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Abstract: Mobile crowd-sensing (MCS) is a well-known paradigm used for obtaining sensed data by
using sensors found in smart devices. With the rise of more sensing tasks and workers in the MCS
system, it is now essential to design an efficient approach for task allocation. Moreover, to ensure the
completion of the tasks, it is necessary to incentivise the workers by rewarding them for participating
in performing the sensing tasks. In this paper, we aim to assist workers in selecting multiple tasks
while considering the time constraint of the worker and the requirements of the task. Furthermore, a
pricing mechanism is adopted to determine each task budget, which is then used to determine the
payment for the workers based on their willingness factor. This paper proves that the task-allocation
is a non-deterministic polynomial (NP)-complete problem, which is difficult to solve by conventional
optimization techniques. A worker multitask allocation-genetic algorithm (WMTA-GA) is proposed
to solve this problem to maximize the workers welfare. Finally, theoretical analysis demonstrates the
effectiveness of the proposed WMTA-GA. We observed that it performs better than the state-of-the-art
algorithms in terms of average performance, workers welfare, and the number of assigned tasks.

Keywords: crowd-sensing; genetic algorithm; incentive mechanism; multitask allocation; time-sensitive

1. Introduction

Recently, the mobile crowd-sensing (MCS) paradigm has gained attention from many
researchers. The main advantage of MCS is that the deployment of several static sensors
over a large geographical region is reduced and replaced by willing users with the required
sensing equipment in their smart devices [1]. Furthermore, due to its efficiency, MCS is used
in many applications, such as environmental monitoring, prediction of traffic congestion,
and map updating [2].

The mobile crowd-sensing mechanism consists of three components: the service re-
quester, platform and workers. The entity that requires the results of the sensing tasks is
known as the sensing task requester. Participants are smartphone employees compensated
for their contributions and have the requisite sensors to execute the sensing duties. The plat-
form’s purpose is to broadcast task requirements to available participants, such as sensing
time, reward, and location, to recruit the best participants for each job, and ultimately to
collect and deliver the sensed data to the platform [3,4].

In practice, many MCS systems require that workers consider the time-sensitivity of
the tasks. Aware of this requirement, the research community has studied task allocation
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for the MCS system. Several works focus on task allocation [5–8]; however, they mainly
concentrate on single task assignment, which has been an issue since the time that the
worker would have taken to perform multiple tasks is wasted on waiting for the next task
allocation from the platform after finishing the previous one.

In actuality, the majority of qualified workers located in the sensing task’s geographical
region can only do the tasks during their off-work hours (e.g., half an hour lunch break
at work or when returning home after school). Furthermore, each task can be assigned
to several workers with the caveat that each worker’s assigned tasks must be completed
before the worker’s working time is up. As a result, while scheduling the completion order
of assigned tasks, each worker must consider their working time. Each task should be given
to workers who arrive at the task’s location and have adequate working time to complete
the assignment. As a result, the MCS system’s supremacy is ensured by performing the
sensing tasks within the stipulated time range.

Another critical factor to be considered is the payment of the worker. These workers
use their valuable time and resources to complete the sensing task and, therefore, they need
to be rewarded to encourage them. Unfortunately, in [9–11], the researchers focused mainly
on improving the utility of the platform and neglected the profit of the workers.

This paper addresses task allocation for the workers and maximization of the total
workers welfare considering the strict time constraint. We propose a multitask allocation
scheme for time-sensitive tasks based on a genetic algorithm to answer this question.

The main contributions of our paper are summarized as follows:

• We presented a task allocation approach in the MCS system under a given set of
allocated task budgets and workers’ available time, which is formulated as a workers
welfare maximization problem.

• We proposed an algorithm called Worker Multi-task Allocation (WMTA-GA) that
enables workers to select the sensing tasks that are convenient for them and will
maximize their profit.

• Simulation shows that WMTA-GA obtains better performance, generates adequate
workers welfare, and allocates more tasks to the workers than the existing approaches.

The remainder of the paper is organized as follows. The related works are discussed
in Section 2, and the system model together with the problem statement are presented in
Section 3. We concentrate on the pricing mechanism and look into the proposed algorithm in
Sections 4 and 5, respectively. Section 6 focuses on the experimental design and discussion
of the results. Finally, the paper is concluded in Section 7.

2. Related Work
2.1. Task Allocation

Task allocation is an essential issue in the MCS system as it determines the perfor-
mance of the system. Therefore, many studies in task allocation approaches have been
investigated. In [12], the authors aim to solve the task-allocation problem by employing
a bilateral preference matching game between the service requester and the workers in
the MCS system to satisfy both the service requester and the workers. In some cases,
a sensing task needs to be allocated to more than one worker to increase the workers’ utility.
The authors in [5] tackle this problem by designing an approach that uses both a greedy
and an equilibrium-based method. In [13], a new protocol for assigning tasks was intro-
duced to measure the workers’ utility when performing sensing tasks in a crowd-sensing
opportunistic network [2]. In [14], the purpose was to use an analytical hierarchy process
to select workers from the user set. The worker had the option of accepting the sensing
task, and if it chose to do so, then its updated reputation was to be determined based on
its performance. There was also an issue of unbalanced task allocation that needed to be
resolved to improve the performance of MCS. The purpose of [15] was to solve the problem
of online user recruitment with consideration of the budget and time constraints.

However, for the allocation of time sensitive tasks, the above task allocation approaches
will be ineffective. Therefore, the research in [16–20] focused on improving the MCS
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system’s reliability by ensuring that the sensing task is completed before the specified
deadline. In [21], the authors proposed an approach such that the workers would spend
less time performing the sensing task. This aim was achieved by partitioning each task into
groups, and a travelling path for each worker was planned. The authors in [3,22,23] noted
that most task-allocation research focused on assigning single tasks to workers. However,
these workers usually had the capacity to complete multiple tasks. Due to this reason,
a mechanism was introduced for the multitask allocation to maximize the platforms’ utility.
In [24], the users’ preference based on content and context information was used to develop
a worker-recruitment mechanism. The authors in [25] studied user preference and the
effect it had on task assignment and workers’ long-term utility. The authors in [7] studied
a destination-aware task-allocation strategy to maximize the number of completed tasks
and perform tasks before the deadline. In [26], the authors determined which sensing
task to complete according to the incomplete task-popularity statistics information. Some
papers focused on collecting the sensed data from the workers and delivering it to the
platform. In [27], a mechanism was introduced to transmit sensed data to the data requester
according to the time constraint. In [28], the researchers aimed to collect sensed data from
workers that have high coverage properties of MCS fulfilled. The authors in [29] proposed
a data-collection path-planning scheme that employed either cellular transmission or an
opportunistic network.S. Akter et al. [30] investigated task allocation in time-sensitive
MCS based on A-DQN. The task allocation problem was considered a travelling salesman
problem, and the aim was to minimize the total cost of completing the tasks subject to
time constraints.

2.2. Incentive Mechanism

It is important that the workers assigned to the sensing tasks are compensated, as
these workers consume their computational resources and time, and are at risk of private
information leakage. Therefore, an incentive mechanism must be presented to encourage
workers to participate in the MCS system [31–34]. In [35], a truthful incentive approach was
introduced, which used the workers’ sensing performance and reputation to determine the
payment they would receive after completing the allocated tasks. In [36,37], the tasks were
allocated such that the social welfare was maximized to ensure that there is fairness in the
system. In [38], the semi-Markov model was used to obtain the positions of the workers,
which was then used to determine workers with the least distance and bidding price.
The authors in [39] updated the reward of each task in each iteration to take advantage of
the workers’ interest in a particular task. However, this research on incentive mechanisms
neglected the fact that maximizing the combined utility of the workers will encourage them
to participate in time-sensitive tasks in MCS and increase the chances that they will be
optimistic about performing the future time-sensitive tasks as well.

2.3. Summary

According to the research mentioned above, most authors failed to consider maximiz-
ing the workers welfare for time-sensitive tasks and its benefit for MCS. For instance, in [30],
the authors proposed A-DQN to determine the task allocation subject to time constraints.
However, they aimed to minimize the total reward given to the users selected to perform
the sensing task. Therefore, by considering the task allocation subject to time constraints of
the task and workers, this paper aims to maximize the total worker welfare by solving the
(WMTA-GA) multitask allocation problem.

3. System Model and Problem Statement

In this section, the system model of the MCS system followed by the problem statement
are presented. Table 1 shows the main notations used in this paper.
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Table 1. Model Parameters .

System Model Parameter

Worker Parameter

W Set of all workers
n Number of workers
wi worker i
ci Sensing cost of worker wi
pi Current position of worker wi
wti Available working time of worker wi
Pt

i Power level of worker wi
vi Velocity of worker wi
Ri Payment given to worker wi
willi Willingness of worker wi
WFij Willingness factor of worker wi for task tj
Wrtij Response time of worker wi for task tj
Pr

i Residual power of worker wi
WTi Task tj popularity
SPij Specification of worker wi for task tj
SPiT

wi
t

Specification of worker wi for Twi
t

Pri Profile for worker i

Task Parameter

T Set of all tasks
m Number of task
willj Willing threshold of task tj
tj Task j
tej End time of task tj
tsj Start time of task tj
tdj

Sensing duration of task tj

btj Budget allocated to task tj
Prj Profile for task tj
Twi

t Set of interested tasks for worker wi
TDj Task Demand for task tj

Other

B Total budget
D(wi, tj) Distance between worker wi location and the task tj position

3.1. System Model

Figure 1 depicts the MCS system model and the following definitions describe the
components of the model:

Definition 1 (Requester). The requester is an entity; which can be an individual or a company, that
requires certain sensing tasks T = {t1, t2, t3, . . . , tn} to be performed. The requester communicates
with the platform about its required sensing tasks and provides a budget for the set of tasks to
be performed.

Definition 2 (Task). Each task tj∈ T is located in a specific geographical position pj. The profile of
task tj is denoted by Prj = {pj, btj, tej, tsj, willj} which consists of budget btj, sensing-duration(
tej, tsj) , and willing threshold willj.
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Definition 3 (Platform). The main responsibility of the platform is to assign tasks to the workers
having the necessary sensor component and who are willing to perform the specific task. When a
worker wi has available working time, it informs the platform, and the worker will select the set of
tasks that they can perform. All the sensed data are then collected by the platform and sent to the
corresponding requester.

Definition 4 (Worker). The worker wi ∈ W is a smart-device user with enough energy that
participates in performing sensing tasks. A worker can participate in a sensing task only if the task’s
sensing duration fits into the worker’s available working time wti and the worker’s willingness
factor for the task is above the threshold. Each worker is associated with a specification for each
task tj which is denoted by SPij = {pi, wti, cij, vi}which consists of current position pi, available
working time wti, sensing cost cij, and velocity vi. The goal of workers is to select tasks that will
maximize their utility. The worker wi then includes these selected tasks to its set of interested tasks
Twi

t = {t1, t2, t3, . . . , t f j
}. After selecting these tasks, the worker sends to the platform its profile

Pri = {T
wi
t , SPiT

wi
t
}.

Figure 1. MCS System Model.

3.2. Problem Statement

From the description of the system model, the task-allocation problem is formulated
as follows:

max
n

∑
i=1

(Ri · ai − ci) (1)

s.t.
m

∑
j=1

D(wi, tj) ≤ vi · wti, ∀tj ∈ Twi
t (2)

D(wi, tj) ≤ vi · (tej − tsj), tj ∈ Twi
t (3)

WFij ≥ willj, ∀tj ∈ T (4)

aij = 1 or aij = 0, ∀wi ∈W, ∀tj ∈ T (5)

n

∑
i=1

aij ≤ 1, ∀tj ∈ T (6)

where Ri denotes the payment given to wi, the distance between the worker’s location
and the location of task tj ∈ Twi

t is denoted by D(wi, tj, Twi
t ), velocity is indicated by v and

aij represents the task-assignment: if task tj has been assigned to worker wi then aij = 1
otherwise aij = 0.

Equation (2) indicates that the time that the worker wi takes to move from their current
location to the last task in Twi

t should not exceed the working time wti. This constraint is to
ensure that the worker can perform all the allocated tasks it has accepted from the platform
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within its working time. Constraint Equation (3) ensures that each task is completed within
the sensing duration, Equation (4) ensures workers with a high willingness factor are
selected to perform task tj, and Equation (5) ensures that each task is allocated to only one
suitable worker.

The willingness-factor WFij predicts the performance of workers for the assigned
sensing tasks. The WFij is obtained by considering worker wi response-time Wrtij (i.e.,
the time the worker begins a sensing task) and the residual power of the workers’ smart
device pr

i . For example, when the worker’s commencing time for a task is the same as the
task’s start time, then the response time of the worker is 0. This reflects positively on the
workers’ willingness to perform the task, and in this scenario, the willingness-factor is 1.
From the above analysis, the willingness-factor is measured as follows:

WFij =

 min

 Pr
i

Pt
i
.

(
∑n

i=1
Wrtij

n

)
Wrtij

,1

, Wrtij 6= 0

1, Wrtij = 0

The willingness factor is then normalized as follows,

NWFij = (WFij)/(
m

∑
j=1

WFij) (7)

and worker wi is then rewarded with the following:

Ri = (
m

∑
j=1

NWFij) · btj (8)

where btj is the budget allocated to task tj. The calculation of the task budget is discussed
in Section 4.

Theorem 1. The multitask allocation problem is NP-complete.

Proof. The multitask allocation problem is a combinatorial optimization problem that has
a large solution space. We assume that there is Q number of tasks and s number of workers,
and each worker can perform Q number of tasks. Since each worker can perform 2Q of
assigning tasks and for all s number of workers, there will be 2sQ assigning method. In the
worst case, there will be 2sQ · Q! assignment method if each worker develops Q! ways
of completing the tasks, increasing the solution space which implies that the proposed
multitask problem is NP-complete.

4. Pricing Mechanism

In this section, a pricing mechanism is introduced to determine the budget allocation
for each task.

The task budgets are allocated to each task according to the task demand TDj which
is a reflection of how important a task is in the MCS system. The budget is obtained by
the weighted combination of the task-popularity WTi and the task-duration tdj

which is
defined by the following

tdj
= tej − tsj (9)

The task popularity reflects how frequently workers visit a certain location and is
indicated by the predicted number of workers in a given task location. The task demand
for task tj is determined as follows:

TDj = (w1 ∗WTi ) + (w2 ∗ tdj
) (10)
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where w1 and w2 are the weights satisfying (w1 + w2 = 1), the values which are determined
by the MCS platform. However, in this paper, we assume that the sensing duration is more
important than task popularity, and therefore we set the weights as w1 = 0.2 and w2 = 0.8.

The task demand is then normalized as follows,

NTDj = (TDj)/(
m

∑
j=1

TDj) (11)

and therefore given the total budget B of all tasks, the budget allocated to task tj is given by,

btj = (NTDj).B (12)

5. Multi-Task Allocation Algorithm

From the previous section, it was concluded that the task allocation solution space
was too large, and traditional combinatorial optimization algorithms will be inefficient
in handling the multitask allocation problem. In this section, we introduce the genetic
algorithm (GA) [40] to solve the multitask allocation problem. GA has been applied to
address various optimization problems in various research fields [41–44].

Genetic Algorithm for Multitask Allocation

In order to solve the studied problem, WMTA-GA adopted GA for multitask allocation
as presented in Algorithm 1. First, the population is initialized with K chromosomes
(line 1). In each iteration, the best chromosome is selected based on fitness (lines 2–9).
The fitness presented in line 4 represents the objective problem that is used to evaluate
each chromosome’s performance. The current best chromosome is updated in line 5,
and the selection operator, crossover and mutation operator, and re-establish operator
are introduced in (lines 6–8), respectively. The while loop continues until all the workers
have been assigned to a specified set of tasks. Finally, the global best chromosome is
updated in line 11. The initial population is generated from Algorithm 2, which uses the
greedy algorithm. The re-establishing operator is presented in Algorithm 3.

Algorithm 1 WMTA-GA.

Input: Worker set W and Task set T
Output: Worker set SW assigned to the task tj, ∀tj ∈ T

1: Popsize, maxG, G
2: Initialize population initial G with K chromosomes
3: while G ≤ maxG do
4: Evaluate the fitness of all chromosomes in PopG
5: Update the current best chromosome
6: Pop′G ← Selector operator on PopG
7: Pop′′G ← Crossover and mutation operator on Pop′G to produce update N chromo-

somes
8: PopG+1 ← Re-establish operator on Pop′′G
9: G← G + 1

10: end while
11: return best chromosome (task-worker allocation)



Sensors 2022, 22, 3013 8 of 16

Algorithm 2 Initial population.

Input: Worker set W and Task set T
Output: Chromosome C (initial task-worker allocation)

1: Candidate worker set WS←W
2: Unassigned task set TS← T
3: while WS ≥ 0 do
4: Randomly select a worker w ∈WS
5: Set counter q = 0
6: while q ≤ number of tasks do
7: Randomly select a task tj ∈ TS
8: C← append tj to the end of the genetic segment allocated for w
9: if C is a supported chromosome then

10: TS←TS− tj
11: end if
12: q←q + 1
13: end while
14: WS←WS− w
15: end while

Algorithm 3 Re-establishing Operator.

Input: A unsupported chromosome C
Output: A unsupported chromosome Cn

1: Case 1: Unsupported genetic segment
2: for genetic segment C(w) ∈ C do
3: if gene g(i) ∈ C(w) violates constraints Equations (2)–(4)
4: C(w)← select subset of genes in the genetic segment that satisfy the aforementioned

constraints
5: end if
6: end for
7: Case 2: Repeated task allocation
8: for each task tj do
9: RGS← all genetic segments containing the same task tj

10: GSB← the genetic segment ∈ RGS with the maximum fitness
11: for the remaining genetic segment in RGS do
12: Remove task tj
13: end for
14: end for
15: for genetic segment C(w) ∈ C do
16: Update worker w position and remaining working time
17: Ta← the tasks that w can perform with remaining available time
18: while doTa ≥ 0 do
19: Randomly select a task t′j from Ta

20: C′(w)←C(w) ∩ t′j
21: if C′(w) is a supported chromosome then
22: C(w)←C(w) ∩ C′(w)
23: end if
24: Ta ← Ta − t′j
25: end while
26: end for

1. Chromosome Representation and Fitness Evaluation
The main aim of WMTA-GA is to find a solution that indicates task–worker allocation
and task completion order. Since the number of chromosome solutions is uncertain,
we use a matrix structure to represent them. Each chromosome consists of b genetic
segments representing the registered workers. The genetic segments are identified
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using the index of their position in the chromosome. Each genetic segment is divided
into genes that represent the tasks assigned to the worker. According to the constraints
Equations (2)–(6), we classify the chromosomes into supported chromosomes meaning
that the multitask allocation satisfies the constraints and unsupported chromosomes
when the constraints are not satisfied.
Since each chromosome represents all the workers and their assigned tasks, the
whole population represents the set of workers and their assigned tasks.The fitness
function was applied to the chromosomes in a population to evaluate the quality of
the population. Since the objective function Ri = (∑m

j=1 NWFij). btj is to maximize
the workers welfare, then it is used as an indicator of each chromosome’s fitness level
(i.e., the amount of workers welfare generated by a chromosome is directly related to
its fitness level). Therefore, the fitness function of a chromosome Ct is calculated as:

Fit(Ct) =
n

∑
i=1

Ri.ai − ci (13)

This implies that for a population in a given generation defined as G={C1,C2,C3,. . . ,Cl},
the task assignment strategy of chromosome Ct (1 ≤ t ≤ l) is the row vector
Ah = {a1, a2, a3 . . . , ap}, where ai (1 ≤ i ≤ p) can be either “1” if the task is allo-
cated to the worker, or otherwise ai is “0”.

2. Selection Operator
The selector operator aims to allow the chromosomes with the higher fitness level to
proceed to the next generation while taking into consideration the population diver-
sity; however, chromosomes with lower fitness values can contain acceptable genetic
segment properties. To guarantee that top-quality chromosomes are accepted into
the next generation, we firstly select elitist chromosomes to ensure that chromosomes
with high fitness levels do not disappear. To obtain this type of chromosome, we
arranged the parent population chromosomes in descending order of fitness, and
randomly picked out a specified number of chromosomes (e.g., first to fifth) and
passed it on to the next generation. Afterward, tournament selection [3] is applied to
the remaining chromosomes. In each generation, a certain number of chromosomes
are compared and the chromosome with the highest fitness level proceeds to the next
generation. This continues until the required amount is obtained.

3. Crossover and Mutation Operator
In the crossover operation, a new generation of sophisticated chromosomes is gener-
ated by recombining the parent chromosomes through crossover operation. Initially,
two-parent chromosomes from the elite set of chromosomes and a single chromosome
from the remaining chromosomes are selected. Then the fitness value of the genetic
segments of the chromosomes (elite and normal chromosomes that are to be com-
bined by crossover operation) are compared using their fitness level, and the superior
genetic segment is passed to the new chromosome. In the process of performing
this operation, the entire population is evolved and the diversity of the population
is improved.
It is important to realize that the new chromosome generated from the crossover
operation might not follow the constraint conditions and therefore become an unsup-
ported chromosome. To avoid local optimum and enhance the population diversity,
the mutation operation is applied to the chromosome.
For the chromosome mutation to occur, we select two genes from two genetic segments
in the same chromosome and swapped them to generate mutated chromosomes.
However, during the mutation process, the status of some chromosomes may change
and become unsupported.

4. Re-establishing Operator
After the crossover and mutation operation, some supported chromosomes may con-
vert to unsupported chromosomes and for that reason, we introduce a re-establishing
operator. Initially, we confirm whether each genetic segment satisfies all the con-
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straints. If a constraint is violated, then we select a subset of genes in the correspond-
ing genetic segment that satisfies the constraints. Secondly, if a task is allocated more
than once in a particular chromosome, we use the idea of the survival of the fittest to
determine which of the tasks is to be retained. Finally, we consider the fact that some
workers may have remaining time to perform some unallocated sensing tasks and
determine which chromosome should be selected for this task such that the constraint
remains satisfied.

6. Experimental Results
6.1. Experimental Settings

In this section, we introduce the experimental design used to analyze the proposed
WMTA-GA algorithm. In the experiment, we assumed that both the number of sensing
tasks and the number of workers range from 60 to 200. The maximum number of itera-
tions (i.e., the maximum generation maxG) and the population size is set to 150 and 20,
respectively. The worker’s working time ranges from 1 to 50 (min), and the response time
of the task ranges from 1 to 20 (min). The sensing area is divided into 100 locations, and the
position of both the worker and task are randomly selected from one of the locations. We
assume that the velocity of the worker is 50 km/h and the total budget allocated to the
platform is 15,000. The willing threshold for each task is randomly selected from the range
[0.1 to 0.7]. The sensing cost of the workers is within the range [100, 400]. The experiment
was conducted using MatLab 2016a.

6.2. Performance Metric

We evaluate the approaches’ performances by studying how various parameters
(number of tasks and number of workers) affect the following metrics:

1. Workers Welfare: This metric is an indicator of how well an algorithm performs
based on fulfilling the condition of maximizing all the workers’ profit. The higher this
profit, the better the performance of the algorithm.

2. Number of Allocated Tasks: This indicates how many tasks are allocated to the
selected workers. When the number of allocated tasks is high, it shows that the
large number of workers can complete the tasks and this improves the reliability of
the platform.

3. Average Performance w.r.t Varying Number of Tasks: The average worker’s welfare
subject to the number of tasks in each algorithm is evaluated. This ratio assists in
evaluating the performance of the algorithms.

4. Average Performance w.r.t Varying Number of Workers: The performance of each
algorithm is compared by evaluating each of their average workers welfare with
respect to the number of workers. A high ratio indicates a high-performing algorithm.

6.3. Baseline Approaches

1. Greedy Worker Payoff-based Task Allocation (GWP): In [17], the GWP approach was
used to greedily select tasks with the highest reward in each iteration. We modified
this algorithm to maximize the workers welfare, whereby each worker selects the
tasks with the biggest reward and these workers are assigned to their selected tasks
if the worker–task allocation satisfies the validity conditions. If the conditions are
satisfied, then we exchange the location of the worker with the location of the current
task, therefore changing the new initial location of the worker. This process continues
until each worker’s working time is finished.

2. Greedy Worker Reward-Distance Ratio-GA (GWR-GA): The second benchmark algo-
rithm is the modified greedy payoff/distance-based task selection algorithm (G.P.D.A.)
[17]. This approach has been modified to maximize the workers welfare by employing
GA tasks with a high payoff/distance ratio to be assigned to workers, and GA is
employed to obtain an optimal chromosome (i.e., worker–task allocation).
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6.4. Result Analysis

In this section, the results obtained from WMTA-GA, GWR-GA and GWP are inter-
preted and analyzed.

• Impact of Varying the Number of Tasks
In Figure 2, we observe that the number of tasks is directly proportional to the workers
welfare and that WMTA-GA outperforms GWR-GA and GWP. For instance, when the
number of tasks was 100 and 140, the workers welfare for WMTA-GA was 3950 and
5605, respectively, which is much higher than the welfare obtained by GWR-GA (3742
and 5144) and GWP(3175 and 3863).
As shown in Figure 3, the ratio of the assigned tasks in WMTA-GA, GWR-GA,
and GWP declines significantly with the increase in the number of tasks. However,
when the number of tasks is 60 and 200, we see that the WMTA-GA recorded the
highest ratio of assigned tasks, which are 0.6 and 0.26, respectively. Table 2 illustrates
the performances of the three approaches and indicates that WMTA-GA performs
better in comparison to GWP and GWR-GA. This is confirmed by their average utility
value where WMTA-GA is 73.24 which is 13% and 68% higher than GWR-GA and
GWP, respectively.

Figure 2. Impact of Varying Number of Tasks on Worker Welfare.

Figure 3. Impact of Varying Number of Tasks on Ratio of Assigned Tasks.

Table 2. Average performance w.r.t Varying Number of Tasks.

Workers’ Welfare Average Performance Based on the Number of Tasks

WMTA-GA GWR-GA GWP

WMTA-GA - 2.91 73.24

GWR-GA −3 - 68

GWP 42 −40.60 -
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• Impact of Varying Number of Workers
We investigate how varying the number of workers affects worker welfare, the number
of task allocations, and the average performance of the workers. We set the range
of workers from 60 to 90 and fixed the number of tasks to 200. In Figure 4, we
observe that as the number of workers increases, the workers’ welfare increases as
well. The workers’ welfare in WMTA-GA steadily increases compared to the other
approaches. For example, when the number of workers ranges from 60 to 80, WMTA-
GAs’ worker welfare is 3100 and 5300.
In Figure 5, we see that WMTA-GA provides the highest number of assigned tasks
as compared to the other algorithms. When the number of workers is 60 and 80,
WMTA-GA achieves 56 and 77 number of the assigned tasks.
The number of the assigned tasks increases as more tasks are successfully allocated, as
observed in Figure 5. The WMTA-GA approach had the highest number of assigned
tasks compared to other approaches for n = 60 to 90, with the highest recorded number
of assigned tasks of 84 at n = 90. GWR-GA follows the same trend as WMTA-GA
because it achieved a similar result to WMTA-GA. However, GWP had the lowest
overall number of assigned tasks and peaked at 68 assigned tasks at n = 70.
We observed from Table 3 that WMTA-GA has the best average performance as
compared to GWR-GA and GWP, which is indicated by their average utility values.
WMTA-GA’s average utility value is 17.26% more than GWP, and 1.98% more than
GWR-GA. The second-best performing algorithm is GWR-GA, with an average utility
value higher than GWP by 15 percent. Compared to WMTA-GA and GWR-GA,
the GWP had a minor favourable result, with an average performance of −15% and
−13.3% for WMTA-GA and GWR-GA, respectively.

Table 3. Average performance w.r.t Varying Number of Workers.

Workers Welfare Average Performance Based on Number of Workers

WMTA-GA GWR-GA GWP

WMTA-GA - 1.98 17.26

GWR-GA −2 - 15

GWP −15 −13.03 -

Figure 4. Impact of Varying Number of Workers on Worker Welfare.
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Figure 5. Impact of Varying Number of Workers on Number of Assigned Tasks.

6.5. Discussion

In Section 6.3, WMTA-GA achieves the overall best results for the workers welfare,
ratio of assigned tasks and number of assigned tasks. The explanation for this is that the
workers using the WMTA-GA approach have a higher chance of being correctly assigned
to sensing tasks with greater reward due to the re-establishing operator. The function of
the re-establishing operator is to convert the unsupported chromosome (i.e., task-worker
allocation) to the supported chromosome that fulfils the MCS constraints Equations (2)–(4).
For instance, in Figure 2, WMTA-GA recorded high worker welfare as a value of m increases,
while GWR-GA followed a similar trend but with lower values for the workers welfare.
On the other hand, GWP, which uses the greedy algorithm, had the lowest worker welfare
throughout the graph. In Figure 3, the ratio of assigned tasks declined for all approaches as
the number of tasks increased. This result is due to the resources of the workers in the MCS
system being limited, so newly introduced tasks will be less likely to be assigned as the
workers will have exhausted their resources from the previous set of tasks. Nevertheless,
the WMTA-GA displayed a better ratio of assigned tasks than the remaining approaches
due to the assistance of the re-establishing operator.

The advantages of using the re-establishing operator for the various number of workers
are presented in Figures 4 and 5. In Figure 4, WMTA-GA accomplished the highest steady
increase in worker welfare for the varying number of workers. The stronger performance of
WMTA-GA can be attributed to the following reasons; (1) more tasks are being successfully
assigned to the workers in the MCS system, and, as a result, the selected workers gain more
profit. Due to similar reasons, WMTA-GA in Figure 5 experienced the highest number of
assigned tasks for the range m = (60 to 90) and (2). The average percent of supported and
unsupported chromosomes in each iteration is 30% and 70%, respectively. The unsupported
chromosomes are then reduced and converted into supported chromosomes by using the
re-establishing operator.

Therefore, we observed that the approaches that do not utilize a re-establishing opera-
tor will have lower performance due to the unsupported chromosome or task allocation.
Therefore, we can conclude that WMTA-GA is superior to GWR-GA and GWP.

7. Conclusions

In this paper, we have studied a multitask allocation in a mobile crowd-sensing
environment. The problem is formulated as an optimization problem. We first proved
that the problem is NP-complete, which is hard to be solved by traditional methods. Then,
we proposed a worker multitask allocation-genetic algorithm (WMTA-GA) to solve this
problem. WMTA-GA is used to optimize the workers’ welfare such that the multiple
sensing task is allocated to a worker with the condition that the time and willingness
constraints are fulfilled. Specifically, these conditions include that the allocated tasks are
performed during the working time of the worker, and the worker’s willingness factor for
each assigned task is above the tasks’ willingness threshold. For each selected worker, we
utilized the task budget and the worker’s willingness factor to determine the payment for
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the worker. Simulation results show that the proposed WMTA-GA approach outperforms
other approaches in terms of average performance, worker’s welfare, and ratio and number
of assigned tasks.

Author Contributions: Conceptualization, A.A.I., Z.C., M.A., L.G., A.M.A.I. and A.A.A.E.-L.; method-
ology, A.A.I., Z.C., M.A., L.G.; software, A.A.I., Z.C., M.A., L.G., validation, A.A.I., Z.C., M.A., S.A.C.,
L.G., A.M.A.I. and A.A.A.E.-L.; formal analysis, A.A.I., Z.C.; investigation, A.A.I., Z.C.; resources,
A.A.I., Z.C., M.A., A.M.A.I.; data curation, A.A.I., Z.C., M.A.,A.M.A.I.; writing—original draft
preparation, A.A.I., Z.C., M.A.; writing—review and editing, A.A.I., Z.C., M.A. and A.A.A.E.-L.;
visualization, A.A.I., Z.C., M.A., S.A.C.; supervision, Z.C. and A.A.A.E.-L.; project administration,
A.A.I., Z.C., M.A.; funding acquisition, Z.C., All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62102456 and Grant 71633006, and in part by the project funded by the China Postdoctoral
Science Foundation under Grant 2021TQ0369. This work was also supported by Princess Nourah
bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R239), Princess
Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. Ahmed A. Abd El-Latif acknowledges
the financial support of EIAS Data Science Lab, College of Computer and Information Sciences, Prince
Sultan University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing avaliable upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, Z.; Cao, J.; Liu, X. High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility. In

Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Kowloon, Hong Kong, 26 April–1 May
2015; pp. 2542–2550. [CrossRef]

2. Karaliopoulos, M.; Telelis, O.; Koutsopoulos, I. User recruitment for mobile crowdsensing over opportunistic networks. In
Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Kowloon, Hong Kong, 26 April–1 May
2015; pp. 2254–2262. [CrossRef]

3. Li, X.; Zhang, X. Multi-Task Allocation Under Time Constraints in Mobile Crowdsensing. IEEE Trans. Mob. Comput. 2021,
20, 1494–1510. [CrossRef]

4. Asim, M.; Mashwani, W.K.; El-Latif, A.A. Energy and Task Completion Time Minimization Algorithm for UAVs-Empowered
MEC system. Sustain. Comput. Inform. Syst. 2022, 35, 100698. [CrossRef]

5. Zhao, Y.; Guo, J.; Chen, X.; Hao, J.; Zhou, X.; Zheng, K. Coalition-based Task Assignment in Spatial Crowdsourcing. In
Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; IEEE
Computer Society: Los Alamitos, CA, USA, 2021; pp. 241–252. [CrossRef]

6. Wang, J.; Wang, F.; Wang, Y.; Wang, L.; Qiu, Z.; Zhang, D.; Guo, B.; Lv, Q. HyTasker: Hybrid Task Allocation in Mobile Crowd
Sensing. IEEE Trans. Mob. Comput. 2020, 19, 598–611. [CrossRef]

7. Zhao, Y.; Zheng, K.; Li, Y.; Su, H.; Liu, J.; Zhou, X. Destination-Aware Task Assignment in Spatial Crowdsourcing: A Worker
Decomposition Approach. IEEE Trans. Knowl. Data Eng. 2020, 32, 2336–2350. [CrossRef]

8. Wei, X.; Wang, Y.; Tan, J.; Gao, S. Data Quality Aware Task Allocation with Budget Constraint in Mobile Crowdsensing. IEEE
Access 2018, 6, 48010–48020. [CrossRef]

9. Chen, Y.; Li, Z.; Yang, B.; Naia, K.; Li, K. A Stackelberg game approach to multiple resources allocation and pricing in mobile
edge computing. Future Gener. Comput. Syst. 2020, 108, 273–287. [CrossRef]

10. Dai, M.; Su, Z.; Wang, Y.; Xu, Q. Contract Theory Based Incentive Scheme for Mobile Crowd Sensing Networks. In Proceedings
of the 2018 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT), Tangier, Morocco, 20–22
June 2018; pp. 1–5.

11. Singla, A.; Krause, A. Truthful Incentives in Crowdsourcing Tasks Using Regret Minimization Mechanisms; Association for Computing
Machinery: New York, NY, USA, 2013. [CrossRef]

12. Yucel, F.; Yuksel, M.; Bulut, E. Coverage-Aware Stable Task Assignment in Opportunistic Mobile Crowdsensing. IEEE Trans. Veh.
Technol. 2021, 70, 3831–3845. [CrossRef]

13. Yucel, F.; Bulut, E. Location-Dependent Task Assignment for Opportunistic Mobile Crowdsensing; IEEE Press: Piscataway, NJ, USA,
2020. [CrossRef]

http://doi.org/10.1109/INFOCOM.2015.7218644
http://dx.doi.org/10.1109/INFOCOM.2015.7218612
http://dx.doi.org/10.1109/TMC.2019.2962457
http://dx.doi.org/10.1016/j.suscom.2022.100698
http://dx.doi.org/10.1109/ICDE51399.2021.00028
http://dx.doi.org/10.1109/TMC.2019.2898950
http://dx.doi.org/10.1109/TKDE.2019.2922604
http://dx.doi.org/10.1109/ACCESS.2018.2865095
http://dx.doi.org/10.1016/j.future.2020.02.045
http://dx.doi.org/10.1145/2488388.2488490
http://dx.doi.org/10.1109/TVT.2021.3065688
http://dx.doi.org/10.1109/CCNC46108.2020.9045210


Sensors 2022, 22, 3013 15 of 16

14. Xiong, J.; Chen, X.; Tian, Y.; Ma, R.; Chen, L.; Yao, Z. MAIM: A Novel Incentive Mechanism Based on Multi-Attribute User
Selection in Mobile Crowdsensing. IEEE Access 2018, 6, 65384–65396. [CrossRef]

15. Liu, W.; Yang, Y.; Wang, E.; Wu, J. Dynamic User Recruitment with Truthful Pricing for Mobile CrowdSensing. In Proceedings of
the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1113–1122.
[CrossRef]

16. Huang, Y.; Chen, H.; Ma, G.; Lin, K.; Ni, Z.; Yan, N.; Wang, Z. OPAT: Optimized Allocation of Time-Dependent Tasks for Mobile
Crowdsensing. IEEE Trans. Ind. Inform. 2022, 18, 2476–2485. [CrossRef]

17. Wang, Z.; Tan, R.; Hu, J.; Zhao, J.; Wang, Q.; Xia, F.; Niu, X. Heterogeneous Incentive Mechanism for Time-sensitive and
Location-dependent Crowdsensing Networks with Random Arrivals. Comput. Netw. 2017, 131, 96–109 . [CrossRef]

18. Akter, S.; Yoon, S. DaTask: A Decomposition-Based Deadline-Aware Task Assignment and Workers’ Path-Planning in Mobile
Crowd-Sensing. IEEE Access 2020, 8, 49920–49932. [CrossRef]

19. Cheung, M.H.; Hou, F.; Huang, J. Delay-Sensitive Mobile Crowdsensing: Algorithm Design and Economics. IEEE Trans. Mob.
Comput. 2018, 17, 2761–2774. [CrossRef]

20. Liu, W.; Yang, Y.; Wang, E.; Han, Z.; Wang, X. Prediction Based User Selection in Time-Sensitive Mobile Crowdsensing. In
Proceedings of the 2017 14th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON),
San Diego, CA, USA, 12–14 June 2017; pp. 1–9. [CrossRef]

21. Wang, H.; Zhao, D.; Ma, H.; Ding, L. MB-GVNS: Memetic Based Bidirectional General Variable Neighborhood Search for
Time-Sensitive Task Allocation in Mobile Crowd Sensing. IEEE Trans. Veh. Technol. 2020, 69, 2219–2229. [CrossRef]

22. Guo, B.; Liu, Y.; Wu, W.; Yu, Z.; Han, Q. ActiveCrowd: A Framework for Optimized Multitask Allocation in Mobile Crowdsensing
Systems. IEEE Trans. Hum.-Mach. Syst. 2017, 47, 392–403. [CrossRef]

23. Yang, S.; Qi, X.; Wu, F.; Gao, X.; Chen, G. Bandit User Selection Algorithm for Budgeted and Time-Limited Mobile Crowdsensing.
In Proceedings of the GLOBECOM 2017–2017 IEEE Global Communications Conference, Singapore, 4–6 December 2017; pp. 1–6.
[CrossRef]

24. Wang, Z.; Zhao, J.; Hu, J.; Zhu, T.; Wang, Q.; Ren, J.; Li, C. Towards Personalized Task-Oriented Worker Recruitment in Mobile
Crowdsensing. IEEE Trans. Mob. Comput. 2021, 20, 2080–2093. [CrossRef]

25. Yucel, F.; Bulut, E. Time-dependent Stable Task Assignment in Participatory Mobile Crowdsensing. In Proceedings of the 2020
IEEE 45th Conference on Local Computer Networks (LCN), Sydney, Australia, 16–19 November 2020; pp. 433–436. [CrossRef]

26. Cheung, M.H.; Hou, F.; Huang, J.; Southwell, R. Distributed Time-Sensitive Task Selection in Mobile Crowdsensing. IEEE Trans.
Mob. Comput. 2021, 20, 2172–2185. [CrossRef]

27. Kortoçi, P.; Mehrabi, A.; Joe-Wong, C.; Di Francesco, M. Incentivizing Opportunistic Data Collection for Time-Sensitive IoT
Applications. In Proceedings of the 2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking
(SECON), Rome, Italy, 6–9 July 2021; pp. 1–9. [CrossRef]

28. Yang, J.; Fu, L.; Yang, B.; Xu, J. Participant Service Quality Aware Data Collecting Mechanism with High Coverage for Mobile
Crowdsensing. IEEE Access 2020, 8, 10628–10639. [CrossRef]

29. Majeed, D.M.; Zhang, L.; Shi, K. Optimal Data Collection for Mobile Crowdsensing over Integrated Cellular and Opportunistic
Networks. IEEE Access 2020, 8, 157270–157283. [CrossRef]

30. Akter, S.; Dao, T.N.; Yoon, S. Time-Constrained Task Allocation and Worker Routing in Mobile Crowd-Sensing Using a
Decomposition Technique and Deep Q-Learning. IEEE Access 2021, 9, 95808–95822. [CrossRef]

31. Xu, J.; Fu, J.R.; Yang, D.; Xu, L.J.; Wang, L.; Li, T. FIMI: A Constant Frugal Incentive Mechanism for Time Window Coverage in
Mobile Crowdsensing. J. Comput. Sci. Technol. 2017, 32, 919–935. [CrossRef]

32. Sun, X.; Yang, X.; Wang, C.; Wang, J. A Novel User Selection Strategy with Incentive Mechanism Based on Time Window in
Mobile Crowdsensing. Discret. Dyn. Nat. Soc. 2020, 2020, 1–13. [CrossRef]

33. Gao, H.; Liu, C.H.; Tang, J.; Yang, D.; Hui, P.; Wang, W. Online Quality-Aware Incentive Mechanism for Mobile Crowd Sensing
with Extra Bonus. IEEE Trans. Mob. Comput. 2019, 18, 2589–2603. [CrossRef]

34. Wang, Y.; Cai, Z.; Zhan, Z.H.; Gong, Y.J.; Tong, X. An Optimization and Auction-Based Incentive Mechanism to Maximize Social
Welfare for Mobile Crowdsourcing. IEEE Trans. Comput. Soc. Syst. 2019, 6, 414–429. [CrossRef]

35. Xu, C.; Si, Y.; Zhu, L.; Zhang, C.; Sharif, K.; Zhang, C. Pay as How You Behave: A Truthful Incentive Mechanism for Mobile
Crowdsensing. IEEE Internet Things J. 2019, 6, 10053–10063. [CrossRef]

36. Yang, S.; Jiang, W.; Duan, J.; Huang, Z.; Lu, J. Max-Min Fairness Multi-task Allocation in Mobile Crowdsensing. In Machine
Learning for Cyber Security; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 164–179.

37. Liu, H.; Jiang, W.; Yang, S.; Lu, J.; Ning, D. Multi-term Multi-task Allocation for Mobile Crowdsensing with Weighted Max-
Min Fairness. In Machine Learning for Cyber Security; Springer International Publishing: Berlin/Heidelberg, Germany, 2020;
pp. 393–404.

38. Wang, Z.; Zhu, J.; Li, D. Prediction Based Reverse Auction Incentive Mechanism for Mobile Crowdsensing System. In
Combinatorial Optimization and Applications; Springer: Cham, Switzerland, 2019; pp. 541–552. [CrossRef]

39. Wang, Z.; Hu, J.; Zhao, J.; Yang, D.; Chen, H.; Wang, Q. Pay On-Demand: Dynamic Incentive and Task Selection for Location-
Dependent Mobile Crowdsensing Systems. In Proceedings of the 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, 2–5 July 2018; pp. 611–621. [CrossRef]

40. Holland, J. Erratum: Genetic Algorithms and the Optimal Allocation of Trials. SIAM J. Comput. 1974, 3, 326. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2878761
http://dx.doi.org/10.1109/INFOCOM41043.2020.9155242
http://dx.doi.org/10.1109/TII.2021.3094527
http://dx.doi.org/10.1016/j.comnet.2017.12.010
http://dx.doi.org/10.1109/ACCESS.2020.2980143
http://dx.doi.org/10.1109/TMC.2018.2815694
http://dx.doi.org/10.1109/SAHCN.2017.7964935
http://dx.doi.org/10.1109/TVT.2019.2962064
http://dx.doi.org/10.1109/THMS.2016.2599489
http://dx.doi.org/10.1109/GLOCOM.2017.8254592
http://dx.doi.org/10.1109/TMC.2020.2973990
http://dx.doi.org/10.1109/LCN48667.2020.9314829
http://dx.doi.org/10.1109/TMC.2020.2975569
http://dx.doi.org/10.1109/SECON52354.2021.9491593
http://dx.doi.org/10.1109/ACCESS.2020.2965734
http://dx.doi.org/10.1109/ACCESS.2020.3019537
http://dx.doi.org/10.1109/ACCESS.2021.3094528
http://dx.doi.org/10.1007/s11390-017-1773-4
http://dx.doi.org/10.1155/2020/2815073
http://dx.doi.org/10.1109/TMC.2018.2877459
http://dx.doi.org/10.1109/TCSS.2019.2907059
http://dx.doi.org/10.1109/JIOT.2019.2935145
http://dx.doi.org/10.1007/978-3-030-36412-0_44
http://dx.doi.org/10.1109/ICDCS.2018.00066
http://dx.doi.org/10.1137/0203026


Sensors 2022, 22, 3013 16 of 16

41. Asim, M.; Wang, Y.; Wang, K.; Huang, P.Q. A Review on Computational Intelligence Techniques in Cloud and Edge Computing.
IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 742–763. [CrossRef]

42. Asim, M.; Mashwani, W.K.; Belhaouari, S.B.; Hassan, S. A Novel Genetic Trajectory Planning Algorithm with Variable Population
Size for Multi-UAV-Assisted Mobile Edge Computing System. IEEE Access 2021, 9, 125569–125579. [CrossRef]

43. Asim, M.; Mashwani, W.K.; Habib, S.; Belhaouari, S.B. An evolutionary trajectory planning algorithm for multi-UAV-assisted
MEC system. Soft Comput. 2021. [CrossRef]

44. Asim, M.; Abd El-Latif, A.A. Intelligent computational methods for multi-unmanned aerial vehicle-enabled autonomous mobile
edge computing systems. ISA Trans. 2021. [CrossRef]

http://dx.doi.org/10.1109/TETCI.2020.3007905
http://dx.doi.org/10.1109/ACCESS.2021.3111318
http://dx.doi.org/10.1007/s00500-021-06465-y
http://dx.doi.org/10.1016/j.isatra.2021.11.021

	Introduction
	Related Work
	Task Allocation
	Incentive Mechanism
	Summary

	System Model and Problem Statement
	System Model
	Problem Statement

	Pricing Mechanism
	Multi-Task Allocation Algorithm 
	Experimental Results
	Experimental Settings
	Performance Metric
	Baseline Approaches
	Result Analysis
	Discussion

	Conclusions
	References

