed as
described [H4].

Fluorescence and light microscopy. Microscopic analyses shown in
Figure 1 were performed with a Leica DM4500 B microscope with a
filter set of BP 546/12 for excitation and BP 605/75 for emission.
Images were obtained and processed with Leica Application Suite
2.34 R2 (Leica Microsystems, http:/lwww.leica-microsystems.com).
Fluorescence analysis of Figure 1G was performed with an Axiovert
200 M/LSM 510 META laser scanning confocal microscope (Zeiss,
http:/lwww.smt.zeiss.com). DsRed2 and 4',6-diamidino-2-phenylin-
dole-dihydrochloride (DAPI) were excited by a laser line of 542 and
364 nm, respectively. Fluorescence signals were detected using a 385-
nm long pass filter for DAPI and by 560-615-nm band pass filters for
DsRed2. Images were acquired using the LSM-510-META 3.2 software
(Zeiss). Figures were assembled with Adobe Photoshop (http:/fwww.
adobe.com).

Confocal microscopy. PMNs and DsRed A. fumigatus conidia were
mixed at a ratio of 1:5 and incubated for 1 h over 12-mm poly-L-
lysine—coated cover slips. Cells were fixed in 4% paraformaldehyde
(PFA) (Sigma) at (pH 7.4) for 20 min at room temperature and then
washed three times with prewarmed PBS. The cells were then
permeabilized with 4% PFA and 0.1 % Triton X-100 (Sigma). After
washing with PBS, the cells were blocked with a solution of PBS
containing 1% BSA and 5% horse serum (Sigma). Staining for actin
cytoskeleton was done using Alexa 488 labeled phalloidin (2 U/ml)
(Molecular Probes, http://probes.invitrogen.com) for 45 min to 1 h.
Cover slips were mounted on clean glass slides with Mowiol
(Calbiochem, http:/lwww.emdbiosciences.com) with 0.01% paraphe-
nylene diamine (Sigma). Cells were imaged with an Olympus LSM
confocal microscope (Fluoview 1000) with a 100-X objective. A 3-D
rendering of confocal z stacks was done using the Volocity software
package (version 4.0; Improvision, http://www.improvision.com).

Cell preparation. BALB/c bone marrow DCs were generated in 8-d
cultures as described [55]. Cell lines secreting murine granulocyte-
macrophage colony-stimulating factor (GMCSF) or IL-4 were kindly
provided by Thomas Blankenstein from the Max Delbriick Center for
Molecular Medicine (MDC), Berlin (http://www.mdc-berlin.de). PMNs
were obtained by positive selection from mouse bone marrow (BM).
BM cells were prepared by flushing the femurs and tibiae of BALB/c
mice with PBS + 1% FCS (vlv). Following erythrocyte lysis, the cells
were incubated with Fc-Block (BD Biosciences, http:/lwww.
bdbiosciences.com) and then subjected to cell sorting by Gr-1-
labeled magnetic particles (clone RB6-8C5, BD Biosciences) following
the manufacturer’s instructions. The purity of the cells was >97% as
determined by FACS analysis. AMs were obtained by washing the
trachea and lungs of BALB/c mice with PBS through a 22G plastic
catheter (Braun, http://www.bbraun.de) to obtain bronchoalveolar
lavage fluid. After erythrocyte lysis, the cells were resuspended in
complete medium supplemented with glutamine, penicillin, and
streptomycin. The cells were kept on ice until use.

J774 cells were cultured in BioWhittaker’'s X-Vivo 15 medium
(Cambrex, http://www.cambrex.com). Before use, the cells were
stimulated overnight with 2.5 U/ml interferon-y (Boehringer In-
gelheim, http:/lwww.boehringer-ingelheim.com). RAW 264.7 macro-
phages [37] (American Type Culture Collection, http:/lwww.atcc.org)
were maintained in RPMI (Gibco, http://lwww.invitrogen.com) con-
taining 10% FCS at 37 °C and harvested by scraping with a rubber
policeman. The cells were subjected to no more than 20 passages.

Human PMNs were derived from the peripheral blood of healthy
volunteers. Briefly, freshly drawn blood was diluted with HBSS
without CaCly, and MgCl, (Gibco) and layered over PolymorphPrep
(Axis-Shield PoC AS, http:/lwww.axis-shield.com) according to the
manufacturer’s instructions. PMNs were carefully removed and
resuspended in RPMI supplemented with 5% pooled human serum
(Chemicon, http:/lwww.chemicon.com) following washing and eryth-
rocyte lysis with ACK buffer (Cambrex). All experiments with human
cells were done with 5% (v/v) pooled human serum.
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For outgrowth experiments of germinating conidia from macro-
phages (Figure 1G), J774 macrophages were cultured in RPMI
complete medium (Cambrex) + 5% (vlv) FCS (= RPMIF). Macrophages
were incubated with a ratio of two conidia per macrophage for 2 h.
The cells were washed extensively with RPMIF and incubated for 4 h
with RPMIF containing 25 mmol imidazole. The cells were then fixed
with 3.8% (vlv) para-formaldehyde for 10 min at room temperature
and stained with DAPL The samples were analyzed with fluorescence
microscopy. X

Time-lapse video microscopy. A total of 1 X 10° purified cells were
mixed with 0.5-1 X 107 filtered (BD Falcon cell strainer) conidia of
strain AcuDp-DsRed2 or 8 X 10° Candida yeasts in 66 pl complete
medium (CM) containing RPMI 1640 supplemented with NEAA (1 X),
FCS (10%, viv), L-glutamine (2 mmol), HEPES (10 mmol), sodium
pyruvate (1 mmol), B-mercaptoethanol (50 pmol), and penicillin/
streptomycin (100 U/ml). The suspension was mixed with 133 pl of
type-1 collagen stock solution (Vitrogen-100; Nutacon, http:/fwww.
nutacon.nl) to a final collagen concentration of 1.7 mg/ml and poured
into a tracking chamber as described [23,24]. Fluorescence and cell
interactions were monitored simultaneously at 37 °C at two frames/
min using an Olympus BX61 microscope with a 60 X LUMPLFL W/IR
(NA 0,9) lens, together with the cellR software (version 2.1) from
Olympus Biosystems (http://www.olympus-europe.com). For observa-
tions in a liquid medium, immune cells and conidia were mixed at a
ratio as mentioned above to a final volume of 200 pl in complete
medium. These cell suspensions were poured into glass chambers, and
microscopy was performed focusing on the bottom of the chamber.
Alternately, imaging of cells and pathogens was carried out over
collagen-coated surfaces that were prepared by applying a very thin
coat of type-I collagen at a concentration of 1.7 mg/ml on a glass slide
to rule out the effect of collagen on 2-D systems. Matrigel basement
membrane matrix (BD Biosciences), containing laminin as a major
component, was used as an alternative for the type-1 collagen matrix
and was diluted with a mixture of cells and respective pathogens in
PBS with 1% BSA at the ratio as mentioned above, so that its final
concentration was 1.7 mg/ml.

Analysis of cell migration, phagocytosis, and dragging efficiency.
Cell migration was analyzed by computer-assisted cell tracking using
a software program developed for this study as described [21,56].
Briefly, the time-lapse video was displayed on a computer screen. For
videos in a collagen matrix, this was a 2-D projection of a 3-D image.
From 40 to 60 cells were then randomly marked to give an unbiased
representation of the cell population. The cell movements were then
followed with a trackball in both media and collagen matrices.
Tracking was stopped in case a cell disappeared within the collagen
matrix or left the field of view. From these tracks cell velocities were
calculated and normalized to the true dimensions of the field of view
and expressed as micrometers per minute. In addition, the
percentage of cells migrating at a given time point were expressed
as activity. The efficiency of phagocytosis and dragging was obtained
as follows: all cells visible in the video sequences were analyzed for
their physical association with conidia (touching). Then it was further
observed whether this touch led to phagocytosis of the conidium,
which could last from a few seconds up to several hours. The ratio of
completed phagocytosis events over the number of observed touches
was calculated as PTI for each cell. The DTI was calculated in a similar
manner for interactions that did not lead to phagocytosis but
nevertheless showed considerable displacement of conidia, often over
hundreds of micrometers.

Electron microscopy. Samples were fixed in 5% formaldehyde and
2% glutaraldehyde in cacodylate buffer (0.1 M cacodylate, 0.01 M
CaCly, 0.01 M MgCls, and 0.09 M sucrose [pH 6.9]) for 1 h on ice and
washed with cacodylate buffer. We coated 12-mm cover slips with
poly-L-lysine (Sigma) for 10 min, and then they were washed in
distilled water and air dried. We placed 30 ul of the fixed samples on a
cover slip and allowed it to settle down for 10 min. Cover slips were
then fixed in 2% glutaraldehyde in cacodylate buffer (5 min) and
washed with TE-buffer (20 mM TRIS and 1 mM EDTA, [pH 6.9])
before dehydrating in a graded series of acetone (10%, 30%, 50%,
70%, 90%, and 100%) on ice for 15 min for each step, critical-point
dried with liquid COy (CPD 30; Balzers, http:/fwww.oerlikon.com) and
covered with a gold film by sputter coating (SCD 40, Balzers), before
being examined in a field emission scanning electron microscope
(Zeiss DSM 982 Gemini) using the Everhart Thornley SE detector and
the inlens detector in a 50:50 ratio at an acceleration voltage of 5 kV.

Statistics. The values for cells phagocytosing conidia in a collagen
culture versus in a liquid culture were analyzed for significant
differences using the nonparametric Mann-Whitney U-test. Several
data contained only zero values, which precluded the use of the
Mann-Whitney U-test. In such cases, the Wilcoxon rank sum test was
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used to estimate significance. All other statistical analyses were done
using the Student’s unpaired ¢-test. p-Values < 0.05 were considered
significant (¥), values < 0.01 highly significant (**).

Supporting Information

Video S1. Polymorphonuclear Cells with Conidia in Liquid Media

A rapidly moving neutrophil can be seen taking up several conidia
over an imaging time of 2 h with one frame every 30 s.

Found at doi:10.1371/journal.ppat.0030013.sv001 (2.5 MB AVI).
Video S2. Dendritic Cells with Conidia in Media

A single DC can be seen here interacting with conidia in liquid media
and taking up two of them. The observation was made over a period
of 3 h with a time lapse of 30 s.

Found at doi:10.1371/journal.ppat.0030013.sv002 (6.2 MB AVI).

Video S3. Alveolar Macrophages with Conidia in Liquid Medium
Two highly active alveolar macrophages can be seen ingesting
conidia. Time lapse is 30 s per frame over 2.5 h.

Found at doi:10.1371/journal.ppat.0030013.sv003 (4.1 MB AVI).
Video S4. J774 Cells with Conidia in Liquid Media

An active J774 macrophage is seen taking up at least three conidia in
a cooperative manner. The J774 cells were treated with 5 ng/ml
interferon-y one night before filming with conidia. The observation
was made over a period of 2.5 h every 30 s.

Found at doi:10.1371/journal.ppat.0030013.sv004 (2.9 MB AVI).
Video S5. PMNs with Conidia in Collagen

A PMN can be seen here touching a conidium and even displacing it,
but eventually moving on without further interaction. Imaging time
was 3 h with one frame every 30 s.

Found at doi:10.1371/journal.ppat.0030013.sv005 (671 KB AVI).
Video S6. Dendritic Cells with Conidia in Collagen

A single DC can be seen here efficiently taking up at least four
conidia in its vicinity.

Found at doi:10.1371/journal.ppat.0030013.sv006 (5.4 MB AVI).
Video S7. PMNs Dragging Conidia in Media

Several neutrophils can be seen dragging clusters of conidia without
actually phagocytosing them. A majority of conidia are attached to
PMNs at the end of the video leading to the formation of an
aggregate. Imaging time was 3 h with a time lapse of one frame every
30 s.

Found at doi:10.1371/journal.ppat.0030013.sv007 (3.1 MB AVI).

Video S8. Dendritic Cells Dragging Conidia in Collagen

A well resolved dendritic cell drags a conidium through a distance of
up to 9 pum. The conidium, however, is not phagocytosed by the cell.
The observation was made over 3 h with one frame every 30 s.

Found at doi:10.1371/journal.ppat.0030013.sv008 (14.0 MB AVI).

Video S9. Conidia Can Be Attached to the PMN Surface or Truly
Internalized

A 3-D reconstruction of a z stack showing a fixed preparation of a
PMN carrying five conidia intracellularly and one on the surface. The
actin cytoskeleton of the PMN is seen here in green, while the conidia
are seen in red.

Found at doi:10.1371/journal.ppat.0030013.sv009 (10.5 MB AVI).
Video S10. PMNs with C. albicans Yeasts in Liquid Media

Neutrophils are not able to take up C. albicans yeasts despite several
contacts in liquid media, in contrast to A. fumigatus conidia. In
addition, no dragging of yeasts is visible here.

Found at doi:10.1371/journal.ppat.0030013.sv010 (2.0 MB AVI).
Video S11. RAW Macrophages with Yeasts in Media

Like neutrophils, RAW macrophages as seen here are unable to take
up yeasts despite contacts. Imaging time was 3 h with an interval of 30
s after each frame.

Found at doi:10.1371/journal.ppat.0030013.sv011 (2.9 MB AVI).
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Video S12. PMNs with C. albicans Yeasts in Collagen

Neutrophils are seen here interacting with C. albicans in collagen
matrix. In contrast to A. fumigatus conidia, most of the PMNs carry
Candida, and a phagocytosis event can be seen at 142.5 min.

Found at doi:10.1371/journal.ppat.0030013.sv012 (6.9 MB AVI).

Video S13. RAW Macrophages with Yeasts in Collagen

A few RAW macrophages can be seen here carrying Candida yeasts. A
large yeast is taken up by a cell at 30 min and is pulled up towards the
cell. The observation was made over a period of 2 h with one frame
every 30 s.

Found at doi:10.1371/journal.ppat.0030013.sv013 (1.6 MB AVI).
Video S14. Competitive Phagocytosis Assay in Media

A neutrophil is seen here with a heavy load of A. fumigatus conidia,
which are dragged along with the cell. The PMN seems to selectively
pick up conidia despite several contacts with Candida yeasts. The
video was made over 2 h with a time lapse of one frame every 30 s.
Found at doi:10.1371/journal.ppat.0030014.sv014 (6.9 MB AVI).

Video S15. Competitive Phagocytosis Assay in Collagen

A neutrophil can be seen here selectively taking up Candida yeasts
despite several contacts with A. fumigatus conidia in a 3-D collagen
matrix. Imaging time was 2 h with an interval of 30 s after every
frame.

Found at doi:10.1371/journal.ppat.0030013.sv015 (2.6 MB AVI).
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