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The contribution of bone marrow stromal cells to the pathogenesis and therapy response

of myeloid malignancies has gained significant attention over the last decade. Evidence

suggests that the bone marrow stroma should not be neglected in the design of novel,

targeted-therapies. In terms of gene-editing, the focus of gene therapies has mainly

been on correcting mutations in hematopoietic cells. Here, we outline why alterations

in the stroma should also be taken into consideration in the design of novel therapeutic

strategies but also outline the challenges in specifically targeting mesenchymal stromal

cells in myeloid malignancies caused by somatic and germline mutations.
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INTRODUCTION

Under physiological conditions, hematopoietic stem cells (HSCs) are regulated by their bone
marrow microenvironment (BMM) through cellular interactions and secreted factors to maintain
a continuous pool of hematopoietic cells (Morrison and Scadden, 2014; Pinho and Frenette, 2019).
This crosstalk between the hematopoietic system with its surroundings is essential for the proper
functioning of HSCs throughout life and becomes deregulated in hematological malignancies.
The main constituents of the BMM are bone marrow mesenchymal stromal cells (MSCs),
osteolineage cells (OLCs), endothelial cells, amongst various other cells including adipocytes,
neural, and hematopoietic cells (Pinho and Frenette, 2019; Méndez-Ferrer et al., 2020). MSCs
are a heterogenous group of non-hematopoietic cells that express key hematopoiesis-supporting
factors such as stem cell factor (SCF) and CXC motif ligand (CXCL)-12. In humans the surface
markers CD271 and CD146 have been shown to enrich for cells that can form fibroblast colonies
(CFU-F) (Kfoury and Scadden, 2015). MSCs have been described inmousemodels using numerous
Cre-drivers and surface markers outlined in Figure 1.

Historically, the development of myeloid malignancies was considered to be HSC-intrinsic, be it
driven by germline or somatic mutation. The BMM can either facilitate oncogenesis by supporting
the expansion of malignant cells, and suppressing normal hematopoiesis, or induce oncogenesis by
acquiring mutations or functional alterations that pre-dispose for oncogenesis. These two theories
are not mutually exclusive, as is amply exemplified in the pathogenesis of myeloid malignancies
including myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS) and acute
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myeloid leukemia (AML) (Medyouf, 2017; Fathi et al., 2019;
Behrmann et al., 2020). Thus, the mutual interaction between
mutated HSCs and the BMM has further evolved as an attractive
novel therapeutic target.

In this article, we will outline the role of stromal cells
(specifically BM MSCs) in myeloid malignancies in somatic
disease, as well as germline conditions, and describe recent
progress in dissecting the HSC-stroma crosstalk. Finally, we
discuss possible application of the established murine disease
models and future challenges in developing genetically targeted
therapies for the BM stroma.

THE ROLE OF THE STROMA IN LEUKEMIA
PRE-DISPOSITION SYNDROMES

The World Health Organization (WHO) introduced a new
category of “myeloid malignancies with germline predisposition”
to the 2016 Classification of hematopoietic tumors. Given that
these “rare” mutations are only coming to light with increased
use of parallel sequencing platforms in population and family
studies (Porter, 2016; Miller et al., 2018; Kim et al., 2020), it
can be speculated that germline stromal mutations exist which
have yet to be discovered. An exemplary disease is Shwachman-
Diamond syndrome (SDS); a rare autosomal recessive bone
marrow failure disorder caused by mutation in the SBDS
gene with a cumulative probability of leukemic progression of
>30% at the age of 30 years (Dale et al., 2006; Nelson and
Myers, 2018). Hematopoietic cell specific deletion of Sbds did
not result in MDS or AML in two murine disease models
(Rawls et al., 2007; Zambetti et al., 2015), whereas exposure of
wildtype HSCs to Sbds-deficient osteolineage MSCs led to an
MDS phenotype and genotoxic stress in HSCs (Zambetti et al.,
2016). The prominent clinical feature of skeletal abnormalities
in SDS patients was recapitulated through the niche-specific
deletion of Sbds (Zambetti et al., 2016). Importantly, the alarmin
heterocomplex S100A8/9 secreted by the niche was identified as
a candidate driver of inflammatory stress in HSCs, highlighting
that the crosstalk between stroma and HSCs is of particular
interest as a possible therapy target. Targeted deletion of Dicer1
in osteolineage MSCs resulted in reduced expression of Sbds
in transplanted WT HSCs (Raaijmakers et al., 2010). The
resulting phenotype displayed key features of human MDS and
a tendency to develop AML; clearly showing that alterations in
BM stromal cells can induce malignancy and stress in HSCs
(Raaijmakers et al., 2010). Intriguing case studies of donor
cell-derived leukemia (DCL) development upon allogeneic HSC
transplantation in humans have brought about the possibility of
oncogenesis driven by the diseased recipient BMM (Berger et al.,
2016; Engel et al., 2018).

In line, numerous genetic modifications (deletions) in non-
hematopoietic, stromal cells were reported to give rise to a
myeloproliferative phenotype in vitro and in vivo (Rupec et al.,
2005; Walkley et al., 2007; Xiao et al., 2018), but also activation
of e.g., Notch signaling (Kim et al., 2008; Dong et al., 2016).
Inflammation seems to play an important role in the pathogenesis
of these myeloid malignancies. As an example, IL-1B propagates

FIGURE 1 | MSC niche in myeloid malignancies. (A) Schematic representation

of MSC niche alterations that promote the leukemic transformation. Lightning

bolt indicates genetic lesion in MSC-like cells that have been shown to

promote oncogenesis through increased inflammation and increased

(genotoxic) stress of HSCs. Deletion of Dicer1 and Sbds in Osterix+

osteoprogenitor MSCs leads to a MDS phenotype with sporadic AML upon

Dicer1 deletion (Raaijmakers et al., 2010; Zambetti et al., 2016). Activating

mutations in tyrosine-protein phosphatase non-receptor type 11 (Ptpn11) in

Nestin-Cre+ cells induces a MPN phenotype. A MDS/MPN phenotype was

also seen in activating Ptpn11 in Mx1-Cre+, Prx1-Cre+, Lepr-Cre+,

Osx1-Cre+ cell-type specific knock-in mice, highlighting that MSCs and

osteoprogenitors can induce MPN and that there is probably overlap in cells

populations targeted by the Cre-drivers, whereas differentiated osteoblasts

(Oc-Cre+) and endothelial cells (VE-Cadherin-Cre+-ERT2) could not induce

MPN (Dong et al., 2016). Rb (encodes RB protein) (Walkley et al., 2007) and

Mib1 (encodes mind bomb 1 protein) (Kim et al., 2008) promote an MPN-like

phenotype in a Mx1-Cre+ driver. The Mx1-Cre+ driver traces MSC-like cells

that are located within the bone marrow but also at the periosteum (Ortinau

et al., 2019), and have limited in vivo adipogenic differentiation potential,

making them more osteoprogenitor-like (Park et al., 2012). Sipa1 expression is

most abundant in CD31+ BM endothelial cells, but also found in MSCs

(CD45−Lin−CD31−CD51+Sca1+) (Xiao et al., 2018). Deletion of Sipa1 results

in the development of MDS/MPN and Sipa1−/− MSCs cultured in vitro show

increased adipogenic and chrondrogenic differentiation potential, but impaired

osteogenic differentiation (Xiao et al., 2018). (B) Upon exposure of a mutated

hematopoietic cell within the niche, MSCs are functionally altered

(Continued)
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FIGURE 1 | through cytokine stimulation, direct cell-cell contact and activation

of inflammatory pathways, promoting the survival of the mutant HSC in favor

of WT HSCs and increase in inflammatory signatures. Specifically, Lepr-Cre+

(Decker et al., 2017) and Gli1-Cre+ (Schneider et al., 2017) cells expand and

proliferate in an MPN setting and produce extracellular matrix. Nestin-Cre+

cells proliferate in AML and provide chemotherapy resistance (Forte et al.,

2020), whereas they become apoptotic in MPN disease due to neural damage

and Schwann cell death triggered by interleukin-1β production by the mutated

HSC. AML cells seem to induce osteogenic differentiation and block

adipogenesis of MSCs, as well as blocking maturation of osteolineage-MSCs

into mature osteoblasts (Battula et al., 2017; Pievani et al., 2020b). MSCs,

mesenchymal stem cells; HSC, hematopoietic stem cells; AML, acute myeloid

leukemia; MPN, myeloproliferative neoplasm; MDS, myelodysplastic

syndrome; ECM, extracellular matrix; Lepr, Leptin receptor; Prx1, Paired

related homeobox 1; Mx-1, Myxovirus Resistance-1.

an inflammatory BMM as it activates HSCs to differentiate
toward myeloid cells and monocytes (Rupec et al., 2005). Early
stages of MPN disease are also characterized by increased IL-
1β expression, which triggers pro-inflammatory damage to the
BMM and advances disease progression (Arranz et al., 2014).
This showcases that stromal drivers influence the hematopoietic
system and can result in secondary neoplasms (schematically
depicted in Figure 1A).

CROSSTALK BETWEEN NON-MUTATED
STROMA AND HEMATOPOIETIC CELLS
WITH SOMATIC MUTATIONS

It is becoming evident that the BMM is functionally altered by
exposure to hematopoietic cells harboring somatic mutations,
creating a proinflammatory environment that seems to
propagate leukemic disease development and supresses
normal hematopoiesis (Figure 1B). Overall differences in
MSC compartments have been noted in myeloid malignancies
compared to normal bone marrow. In AML, there is generally
a reduction of bulk MSCs. However, Nestin+ cells, as well-
documented MSCs in the BM (Mendez-Ferrer et al., 2010),
have been shown to be 4–5-fold more abundant in human AML
patients, in line with expansion of Nestin+ cells in the murine
iMLL-AF9 AML model (Hanoun et al., 2014; Forte et al., 2020).
This is in striking contrast to the decrease in Nestin+ cells in
murine models and human MPN (Arranz et al., 2014; Drexler
et al., 2019), suggesting that the same group of niche cells can
behave differently in various myeloid malignancies and/or stages
of leukemic disease. Conditional depletion of Nestin+ cells upon
AML development in iMLL-AF9 mice lead to a significantly
extended mouse survival, suggesting that Nestin+ cells promote
leukemogenesis in vivo (Forte et al., 2020). Importantly, in
a competitive transplant setting, depletion of Nestin+ cells
during AML development selectively diminished the number of
leukemic cells, while leaving normal hematopoiesis unaffected
(Forte et al., 2020), which is one of the major challenges in the
treatment of AML.

The direct effect of a mutated hematopoietic clone on the
bonemicroenvironment is evidently illustrated inmurinemodels
but also patient samples with bone marrow fibrosis. In a murine
model of CML, endosteal OLCs expanded upon expression
of BCR/ABL in the hematopoietic compartment leading to
deposition of extracellular matrix (Schepers et al., 2013). In
response to MPN clones, Gli1+ stromal cells are activated from
their normal endosteal and perivascular niches and significantly
expand in murine models and patient samples (Schneider
et al., 2017). Importantly, their genetic ablation ameliorates
fibrosis, proving functional proof that they play a central role
in the fibrotic transformation. Another stromal subset of Lepr+

MSCs has been shown to expand in fibrosis (Decker et al.,
2017). Conditional deletion of platelet-derived growth factor
receptor a (Pdgfra) from Lepr+ cells or the administration of
the tyrosine kinase inhibitor imatinib suppressed Lepr+ cell
expansion and mitigated fibrosis. There seems to be a common
initial pro-inflammatory stromal response to the malignantMPN
clone that poises the stroma to become pro-fibrotic (Gleitz
et al., 2020; Leimkuhler et al., 2020). This is in line with
the observation of a diseased niche characterized by cellular
stress and an increased inflammatory signature in bulk RNA-
sequencing of prospectively sorted mesenchymal cells from
human low-risk MDS patients (Chen et al., 2016). Additionally,
human MDS MSCs produce inflammatory cytokines (IL-1β, IL-
6, and TNFα) compared to control in vitro cultured MSCs
(Flores-Figueroa et al., 2002, 2008). Notably, IL-6 knockout
in the BM reduces fibrosis in a MPN setting (Gleitz et al.,
2020). Likewise, our group demonstrated increased expression
of the inflammatory S100A8 alarmin in the stromal niche in
murine models and patient samples of del(5q) MDS (Ribezzo
et al., 2018). This increased expression of S100A8 in MSCs
resulted in decreased hematopoiesis-support in vitro, indicating
that mutated hematopoietic cells can initiate a vicious cycle
of inflammation in the niche, leading to decreased support
of normal hematopoiesis and fuelling the progression of
haematopoietic malignancy. The common denominator in
hematological malignancies driven by somatic or germline
mutations thus seems to be an inflammatory “mutagenic”
microenvironment that precedes malignant transformation and
disease progression (Craver et al., 2018; Gleitz et al., 2018;
Leimkühler and Schneider, 2019; Pronk and Raaijmakers, 2019).

CHALLENGES OF GENETIC EDITING IN
THE BONE MARROW STROMA

As outlined, the bone marrow stroma seems to play a significant
role in the initiation, maintenance and progression of myeloid
malignancies and murine models indicate that MSCs are a highly
attractive therapeutic target. The importance of targeting the
stroma is highlighted by the fact that despite improvements in
the treatment of AML, long-term survival is <30% in adults
(Ferrara and Schiff, 2013). In murine models, specific subsets of
stromal cells can be modified by using stromal Cre-drivers. The
correlate to this procedure in the human setting would optimally
be genome editing of stromal cells. Nuclease-based site-specific
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genome editing has provided an unprecedented opportunity to
artificially modify genetic information within mammalian cells
(Romito et al., 2019). The clustered regularly interspersed short
palindromic repeats (CRISPR)/Cas9 system has been used to
create germline and somatic mouse models, and has the benefits
of relatively easy design and high mutational efficiency (Mou
et al., 2015; González-Romero et al., 2019; Broeders et al., 2020;
Lee et al., 2020). The HSC has been the most relevant cell type
to edit, with major advances in Cas9 clinical translation made,
particularly in the monogenetic disorders sickle cell disease and
β-thalassemia (Dever and Porteus, 2017).

In this section we highlight some of the key challenges
hampering the development of targeted genetic therapy of
BM stromal populations: (1) identification of specific MSC
population to edit, (2) targeting MSCs in their in situ location
vs. ex vivo, (3) indirect targeting of MSC function in vivo
through genome editing of hematopoietic cells and cell-to-cell
interactions, and (4) in vitro functional characterization of MSCs
and potential therapeutic targets through CRISPR screens and
3D models.

IDENTIFICATION AND TARGETING MSCs
IN SITU – DIRECT VS. INDIRECT
STRATEGIES

Much of our understanding of the BMMSCs has originated from
genetic-fate tracing mouse models in which MSC populations
have been labeled via a stromal Cre-driver (Kfoury and
Scadden, 2015). Functionality of these Cre-drivers has been
shown by conditional deletion using diphteria-toxin receptor
based mechanisms (Schneider et al., 2017; Pinho and Frenette,
2019). Additionally, Cre-drivers of MSC populations provide
spatial information when combined with a fluorescent-reporter.
Nevertheless, the current widely-used Cre-drivers likely label
heterogeneous groups of MSCs, outlined in a recent review
(Al-Sabah et al., 2020). The recombination efficacy in Cre-
drivers has resulted in variable results (Chen et al., 2017),
while conditional Cre-lines result in higher specificity compared
to constitutive Cre-lines and allow fate-tracing experiments in
health and disease setting (Méndez-Ferrer et al., 2020). Recent
advancements in single-cell RNA sequencing (scRNAseq) have
for the first time allowed us to zoom in on heterogeneous
populations within the murine BMM (Schroeder et al., 2016;
Baryawno et al., 2019; Tikhonova et al., 2019; Wolock et al.,
2019; Baccin et al., 2020; Leimkuhler et al., 2020). Tikhonova
et al. have shown that the Lepr+ Cre-driver previously studied
as one MSC population, contains four subclusters of MSCs,
with functional differences between them as current evidence
suggests. As we gain knowledge of functionally distinct MSCs
and their possibly common progenitors, it will become possible
to target them. Importantly, the location of MSCs in relation to
(mutant) HSPCs seems to predict biological functionality and
these sinusoidal and CXCL12 niches will need to be further
investigated (Gomariz et al., 2018; Baccin et al., 2020; Kokkaliaris
et al., 2020). Perhaps the use of multiplexed imaging (Kokkaliaris
et al., 2020) in combination with laser-capture techniques to

isolate specific BM populations (Baccin et al., 2020) can aid in
inferring spatial and signaling relationships between cells from
single cell transcriptomic data.

Specifically, these new techniques can help identify new
druggable pathways through, for example, ligand-receptor
analysis between mutated hematopoietic cells and the stromal
counterpart in myeloid malignancies (Efremova et al., 2020).
This method was very recently employed in the unbiased
scRNAseq paper showing populations of murine and human
MSCs interacting with hematopoietic populations in MPN
(Leimkuhler et al., 2020). A druggable alarmin axis was identified
in the fibrotic transformation both inmurinemodels and patients
and treatment with Tasquinimod, inhibiting the binding of
the alarmins S100A8/S100A9 to TLR4, ameliorated the MPN
phenotype in mice.

Due to the lack of evident genetic modifications and a
prominent cell of origin, a clear-cut molecular target for BM
MSCs is not apparent. It is possible, however, to target HSPCs
as they are relatively easily accessible for genome editing. The
use of gene therapy for neurometabolic disorders using HSPC
transplantation has shown that overexpression of therapeutic
proteins has cross-correction capacity as also non-hematopoietic
cells are being exposed to the therapeutic effect (Ferrari et al.,
2020). This could be useful if loss-of-function mutations are
found in MSCs.

One could imagine that mutated hematopoietic cells can
be examined for specific receptors that are not vital for their
physiological function but are unique for their malignant
interaction with stroma (Kokkaliaris and Scadden, 2020; Pievani
et al., 2020a). The α4β1 integrin–VCAM1 axis between stroma
and the AML mutant cell aids in chemoresistance (Jacamo
et al., 2014; Carter et al., 2016). AML chemo-resistant cells
also have high expression of very late antigen 4 (VLA4) which
facilitates adherence to the stroma through VCAM1 activated
NF-kB signaling (Jacamo et al., 2014). Indeed, patients with VLA-
4-negative AML have a more favorable prognosis, highlighting
the role of stroma-HSCPs cross-talk (Matsunaga et al., 2003).
Within the CXCL12-CXCR4 axis, CXCL12 is expressed by MSCs
and interacts with HSCs via the binding to CXCR4, regulating
their mobilization (Greenbaum et al., 2013). Blockade of this
axis can release leukemic cells from their chemoprotective niches
(Nervi et al., 2009). Recently, an elegant in vivo pooled CRISPR
screen targeting selected cell surface genes was performed in
murine MLL-AF9 AML cells and identified CXCR4 as a positive
regulator of leukemic cells, indispensable for their growth and
survival in vivo (Ramakrishnan et al., 2020). CXCR4 is essential
for the development of AML independently of its interaction with
CXCL12 on MSCs or endothelial cells. In contrast, Cxcr4−/−

normal HSCs are capable of long-term hematopoiesis (Nie et al.,
2008), highlighting the different biology in homeostasis and
malignant disease and possible targeting avenues.

As an example, inflammation within the BMniche, specifically
the erythroblastic niche, can be targeted by genetically editing
the hematopoietic cell. In our previous work, we applied
CRISPR-Cas9 technology in a murine MDS model to genetically
inactivate S100a8 and improve the defective erythropoiesis
characteristic for the disease. Compared to control non-targeting
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sgRNA, CRISPR-mediated inactivation of S100a8 in MDS cells
restored erythropoiesis and restored a normal erythroid niche by
interrupting the cycle of inflammation (Schneider et al., 2016).

Ideally, the complex interplay between the hematopoietic
system and the stroma could be modeled more efficiently with
CRISPR-Cas9 based techniques in mice (Heckl et al., 2014;
Tothova et al., 2017). With advancements in deep-sequencing,
novel germline/somatic mutations in stroma of patients might
be identified. More complex models could then be made to
mimic the different mutations identified in the hematopoietic
and the stromal compartment in mice, to search for druggable
targets. The genome-editing efficiency is also consistently being
improved, with DNA-free systems being developed that are more
suitable for human trials as there is no risk for random insertional
mutagenesis (Shapiro et al., 2020).

GENETIC EDITING OF STROMAL CELLS
EX VIVO: FEASIBILITY OF DELIVERY

A commonly used CRISPR/Cas9- based technique for gene
editing ex vivo is the isolation of the target cell and delivery of
the gene-editing machinery via electroporation, microinjection,
or virus-based vehicles before injecting the corrected cells back
into patients or mice (Broeders et al., 2020). MSCs in general
have been widely investigated for use in multiple diseases
due to the ease of their isolation (plastic adherence and self-
renewal properties), their low immunity potential, and their
ability to secrete factors (Kean et al., 2013). The production of
inflammatory cytokines such as PDGF, TNFa, CCR8, and CCR2
within the solid organ tumormicroenvironment, has been shown
to enhance homing of MSCs to the tumor location (Marofi et al.,
2017). PrimaryMSCs can express CRISPR/Cas9 proteins through
nucleofection, lentivirus, and non-integrating adeno-associated
virus (Golchin et al., 2020). However, the homing of edited MSCs
to the bone marrow niche has not been formally tested yet.

A possible technique by which CRISPR-based strategies on
the BM stroma could be performed, is by injecting complete
CRISPR-proteins through intrafemoral injections. Intrafemoral
injection has been used to model osteosarcoma in orthotopic
mouse models (Sasaki et al., 2016). The only downside is that
off-target effects on surrounding (hematopoietic) cells can occur.
To circumvent this, a possibility could be to expand MSCs
ex vivo and genetically alter them using CRISPR in vitro, and
then inject them back through an intrafemoral injection. It
has been shown that donor MSCs injected via intramarrow
injection also contribute to the reconstitution of the stromal
niche in the ablated bone marrow of recipient mice (Muguruma
et al., 2006; Ahn et al., 2010; Zhou et al., 2014). Intraosseal
therapy could pose clinical challenges, with an invasive
procedure that has an increased chance of complications (in
particular infections), compared to intravenous or intraarterial
administration. However, the intravenously administered MSCs
easily get trapped in the lung circulation and have limited
engraftment of about a week, whereas arterially administered
MSCs seem to engraftment better at the site of injury, e.g., hind
leg bone irradiation in mice (Kean et al., 2013). First, proof of

principle studies using intrafemoral/intraosseal injections need
to be performed where candidate genes can be knocked out or
mutations introduced within the mouse or even specifically in
the stroma by using floxed Cas9 mice crossed to specific stromal
Cre-drivers. The beauty of this method in mice is additionally
that one leg can be edited while one leg serves as a non-targeted
control. A major point to consider, however, is the determination
of recombination efficiency within the bone marrow stroma as
MSCs are difficult to obtain as single-cell suspension cells. A
possible read-out here could be in situ hybridization of mRNA
of the targeted genes in a multiplex imaging set-up.

Cas proteins need specially designed delivery vehicles for
tissue-specific delivery as they cannot cross biological barriers
themselves and have a high positive charge and molecular mass.
Extracellular vesicles (EVs) are used as possible packing devices
for sgRNA:Cas9 ribonucleoprotein complexes. It has been shown
however that EVs are mainly taken up by the liver (∼84%),
whereas roughly 1.6% are found back in the bone marrow
4 h upon systemic administration, making delivery to the bone
marrow quite challenging (Kostyushev et al., 2020). Progress
is made on engineering functionalized exosomes (M-CRISPR-
Cas9 exosome) which encapsulate CRISPR-Cas9 components
more efficiently (Ye et al., 2020). Recently, the interest for
vesicle nanoparticles containing the Cas9 machinery has been
growing. While traditionally nanoparticles can mainly be found
in the liver and lung after injection, a recent breakthrough
study (Krohn-Grimberghe et al., 2020), reported the design
and in vivo performance of systemically injected lipid–polymer
nanoparticles encapsulating small interfering RNA (siRNA), for
the silencing of genes specifically in bone-marrow endothelial
cells. Using nanoparticle enabled RNAi, the group targeted
stromal-derived factor 1 (Sdf1) resulting in stem cell liberation
into the blood, and monocyte chemotactic protein 1 (Mcp1)
whose silencing retained monocytes in the BM. These modified
nanoparticles lay the ground for editing non-hematopoietic cells
in the bone marrow with a high efficacy and show that HSPCs
biology can be altered through stroma alterations.

FUNCTIONAL TESTING OF GENETIC
MODIFICATION OF MSCs IN VITRO AND IN

VIVO

Isolation of MSCs directly from the BM remains a challenge
as stromal cells are closely associated with extracellular matrix
within the marrow and single-cell suspensions are difficult to
obtain even after digestion of bone (Gomariz et al., 2018).
Most often, MSCs are left to grow out from bone chips or
human aspirates and selected for on the basis of their plastic
adherence. Cultured human MSCs are minimally characterized
by their trilineage differentiation potential, expression of surface
markers that enhance CFU-F potential, and plastic adherence in
vitro (Dominici et al., 2006; Kfoury and Scadden, 2015; Agha
et al., 2017). Murine MSCs are often identified by a panel of
typical surface markers and have a less stringent definition (Agha
et al., 2017). Nevertheless, functional characterization of in vitro
isolated cells still needs to be optimized, as even a short-term
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(passage 0) ex vivo culturing environment greatly reprograms
MSCs compared to direct sorting of primary cells for microarray
analysis (Ghazanfari et al., 2017). Despite retaining their in vitro
clonogenicity and tri-lineage differentiation potential (Pevsner-
Fischer et al., 2011), culture-induced gene expression changes are
present and raise the question of comparability of primary and
cultured cells, as well as the possibility that only specific subsets
of MSCs are selected for in adherent culture (Tormin et al.,
2009). BM MSCs cultured as non-adherent 3D sphere colonies
termed mesenspheres, have been reported to retain MSC surface
markers, tri-lineage potential, and to have an increased self-
renewal potential in serial transplantations into immunodeficient
NOD scid gamma mice compared to adherent cultured cells
(Ghazanfari et al., 2016). Gene expression in cultured MSC
mesenspheres was still altered compared to primary sortedMSCs,
but 3D cultured cells had more osteogenic and adipogenic
transcription factor expression compared to 2D adherent cells
(Ghazanfari et al., 2017). This difference in culturing conditions
might be confounding as Forte et al. have shown that in MSCs
derived from the sameAML donors, onlymesenspheres provided
enhanced chemoprotection of human AML blasts, whereas
plastic-adherent MSCs did not (Forte et al., 2020). The improved
fitness of 3D cultured MSCs advocates for its use. Ideally, there
will be a standardized protocol for the isolation of murine and
human BM MSCs so that results from different groups can be
compared easily (Stroncek et al., 2020).

Patient derived cultured MSCs however, in 2D but also 3D
cultures, can serve as a platform for personalized screening
approaches to detect alterations which hamper therapy or find
potential targets. As an example, a genome-scale CRISPR knock-
out screen was used to uncover imatinib-sensitizing genes in vitro
on K562 cells (Lewis et al., 2020). Although this was performed
on cell lines, one can imagine broadening the application and
do similar tests in smaller format (due to the high cell number
needed) on patient derived cells.

These methods could be used as proof-of-principle platforms
to identify candidate proteins for genome editing. Recently,
human mesenchymal stromal cells were shown to endure
nucleofection with Cas9-adeno-associated virus serotype
6 (AAV-6) and genome-editing including gene disruption
and targeted integration of up to 3.2 kb of DNA with stable
transgene expression, while retaining their in vitro tri-lineage
differentiation potential and phenotypical signature (Srifa
et al., 2020). Through integration of PDGF-BB, VEGFA, and
IL-10 transgenes at the HBB locus they successfully created
hypersecreting hMSC which actively improved wound healing in
diabetic wounds of mice. Specifically the combination of scaffolds
coated with humanMSCs could be modified with the Cas9-AAV-
6 system to model normal and malignant human hematopoiesis

by subcutaneous implantation in immunodeficient mice
(Vaiselbuh et al., 2010; Abarrategi et al., 2017; Passaro et al.,
2017). The benefit of such a system is that patient-derived
leukemic cells can grow in the hMSC scaffolds as they form
ectopic humanized BMMand can be followed up for long periods
of time in an in vivo setting. Similarly, human femur-derived
bone fragments from AML patients were transplanted into NSG
mice using Matrigel as a carrier and were vascularized 4 weeks
post implantation (Battula et al., 2017). These systems could
allow for easily-accessible and controllable in vivo gene-editing
of multiple relevant human BMM populations in the presence of
clonal xenografted AML cells.

FUTURE OUTLOOK

As we gain knowledge of the different functional subcomponents
of the bone marrow niche, the disease model of myeloid
malignancies will become more complex. It is evident that
oncogenesis can arise from two non-mutually exclusive theories:
niche-induced and niche-facilitated. In patients, we envision a
future of personalized medicine in which the stroma can be
pharmacologically targeted in combination with a hematopoietic
cell-based therapy. We can use the accumulating knowledge with
genome editing by (1) generation of murine disease models in
vivo on the basis of new possible germline/somatic mutations
within the niche found with targeted sequencing in human
disease to study disease pathogenesis, (2) targeting MSCs in
vivo directly through MSC/EV-based approaches, (3) indirectly
through modulation of hematopoietic cells, (4) modeling of
the human hematopoietic niche using ossified scaffolds in
xenotransplantations, and (5) in vitro Cas9-based screening
methods. Targeted genome-editing will most likely become more
feasible as we characterize the true MSCs as the target cell
and improve engineering of carriers which will deliver the
sgRNA:Cas9 cargo with high efficacy to the bone marrow.
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