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Abstract: Dysregulation of de novo lipogenesis (DNL) has recently gained strong attention as be-
ing one of the critical factors that contribute to the assessment of non-alcoholic fatty liver disease
(NAFLD). NAFLD is often diagnosed in patients with dyslipidemias and type 2 diabetes; thus, an
interesting correlation can be deduced between high hematic free fatty acids and glucose excess in
the DNL dysregulation. In the present study, we report that, in a cellular model of NAFLD, the
coexistence of elevated glucose and FFA conditions caused the highest cellular lipid accumulation.
Deepening the molecular mechanisms of the DNL dysregulation—RT-qPCR and immunoblot analy-
sis demonstrated increased expression of mitochondrial citrate carrier (CiC), cytosolic acetyl-CoA
carboxylase 1 (ACACA), and diacylglycerol acyltransferase 2 (DGAT2) involved in fatty acids and
triglycerides synthesis, respectively. XBP-1, an endoplasmic reticulum stress marker, and SREBP-1
were the transcription factors connected to the DNL activation. Quercetin (Que), a flavonoid with
strong antioxidant properties, and noticeably reduced the lipid accumulation and the expression of
SREBP-1 and XBP-1, as well as of their lipogenic gene targets in steatotic cells. The anti-lipogenic
action of Que mainly occurs through a strong phosphorylation of ACACA, which catalyzes the
committing step in the DNL pathway. The high level of ACACA phosphorylation in Que-treated
cells was explained by the intervention of AMPK together with the reduction of enzymatic activity
of PP2A phosphatase. Overall, our findings highlight a direct anti-lipogenic effect of Que exerted
through inhibition of the DNL pathway by acting on ACACA/AMPK/PP2A axis; thus, suggesting
this flavonoid as a promising molecule for the NAFLD treatment.

Keywords: acetyl-CoA carboxylase 1; AMP-activated protein kinase; de novo lipogenesis; endoplas-
mic reticulum stress; quercetin; citrate carrier; non-alcoholic fatty liver disease; protein phosphatase
2A; sterol regulatory element-binding protein 1

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) represents a major global public health
challenge and it is the most common chronic liver disease worldwide. It ranges from
simple steatosis without specific inflammatory behaviors to more severe nonalcoholic
steatohepatitis (NASH) and cirrhosis, with a seriously increased risk of developing hepa-
tocellular carcinoma [1]. In NAFLD, triglycerides (TG) are accumulated as lipid droplets
in the cytoplasm. This accumulation is derived from several factors, including dietary fat
ingestion, deregulated free fatty acids (FFAs) release by adipose tissue through lipolysis,

Int. J. Mol. Sci. 2022, 23, 1044. https://doi.org/10.3390/ijms23031044 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23031044
https://doi.org/10.3390/ijms23031044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6890-3674
https://orcid.org/0000-0001-7828-9519
https://doi.org/10.3390/ijms23031044
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23031044?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 1044 2 of 13

and inadequate fatty acid oxidation [2,3]. Recently, it was shown that de novo lipogenesis
(DNL), i.e., the de novo synthesis of fatty acids from carbohydrate sources (mainly glucose),
accounts for at least 35% of lipids present in steatotic cells [4,5]. This aspect undoubtedly
constitutes an evident paradoxical condition according to which new molecules of fatty
acids are synthesized, while an abundance of lipids are available in steatotic cells.

The pathogenesis of NAFLD/NASH is quite complex, although a decisive role is
played by insulin resistance (IR), which is frequently observed in the liver in obese patients
with dyslipidemia and type 2 diabetes mellitus (T2DM) [6]. In IR conditions, hepatic
DNL is stimulated through the activation of sterol regulatory element-binding protein-1
(SREBP-1), the main transcription factor implied in lipogenic gene upregulation in steatotic
hepatocytes [4,5]. Under IR, insulin does not inhibit the synthesis of hepatic glucose, an
anomalous condition that contributes to T2DM development. Together with the activation
of SREBP-1, a high concentration of hematic glucose in T2DM triggers DNL and fatty acids
conversion in TG; thus, causing lipid droplets accumulation in hepatocytes. Consequently,
in obese and diabetic patients, IR sets up a vicious cycle, promoting the development of
both NAFLD and T2DM [7].

Besides IR, the condition of endoplasmic reticulum (ER) stress and the activation of the
unfolded protein response (UPR) pathway have been found as markers of NAFLD [8–12].
Several pieces of evidence suggest a strict correlation between the increased lipogenesis in
NAFLD and the induction of the transcriptional factor XBP-1, which represents one among
the ER stress/UPR effectors [8–12].

In NAFLD, the increased lipid burden is also responsible for increased mitochondria
activity (β-oxidation of free fatty acid, adenosine triphosphate (ATP) production, reactive
oxygen species (ROS) generation), and mass [13]. Over time, mitochondria may become
exhausted, leading to uncoupling, with an increase in oxidative stress due to increased ROS
formation and impaired hepatic insulin resistance, thus favoring NASH development [13].
Mitochondrial ROS production plays a leading role in propagating hepatocyte damage
through lipid peroxidation products and tumor necrosis factor-α production, both of which
booster of mitochondrial injury, permeability, and uncoupling [13].

Lifestyle-based interventions and greater adherence to the Mediterranean diet (MD)
are the main recommendations for tackling IR, obesity, and NAFLD [14–16].

Since NAFLD is a disease associated with unbalanced diets, the first intervention to
tackle this pathology is the adoption of a correct lifestyle and the intake of healthy diets,
for example, the Mediterranean diet rich in unsaturated fatty acids and polyphenols.

Quercetin (3,3′,4′,5,7-pentahydroxyflavone, Que) is a flavanol abundant in several
foods in the MD, such as vegetables and fruits, as well as in red wine [17]. Its struc-
ture consists of two benzene rings and an oxygen-containing heterocycle, with several
hydroxyl groups. This compound has a potent antioxidant effect with free radicals scav-
enging property, which is related to its molecular structure [17]. Several biological effects,
including the improvement of IR and the reduction of obesity, have been ascribed to
the intake of quercetin [17,18]. The beneficial properties of Que have been correlated to
its anti-inflammatory activity, which plays a role in protecting against diabetes, obesity,
cardiovascular and neurodegenerative diseases [13,19].

In high-fat diet (HFD)-fed rats, Que suppresses adipogenesis and reduces lipogene-
sis [20], whereas it decreases both DNL and TG synthesis in primary rat hepatocytes [21].
Que also elicits beneficial effects versus cancer development by inhibiting cholesterol and
fatty acid synthesis [18]. Only a few (and not thorough) studies have focused on the Que
effect on lipogenesis in NAFLD [22,23].

The aim of the present work was to thoroughly analyze the effect of Que in modulating
the lipid synthesis pathway by using a widely used experimental steatotic model obtained
by incubating HepG2 cells with 0.75 mM FFA mixture containing 2:1 oleate:palmitate [4,24].
Since hyperglycemia is often found in obese patients with NAFLD, the role of glucose
as a distinct NAFLD stressor has been here evaluated, using two different glucose con-
centrations in the culture medium, 5.5 mM (low glucose, LG) and 25 mM (high glucose,
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HG). We observed that incubation of HepG2 cells with FFAs induced accumulation of lipid
droplets, which was remarkably pronounced when cells were cultured in HG medium.
This accumulation was observed even in the absence of exogenous FFAs, suggesting a
causative role of glucose alone in triggering NAFLD.

Deepening the molecular mechanism at the basis of the intracellular lipid accumu-
lation, we found that the simultaneous co-existence of elevated concentration of glucose
and FFAs is the condition in which the highest activation of the XBP-1 and SREBP-1 li-
pogenic transcriptional factors was observed. Moreover, the highest expression of citrate
carrier (CiC), a mitochondrial protein representing a link between carbohydrate and lipid
metabolism, of cytosolic acetyl-CoA carboxylase 1 (ACACA), as well as of diacylglycerol
o-acyltransferase 2 (DGAT2), which are deputed in FFAs and TG synthesis, respectively,
was observed. These effects were efficaciously counteracted by the addition of Que in the
medium. We also provide evidence that the anti-lipogenic mechanism of Que was explained
primarily by the strong phosphorylation of ACACA, which catalyzes the committing step
in the DNL pathway. The strong phosphorylation of ACACA might be only partially
explained by the Que-mediated intervention of AMPK. Indeed, a remarkable reduction of
the enzymatic activity of PP2A phosphatase was observed in lipid droplet-overloaded cells
following incubation with Que. Overall, the findings presented here depone for a direct
anti-lipogenic effect of Que on the DNL pathway through molecular mechanisms of Que
exerted on ER stress and ACACA/AMPK/PP2A axis.

2. Results
2.1. Que Treatment Attenuated Lipid Accumulation in FFA-Treated HepG2 Cells

A 24 h incubation with FFAs caused accumulation of TG in cells cultured in LG
medium (Figure 1). Consistent with the uptake and use of glucose as a carbon source for
lipogenesis, a more evident lipid accumulation was observed in HepG2 cells cultured in HG
medium even in the absence of exogenous FFAs (Figure 1). However, the incubation of cells
with the combination of high glucose and FFAs caused the most remarkable accumulation
of lipid droplets in the cytosol, suggesting that HG triggers DNL and potentiates the
intracellular accumulation of lipid droplets. Incubation with 5 µM Que reduced lipid
droplet accumulation in steatotic HepG2 cells incubated in LG and especially in HG media.
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Figure 1. Effects of Que on lipid accumulation in HepG2 cells. Representative pictures of lipid
droplets accumulation in cells incubated in the low glucose (LG) or high glucose (HG) medium, with
or without the oleate:palmitate 2:1 mixture and 5 µM Que. After Oil Red O staining, the incorporated
stain was solubilized and quantified by a spectrophotometer at 510 nm. Values were reported in
histograms as the percentage with respect to the control, represented by HepG2 incubated in LG
without FFAs and Que. Results are representative of three different experiments. * p < 0.05 versus
control (LG); ** p < 0.01 versus control (LG). The bars in micrographs correspond to 100 µm.
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2.2. Que Treatment Attenuated Endoplasmic Reticulum Stress Triggered by Lipid Accumulation

Two branches of UPR, i.e., the IRE1α/XBP-1 and PERK/eIF2α, were previously
demonstrated to be involved in increased lipogenic genes expression during ER stress
and in NAFLD [25]. Previously, we demonstrated that the XBP-1 transcription factor
stimulates the expression of the mitochondrial citrate carrier [26], which provides the
precursors for DNL. Here, we evaluated the effects of the treatment with FFAs and Que
on the expression of XBP-1. HepG2 cells cultured in the HG medium showed XBP-1 lev-
els higher than those observed in LG-treated cells (Figure 2). However, when cells were
cultured in HG-FFAs the increase of XBP-1 levels was much higher with respect to cells
incubated in HG alone. By contrast, no significant change was observed between LG and
LG-FFAs treated cells. When compared with HG-FFAs sample, a dramatic reduction of
XBP-1 expression was observed upon the treatment with Que (Figure 2).
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Figure 2. Effects of FFAs and Que treatment on the expression of ER stress marker. HepG2 cells were
incubated in low glucose (LG) or in high glucose (HG) medium, in the presence or in the absence of
0.75 mM FFAs and 5µM Que for 24 h. Total proteins were extracted from the cells and separated by
SDS/PAGE. After incubation with antibodies against XBP-1 or P-eIF2α, the content of XBP-1 and
P-eIF2α was quantified by densitometric analysis and expressed as a percentage with respect to
control cells (LG). Values are means ± S.D. Results are representative of three different experiments.
* p < 0.05 versus control (LG); ** p < 0.01 versus control (LG).

EIF2α is the alpha subunit of the translation initiation factor eIF2 involved in the
canonical cap-dependent initiation of translation. Phosphorylation of eIF2α causes the
downregulation of the global cap-dependent translation. The results of Western blotting
experiments showed that eIF2α phosphorylated form was significantly increased in HG
medium, even though its highest level was detected in HG-FFAs cells. Treatment with Que
reduced eIF2α phosphorylation to the level seen in HG cells (Figure 2).

2.3. Que Treatment Reduced Lipogenic Genes Stimulation in FFAs-Treated HepG2 Cells

SREBP-1 represents the master transcription factor regulating the expression of genes
involved in fatty acid and TG synthesis [27]. Here, we show that, when compared to control
cells (LG medium), the expression of SREBP-1 was higher in HepG2 cells cultured in the
HG medium. Treatment of HepG2 cells with FFAs determined a strong increase of SREBP-1
expression in cells incubated in the HG medium and, to a lesser extent, in the LG medium
(Figure 3). In both LG and HG media, Que treatment caused a rescue of SREBP-1 expression
at the level of the respective control cells. To demonstrate whether variations in SREBP-1
levels corresponded to an alteration in its transactivation activity, a luciferase assay was
performed. To this purpose, the pCiC1484-Luc construct with the promoter region of the
Cic gene containing a characterized SREBP-1 binding site (E-box) was employed [28]. As
a negative control, the p72Em construct containing the same promoter region and the
mutated SREBP-1 binding site was used. Results obtained indicated that the transactivation
activity of SREBP-1 was increased in steatotic compared to control cells grown in LG. This
increase was much more evident in steatotic cells grown in HG than in those grown in LG.
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When compared to steatotic cells, the transactivation activity of SREBP-1 was found to be
reduced by Que treatment to the level observed in control cells.
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1. (A) HepG2 cells were incubated in low glucose (LG) or in high glucose (HG) medium, in the
presence or in the absence of 0.75 mM FFAs and 5µM Que for 24 h. Total proteins were extracted from
the cells and separated by SDS/PAGE. After incubation with antibodies against SREBP-1, the content
of SREBP-1 was quantified by densitometric analysis and expressed as a percentage of control cells
(LG). Values are means ± S.D. Results are representative of three different experiments. * p < 0.05
versus control (LG); ** p < 0.01 versus control (LG). (B) Cells were transiently co-transfected with the
CiC promoter-luciferase constructs together with Renilla luciferase reference plasmid pGL4.73. After
24 h, HepG2 cells were incubated in low glucose (LG) or in high glucose (HG), in the presence or in
the absence of 0.75 mM FFAs and 5µM Que for 24 h, and firefly luciferase activity was measured and
normalized to Renilla luciferase activity and to protein concentration. CiC promoter was expressed
as a percentage of the control cells (LG). Values are means ± S.D. Results are representative of five
different experiments. * p < 0.05 versus control (LG); ** p < 0.01 versus control (LG).

Then, we analyzed the expression of SREBP-1-responsive lipogenic genes involved
in DNL and in TG synthesis. We found that the mRNA amount and the protein level for
mitochondrial citrate carrier (CiC), acetyl-CoA carboxylase 1 (ACACA), and diacylglycerol
O-acyltransferase 2 (DGAT2) were remarkably augmented in cells incubated in HG and
FFAs (Figure 4). The expression of fatty acid synthase (FASN) did not seem to be influenced
by lipid accumulation. The expression of SREBP-1-target genes Cic, Acaca, and Dgat2,
the key enzyme involved in triglycerides synthesis [21], were strongly reduced by Que
treatment, with respect to the respective steatotic cells in LG and HG media (Figure 4).

2.4. Que Treatment Strongly Inhibits Acetyl-CoA Carboxylase Activity

The findings obtained so far indicated that treatment with quercetin was effective
in reducing the lipid accumulation, through a reduction of the expression of SREBP-1
transcription factor as well as of its lipogenic target genes. Among the different regulatory
mechanisms of the activity of acetyl-CoA carboxylase 1 (ACACA), which catalyzes the
first committed step in fatty acid biosynthesis, the phosphorylation on its serine 79 (Ser79)
residue represents a crucial point of DNL regulation by hormones and nutrients.
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Indeed, AMP-activated protein kinase (AMPK) phosphorylates ACACA on Ser79
causing the inhibition of the ACACA enzymatic activity. By contrast, ACACA enzymatic
re-activation through its de-phosphorylation is catalyzed by protein phosphatase 2 (PP2A).
Therefore, we investigated the effect of lipid accumulation and Que treatment on the level
of p-ACACA (Ser79). Western blots showed that p-ACACA (Ser79) level was reduced in
steatotic cells incubated in LG or HG medium, while it was strongly evident in Que-treated
cells, mainly in cells grown in HG medium (Figure 5A). Enzymatic assay confirmed that,
when compared to untreated cells, a strong inhibition of ACACA activity was observed in
Que-treated cells (Figure 5B).
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extracted from the cells and separated by SDS/PAGE. After incubation with antibodies against CiC,
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and expressed as percentage of control cells (LG). Values are means ± S.D. Results are representative
of three different experiments. * p < 0.05 versus control (LG); ** p < 0.01 versus control (LG).

To give an explanation of the different content of P-ACACA in the various samples,
we evaluated the level of phosphorylated AMPK, which is the ACACA specific kinase.
When compared to the untreated cells, Que treatment caused an increase in the level of
P-AMPK, which was more evident in HG-FFAs treated cells (Figure 5C). In these cells,
we also evaluated the putative role of PP2A in raising the levels of P-ACACA. Western
blotting experiments performed with the antibodies against the regulatory (PP2A-B) and
the catalytic (PP2A-C) subunits of PP2A, showed that the expression of PP2A-B and PP2A-C
remains unchanged among the samples (Supplementary Figure S1). Next, we investigated
the PP2A specific phosphatase activity in the protein extracts from the different samples.
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We observed that FFA treatment caused an increase in PP2A activity in LG-growth protein
extract. Incubation of cells in the HG medium caused a further increase of PP2A activity
with respect to the LG sample (Figure 5D). The highest PP2A activity was detected in
HG-FFA treated cells. Interestingly, treatment with Que caused a remarkable inhibition of
PP2A activity compared to LG control cells (Figure 5D).
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Figure 5. Role of FFAs and Que on the regulation of ACACA activity. (A) HepG2 cells were incubated
in low glucose (LG) or in high glucose (HG) medium, in the presence or in the absence of 0.75 mM
FFAs and 5 µM Que for 24 h. Total proteins were extracted from the cells and separated by SDS/PAGE.
After incubation with antibodies against phosphorylated ACACA, the protein content was quantified
by densitometric analysis, and results were expressed as a percentage of control cells (LG). Results
are representative of three different experiments. * p < 0.05 versus control (LG); ** p < 0.01 versus
control (LG). Values are means ± S.D. (B) Cells were treated as reported in A. ACACA activity was
determined in cell lysates as in Material and Methods. The activity in each sample was expressed
as a percentage of control cells (LG). Values are means ± S.D., n = 3. * p < 0.05 versus control (LG);
** p < 0.01 versus control (LG). (C) After the separation of cell lysates by SDS/PAGE, proteins were
transferred onto nitrocellulose membrane and blotted against phosphorylated AMPK. The protein
content was quantified by densitometric analysis and expressed as a percentage of control cells (LG).
Results are representative of three different experiments. * p < 0.05 versus control (LG); ** p < 0.01
versus control (LG). (D) PP2A activity was determined in cell lysates as reported in Material and
Methods. The activity in each sample was expressed as a percentage of control cells (LG). Values are
means ± S.D., n = 3. * p < 0.05 versus control (LG); ** p < 0.01 versus control (LG).
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3. Discussion

NAFLD affects a large part of the population worldwide [29] and it is mainly associated
with an unbalanced Western diet, rich in saturated fatty acids and poor in vegetables, fruits,
and fish [30].

Since NAFLD is a disease associated with unbalanced diets, the first intervention to
tackle this pathology is the adoption of a correct lifestyle and the intake of healthy diets, rich
in fruits and vegetables, which are abundant in polyphenols, such as quercetin. Referring
to the effects of Que on NAFLD, few and fragmentary data are available from the literature.

In this study, we investigated the effect of Que on steatotic cells and the molecular
mechanisms by which Que determines the reduction of lipid accumulation in a cellular
model of NAFLD. Several and different in vitro models, primary or stabilized hepatocytes
incubated with FFAs, have been used in NAFLD studies [24]. Even though these models
cannot replace the in vivo ones, they offer the possibility of studying specific molecular
mechanisms under controlled experimental conditions, so the role of a single factor in
determining the fatty liver can be evaluated [24]. The in vitro model applied in this study
(HepG2 incubated with 0.75 mM oleate/palmitate in 2:1 ratio) aims to imitate benign chronic
steatosis, without significant apoptotic effects which have been observed when palmitate
alone is used [24,31]. Since in human NAFLD coexists with other metabolic disorders, in
particular, type 2 diabetes [32], we also investigated the influence of glucose as a further and
distinct parameter for evaluating the effect of FFA and Que on lipid accumulation.

The results here presented show that the HepG2 cells grown in LG exhibited accu-
mulation of lipid droplets when treated with FFA alone, supporting the role of exogenous
FFA in causing steatosis. The accumulation of lipid droplets is remarkably evident in the
cells incubated in the culture medium without FFA, but containing a high concentration
of glucose. This observation is well justified by the function of hepatocytes to convert
excess glucose into fatty acids through glycolysis and DNL. When HG and FFAs were in
the same culture medium, the accumulation of lipids was more evident, suggesting a clear
synergistic effect of the single factors in causing NALFD. Importantly, Que was able to
reduce the accumulation of lipid droplets induced by exogenous FFAs in both LG- and
HG-treated cells.

To deepen the molecular mechanism of this lipid accumulation, we decided to investi-
gate the expression of enzymes involved in the lipogenic pathway, CiC, ACACA, FASN,
and DGAT2. CiC, also known as tricarboxylate carrier, is an inner mitochondrial membrane
protein that transports acetyl-CoA, mainly deriving from glucose, from mitochondria to
the cytosol, where it represents the starter molecule for DNL. Thus, CiC represents a link
between carbohydrate and lipid metabolism [33]. Apart from FASN, whose expression
remained unchanged, we found that the expression of CiC, ACACA, and DGAT2 was
increased in cells incubated with HG, supporting the conversion of excess glucose into fatty
acids and TG. The highest expression of lipogenic genes has been reached in cells grown in
the HG medium following the addition of FFAs. Moreover, the expression of SREBP-1 and
its gene transactivation activity were strongly triggered by glucose and FFAs, highlighting
the involvement of this lipogenic transcription factor in the regulation of the pathway of
DNL in the NAFLD model. These results clearly imply that the maximal activation of the
lipogenic pathway in the NAFLD model was triggered in the condition of high glucose and
FFAs content in the medium and that each stimulus alone (HG or FFAs) was not sufficient
to stimulate lipogenesis of the same magnitude.

Previous reports have highlighted the ER stress condition in the etiology of NAFLD [34],
whereby SREBP-1 expression is strongly promoted through an efficient CAP-independent
protein synthesis initiation [4]. Two branches of UPR, i.e., IRE1/XBP-1 and PERK/eIF2α,
are strictly correlated to the lipogenic pathway induction during ER stress [8,26,35]. We
found that a remarkable increment of XBP-1 and of P-eIF2α, has been observed in the
HG-FFAs sample, which fosters the up-regulation of CiC and SREBP-1, as previously re-
ported [11,26]. We also observed that incubation with HG or FFAs alone was not sufficient
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to induce XBP-1. Note that the addition of 5 µM Que to the culture medium was effective in
reducing the ER stress, and thus the expression of SREBP-1 and XBP-1 transcription factors.

ACACA catalyzes the regulatory step of fatty acid synthesis and it is allosterically
stimulated by citrate. Since we found CiC highly expressed in HG-FFAs treated cells,
it can be assumed that the levels of citrate also increased under the same experimental
conditions, thus triggering ACACA activity. In addition to the citrate-mediated positive
regulation, ACACA is negatively regulated by its phosphorylation at the Ser79 residue, a
post-translational modification mediated by the AMP-dependent protein kinase (AMPK).
We found that incubation with high glucose (HG and HG-FFAs) greatly reduced the P-
Ser79-ACACA amount, suggesting a putative role of HG in downregulating the level of
ACACA phosphorylation. However, incubation with Que was effective in increasing the
phosphorylation level of ACACA, thus nullifying the ACACA stimulation by glucose. The
strong increase in the P-Ser79-ACACA amount can be partially justified by an increase
in the P-AMPK level observed in the Que-treated HG-FFAs sample compared to the HG-
FFAs sample. Indeed, AMPK phosphorylation is also observable in the HG sample, like
that in Que-treated HG-FFAs. This discrepancy could be justified by the presence of
other unknown kinases acting on ACACA differently regulated by HG, FFAs, and Que, a
hypothesis that requires a dedicated study.

The high level of P-ACACA observed in the Que-treated HG-FFAs sample can be also
explained by an alteration in the activity of the PP2A, the phosphatase involved in the
dephosphorylation of P-ACACA. Analysis by Western blotting did not show significant
changes in the levels of the catalytic and regulatory subunits of PP2A among all the samples.
Conversely, the in vitro dephosphorylation assays indicate a strong reduction in the PP2A-
mediated dephosphorylation activity in the samples treated with Que compared to the HG
and HG-FFAs samples. The differences found in the PP2A phosphatase activity suggested
the involvement of other regulatory mechanisms, like post-translational modifications of
PP2A subunits or enzymatic modulation by endogenous molecules. It has been reported
that ceramide, which synthesis depends on the palmitate level, activates PP2A [36] and
induces IR by altering the insulin signaling pathway [37]. The highest lipogenic gene
expression, together with the enhanced ACACA activity observed in the HG and HG-FFAs
samples, could therefore lead to the synthesis of palmitate, main product of DNL and a
component of ceramide. This could justify the higher PP2A activity observed in these
samples with respect to LG samples. Another interesting hypothesis is that Que determines
a direct inhibition of PP2A by binding its catalytic site. A similar hypothesis has been
suggested from the in-silico docking study to explain the inhibition of PP2A activity by the
polyphenol hesperidin, which has a structure very similar to that of Que [38].

Overall, this work highlights the importance of the combination of two distinct factors,
i.e., the high concentration of glucose and the presence of free fatty acids, in determin-
ing the increase in lipid droplets in NAFLD. This aspect would then be considered in
investigating the high prevalence of hepatic steatosis among obese and type 2 diabetic
patients. Moreover, the same experimental condition (HG-FFAs) is the most effective in
determining the consistent activation of the expression of lipogenic genes, correlated with
the activation of lipogenic transcription factors XBP-1 and SREBP-1. From this study, it also
emerges that, besides its nuclear action in reducing the expression of factors XBP-1 and
SREBP-1, Que acts by regulating the activity of the ACACA, the main regulatory enzyme
of the lipogenic pathway, whereby the axis AMPK/PP2A plays an important role in the
control of phosphorylated-ACACA level. Note that in our experimental model Que was
added after the induction of steatosis, indicating that this molecule is effectively capable
of reversing the stimulation of lipogenesis and the intracellular accumulation of TG. The
results obtained in this study open a new perspective of further investigation in humans to
confirm the potential pharmacological use of Que in the treatment of NALFD.
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4. Materials and Methods
4.1. Cell Culture Conditions, Treatment with Fatty Acids and Quercetin, and Triglycerides Content
Determination

HepG2 were maintained in DMEM (Dulbecco’s modified Eagle’s medium) con-
taining 4500 mg/Lt glucose (High Glucose, HG) (D5796, Sigma-Aldrich, Milano, Italy),
supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS), penicillin G
(100 units/mL) and streptomycin (100 µg/mL), and kept at 37 ◦C in a humidified atmo-
sphere containing 5% CO2. For each experimental condition, six 100 mm dishes were
seeded with 106 cells each in HG medium. After 24 h the culture medium from three
dishes was replaced with fresh HG medium, whereas cells in the other three dishes were
incubated in DMEM with 1000 mg/Lt glucose, here referred as DMEM-low glucose (LG).
The cells were incubated for further 24 h. On the third day, lipid accumulation in cells was
induced by adding 0.75 mM of a mixture of oleate/palmitate 2:1 (FFAs) dissolved in fatty
acid-free BSA [4]. The molar ratio of FFAs to albumin was 4:1. BSA without FFAs was
used as control experiments. A solution of 10 mM Quercetin was prepared in DMSO. Cell
treatment with 5 µM Que was performed for 24 h by adding the compound to the culture
medium (LG-FFAs or HG-FFAs). Determination of triglycerides content was determined
using commercial kits (Randox Laboratories, Rome, Italy)).

For intracellular lipid droplet staining, HepG2 cells were grown at an initial density
of 3 × 105 cells/well in a 6-well plate and treated as described above. Cells were then
washed three times with iced PBS and fixed with 10% formalin for 1 h. After fixation, cells
were washed by 60% isopropanol and stained with Oil Red O solution (working solution,
0.3 g Oil Red O powder in 60% isopropanol) for 15 min at room temperature. To remove
unbound staining, cells were rinsed once with 60% isopropanol and 4–5 times with distilled
water. To quantify Oil Red O content levels, dimethyl sulfoxide was added to each sample;
after shaking at room temperature for 5 min, the density of samples was read at 510 nm on
a spectrophotometer.

4.2. Isolation of RNA from Cultured Cells and Real-Time qPCR Analysis

Total RNA from HepG2 cells was isolated using the SV Total RNA Isolation System
kit (Promega Italia, Milano, Italy), following the manufacturer’s instructions. The reverse
transcriptase (RT) reaction (20 µL) was carried out using 5 µg of total RNA, 100 ng of
random hexamers and 200 units of SuperScript™ III RNase H-Reverse transcriptase (Life
Technologies, Milano, Italy). Quantitative gene expression analysis was carried out on
CFX Connect™ Real-Time PCR Detection System (Bio-Rad Laboratories, Segrate, Italy),
using 18S rRNA for normalization. The primers used for real-time PCR analysis were listed
in Table 1.

Table 1. Sequences of the primers used in RT-qPCR.

Primer Sequence (5′-3′)

hCiCfor GAAGTTCATCCACGACCAGAC
hCiCrev TCGGTACCAGTTGCGCAGG

hFASNfor GAAGGAGGGTGTGTTTGCC
hFASNrev GGATAGAGGTGCTGAGCC

hACACAfor GCAACCAAGTAGTGAGGATG
hACACArev CTGTTTGGATGAGATGTGGG
hSREBP-1for ACACCATGGGGAAGCACAC
hSREBP-1rev CTTCACTCTCAATGCGCC
hDGAT2 for CGAAAGCCACTTCTCATACA
hDGAT2 rev TGCCTACTACTGCCCTCAC

4.3. Western Blot Analysis

To obtain whole protein cell extracts for Western blot analysis, cells were scraped in
the following buffer: 20 mM Tris-HCl, pH 8, 420 mM NaCl, 2 mM EDTA, 2 mM Na3VO4,
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and 1% (v/v) Nonidet P-40, supplemented with a cocktail of protease inhibitors. Cells were
then passed several times through a 20-gauge syringe and centrifuged at 16,000× g for
20 min at 4 ◦C. The concentration of proteins in cell extracts was determined by the Bio-Rad
protein assay kit, using lyophilized BSA for the calibration curve. 15–30 µg of total cell
proteins were dissolved in sodium dodecyl sulfate (SDS) sample buffer and separated on
10% (w/v) SDS gels. Separated proteins were transferred onto nitrocellulose membrane
(Pall, East Hills, NY, USA) [39]. Equal protein loading was confirmed by Ponceau S staining.
The blots were blocked with 5% (w/v) non-fat dried milk in buffered saline and incubated
with specific primary antibodies against FASN (610963 BD Biosciences, Milano, Italy),
ACACA, phosphorylated-Ser79 acetyl-CoA carboxylase 1, PP2A-B56, demethylated-PP2A-
C, DGAT1, CiC, XBP-1, SREBP-1, β-actin (sc-137104, sc-271965, sc-6954, sc-374380, sc-13601,
sc-271934, sc-86392, sc-7160, sc-13551, sc-47778, Santa Cruz Biotechnologies, Dallas, TX,
USA). The immune complexes were detected using appropriate peroxidase-conjugated
secondary antibodies and enhanced chemiluminescent detection reagent (Western Bright
ECL HRP substrate Advansta, San Jose, CA, USA). Densitometric analysis was carried out
on the Western blots using the NIH Image 1.62 software (National Institutes of Health,
Bethesda, Rockville, MD, USA), normalizing to β-actin used as a control.

4.4. Determination of ACACA and PP2A Enzymatic Activity

Cells were lysed in co-IP lysis buffer (10 mM Tris-HCl pH 7.4, 50 mM NaCl, 1 mM
EGTA, 1 mM EDTA, 1 mM PMSF, 10 µg/mL leupeptin, 10 µg/mL aprotinin, 10 µg/mL
pepstatin A) at 4 ◦C. The lysates were centrifuged at 16,000× g for 15 min at 4 ◦C, and
the supernatants were incubated with 2.5 µg of anti-PP2A antibody for 2 h, followed by
incubation with protein G agarose for one hour at 4 ◦C. The immunoprecipitates were
washed once with co-IP lysis buffer, once with 50 mM Tris buffer (50 mM Tris, pH 7.5;
0.1 mM CaCl2), resuspended in assay buffer (50 mM Tris, pH 7.5; 0.1 mM CaCl2; 2.5 mM
NiCl2, and 1 mg/mL p-nitrophenyl phosphate), and incubated at 37 ◦C for 30 min. The
reaction was stopped by the addition of 13% K2HPO4, and the absorbance was read
at 405 nm.

4.5. Statistical Analysis

Values are expressed as mean ± SD for the number of experiments indicated in the
legends to the figures. Differences between the groups were determined by unpaired
Student’s t-test.
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