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Abstract
More than eighty years after Hans Selye (1907–1982) first developed a concept
describing how different types of environmental stressors affect physiological
functions and promote disease development (called the “general adaptation
syndrome”) in 1936, we herein review advances in theoretical, mechanistic,
and clinical knowledge in stress research, especially in the area of
gastroenterology, and summarize progress and future perspectives arising
from an interdisciplinary psychoneurobiological framework in which genetics,
epigenetics, and other advanced ( ) technologies in the last decadeomics
continue to refine knowledge about how stress affects the brain-gut axis in
health and gastrointestinal disease. We demonstrate that neurobiological
stress research continues to be a driving force for scientific progress in
gastroenterology and related clinical areas, inspiring translational research
from animal models to clinical applications, while highlighting some areas that
remain incompletely understood, such as the roles of sex/gender and gut
microbiota in health and disease. Future directions of research should include
not only the genetics of the stress response and resilience but also epigenetic
contributions.
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Introduction
Our review will start with a short historical vignette on Hans  
Selye’s contribution to our current understanding of the concept 
of environmental stressors on human disease and will bridge to 
acute research questions driven by progress in neurophysiology  
(“decade of the brain”) and, more recently, microbiology. In three 
sections, we will then elaborate how stress research has contrib-
uted to basic animal studies in gastroenterology (for example, on  
the role of sex differences and the contribution of the gut  
microbiota for understanding the stress response and visceral 
hypersensitivity, in translational research on the commonalities 
and differences between acute and chronic stress in humans, and 
on clinical research exploring whether and how stress contrib-
utes to functional and other gastrointestinal [GI] disorders, taking  
both basic [sex and microbiota] and technical [brain imaging] 
aspects into consideration).

Historical vignettes
In the July issue of the journal Nature in 1936, 29-year-old  
Hans Selye, a Vienna-born Austrian-Hungarian who studied  
medicine and chemistry in Prague, Paris, and Rome before com-
pleting his Ph.D. at Johns Hopkins University and immigrating 
to Montreal, published his first (!) paper. This short note entitled  
“A syndrome produced by diverse nocuous agents”1 was about 
twice the size of an abstract nowadays, yet the syndrome would 
later become known as the stress concept, also known as “general 
adaptation syndrome” (GAS). Although it described the major  
principle, a global and homogenous three-phase bodily response 
to a variety of different noxious stimuli, the term “stress” was 
not mentioned. It also contained no reference that this concept  
may be of any special relevance to the GI tract, except that  
Selye noted that “the formation of acute erosions in the diges-
tive tract, particular in the stomach, small intestine and appendix” 
of the animals (rats) following exposure to noxious agents  
occurred1. Ten years later, Selye published a full account of his 
experimental findings, entitled “The general adaptation syndrome 
and diseases of adaptation”2, that may mark the true beginning 
of the GAS/stress theory, again remarkable for different reasons: 
for the fact that this paper was published simultaneously in  
several journals (Journal of Allergy, Annales d’Endocrinologie,  
Manpower, Piersol’s Cyclopedia of Medicine, Surgery and  
Specialties, and Bulletin de Biologie et de Médecine Expérimental 
de l’U.R.S.S.), which is entirely impossible to think of nowadays,  
and for the frequently reproduced figure illustrating the—at that 
time—unknown pathways connecting the brain to peripheral  
bodily systems, including the GI tract. Yet it was GI physiology 
and the search for pathways and their neuroendocrine mediators,  
including those involved in “stress ulcers” in the gut, that  
subsequently received the most attention: UCLA’s Center for  
Ulcer Research and Education3, founded in 1974, was the Mecca 
for stress research outside its hub in Montreal, Canada. This 
promoted the idea that central stress causes or contributes to  
many peripheral diseases—a concept that ever since has been  
discussed in gastroenterology, much earlier than in other core  
medical areas and subspecialties. Ulcers are no longer a major 
focus of stress research in gastroenterology, but, given the  
detection of Helicobacter pylori and its involvement in ulcer  
formation, stress research in gastroenterology continues to thrive.

Seventy years after Selye’s account and at the end of the  
“Decade of the Brain”, the September 2015 issue of Nature  
Neuroscience provided state-of-the-art reviews of stress research 
summarizing the remarkable progress in our understanding of 
mechanisms involved in central processes and their clinical 
implications for multiple diseases and health conditions, ranging 
from psychiatric to cardiovascular and immune-related diseases.  
Important conceptual developments, especially the concepts of 
allostasis and allostatic load4, continue to provide a more refined 
psychoneurobiological framework to explain the mechanisms 
and clinical implications of chronic stress and stress-related  
conditions. These incorporate new aspects such as the role of  
threat perception, cognitions, coping, and appraisal processes5,6  
with a focus on mental health, individual variability, and resilience7,8 
and their underlying neurobiological mechanisms.

Today, stress research is highly transdisciplinary and has many  
facets, including research into motivation and reward, plasticity, 
cognition, and sex differences, to name a few. Some of these  
topics have found their way into gastroenterological research;  
others have yet to be incorporated. Although recent work is  
carried out mostly in the context of visceral pain9 and the biopsy-
chosocial disease model in functional GI disorders such as  
irritable bowel syndrome (IBS) and functional dyspepsia (FD), 
interest in stress and biopsychosocial disease concepts10,11 has 
started to extend to other GI conditions such as inflammatory bowel 
diseases (IBDs)12,13, liver diseases14, and celiac disease15,16.

In the following, we will discuss current facets of stress research 
both in animal studies and in human research and will outline 
its relevance for the pathophysiology of GI conditions, either  
shown or proposed.

Translational approaches to study acute and chronic 
stress
To reliably produce gastric (stress) ulcers, a simple cold- 
restraint model was used until the 1980s in most animal studies, 
for example,17, but was frequently questioned for its relevance in 
humans and replaced by other stressors (for example, by noise18) 
when GI functions (motility and secretion) rather than ulcer  
formation were of interest. But it was not until in 1989, when a 
truly psychological (that is, non-invasive and non-physical) stress 
model for rodents—the water avoidance model19—was intro-
duced, that animal stress research became truly relevant for the  
investigation of intestinal functions and dysfunctions in humans. 
Yet other animal models—neonatal maternal separation20 and, 
more recently, limited nesting21—sparked the initiation of a large  
series of studies on the long-term effects of stress on visceral  
sensitivity and related dysfunctions in animals.

In humans, there are a number of approaches to study the  
effects of acute and chronic stress and underlying psychological 
and neurobiological mechanisms. One prominent example of a  
well-established acute laboratory stress model is the Trier Social 
Stress Test (TSST), which combines a difficult cognitive task 
(mental arithmetic) with a public-speaking task in front of an  
audience. The TSST is a widely established, highly standardized, 
and purely psychosocial trigger of acute stress responses22,23 that 
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reliably induces pronounced yet transient increases in psycho-
logical and biological stress markers, including emotional and  
cognitive responses along with activation of the hypothala-
mus-pituitary axis and sympathetic nervous system. Several  
examples for its application in the context of the GI system  
exist24–30, while other work in the field31–34 has implemented  
alternative approaches to induce psychological stress. Some of 
these experimental protocols produce weaker, less reliable stress  
effects (for example, dichotomous listening), incorporate a 
physical pain component (for example, cold pressure test), or 
focus primarily on emotional or cognitive aspects (for example,  
listening to sad music, seeing disturbing pictures, and antici-
pating electric shock). Pharmacological approaches, such as 
the administration of corticotropin-releasing hormone (CRH), 
CRH antagonist, or hydrocortisone, which have recently been 
accomplished in the GI system35–38, allow clinicians to spe-
cifically assess effects on GI-related functions mediated by the  
hypothalamic-pituitary-adrenal (HPA) axis but arguably have  
limited external validity as models of psychological stress 
in humans given a lack of effects at the subjective level (for  
example, no increase in subjective stress levels of state anxiety).

In contrast to acute stress, which induces an adaptive response 
preparing the organism for “fight-or-flight” and therefore is not  
harmful per se, chronic stress evokes maladaptive psychophysi-
ological changes which, when severe, can have a multitude of  
clinical39 and broad implications40,41 for the GI system. It is  
defined as the psychophysiological response to long-term  
emotional pressures such as adverse life events over which the  
individual perceives little or no control and typically is measured 
with validated questionnaires (for example, the Trier Inventory 
for the Assessment of Chronic Stress [TICS]42 and the Perceived  
Stress Questionnaire43).

Although experimental approaches in animals and humans are  
divergent and continue to evolve, broad knowledge about  
centrally mediated effects of stress on GI sensorimotor functions 
has fundamentally shaped the concept of the brain-gut axis and  
continues to inspire animal and human studies.

Current animal stress research in the gastrointestinal 
tract
Visceral hypersensitivity—an abnormally high responsiveness of 
the gut toward physiological stimuli (for example, distension)—is 
regarded as a key feature of functional bowel disorders of IBS  
type44. In animals, it can reliably be induced by a temporary  
(for example, early life) exposure of a gut segment to a nox-
ious but transient stimulus that leaves the segment unaltered  
morphologically but responsive to low-level stimuli later in  
life45 and other, non-GI stimuli (for example, foot-shock) work as 
well46. Visceral hypersensitivity can also be induced in newborn 
pups when they are exposed to maternal separation (1 hour per 
day for a week or two) and are retested days, weeks, or months  
later20; this effect appears specific for visceral hypersensitiv-
ity but not for other behavioral measures47. Such an effect of 
early life stress is not limited to rodents but also occurs in other  
mammals, such as in porcine models where it induced chronic 

functional diarrhea and intestinal barrier defects and increased 
mast cell activity48, lasting hypersensitivity of secretomotor neu-
ron function, and upregulation of the cholinergic enteric nervous  
system49.

Neonatal maternal separation also changes neurocognitive  
functions50 and stress responsiveness in the dams51; whether  
visceral sensitivity of the mothers is altered remains unknown. 
When pregnant rats are exposed to a gut-sensitizing stimulus, 
their offspring will also show visceral hypersensitivity52. It has 
been shown that such experimentally induced hypersensitivity will 
be transmitted across generations53, indicating “soft” rather than  
Mendelian inheritance and an epigenetic mechanism for this54. 
Whether transmission of susceptibility occurs via transmission 
of hormonal concentrations to offspring via lactation55 or via  
alterations of the gut microbiota that is transmitted vertically56 
remains an open issue.

Even if gut segments of stress-exposed animals show little or 
no morphological alterations upon macroscopic or microscopic  
inspection, they still may behave differently not only in vivo 
but also ex vivo when jejunal and colonic segments of animals  
stressed by restraint for one hour demonstrated decreased motil-
ity frequency and increased amplitude in vitro57. According to 
the authors, this implies that dysmotility is generated by mecha-
nisms internal to the gut (rather than central), presumably via  
immune-mediated or neurally mediated changes of the enteric  
nervous system, because of the short-term nature of the stress-
test interval. One putative mediator may be neuropeptide  
Y (NPY); its receptors play important roles in—among others—
stress resilience58.

The variability of stress responses in different animal strains  
of the same species—for example, selective breeding-based  
cholinergic hypersensitivity and hyposensitivity Flinders rat  
lines59 or hyperanxious (HAB-M) and hypoanxious (LAB-M) 
mouse lines60—or increased stress responsiveness in Wistar  
Kyoto rats, as compared with Sprague Dawley rats61, is well 
established. The importance of individual vulnerability and  
resilience factors is increasingly acknowledged both concep-
tually (for example,8) and in mechanistic research and may  
exhibit a genetic62 and an epigenetic63 basis, and this is possibly 
based on “synaptic rewiring” of stress-sensitive neurons64. In 
all cases, however, it is likely that the “three-hit concept” of  
vulnerability and resilience persists: a genetic predisposition 
and early life adverse events are necessary so that a later-in-life  
stressor can exhibit negative health outcomes, and one or more 
missing may result in higher resilience65. It is of importance to 
note that resilience has not yet been thoroughly investigated in  
relation to GI functions in animals (and humans) under stress; 
it is, however, known that patients with IBS lack resilience, and  
low resilience was associated with worse IBS severity, lower  
quality of life, more early life stressful events, and stress  
hyper-responsiveness66. Similarly, in patients with IBD, the role 
of (maladaptive) coping is only beginning to be unraveled (for  
example,67–69), calling for translational research on individual risk 
and resilience in patients with GI conditions.
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Sex differences in rodents and humans
Gender differences in the prevalence of chronic visceral pain, 
especially a female preponderance of functional gastrointestinal 
disorders (FGIDs), are well established. Further support for a 
role of sex-related factors comes from mechanistic human and  
animal research showing sex differences in visceral pain process-
ing in animal models, healthy individuals, and patients with  
FGIDs70,71. The putative connection linking gender/sex and sex 
hormones to stress and pain is undoubtedly highly complex 
yet intriguing and in need of more dedicated research in animal  
models, healthy humans, and patients70,72 with attention to effects 
across the life span73. After all, many sex differences exist in the 
central and peripheral response to stress because of dimorphic 
brain development73. During gestation, sex differences in  
embryonic responses to maternal and environmental stress are  
well documented, and males are at higher risk for negative  
outcomes. In humans, this is associated with higher incidences 
of neurological disorders (attention-deficit/hyperactivity disorder, 
among others); in animals, stress during pregnancy predominantly 
affects male offspring74. During childhood, in contrast, stress  
appears to increase the risk for affective disorders, and here women 
are at higher risk, especially during their reproductive years. 
Whether this explains the higher incidence of functional (GI)  
disorders remains an open issue, as this is dependent also on the 
effects of prenatal and perinatal stress on the development of  
intestinal functions that have rarely been investigated in this  
context.

Preliminary data suggested a strong sex difference in some of 
the reported consequences of stress on intestinal functions, and  
females were more resilient in general than males. Both chronic 
and intermittent stress models (for example, limited nesting) have 
profound consequences on the offspring with minimal external 
intervention from the investigator75. Limited nesting of rat dams 
increased gut permeability predominantly in female Wistar pups, 
but overall stress-decreased diversity of the gut microbiota was 
similar between sexes56; in another study from the same group, 
offspring male pups showed increased gut permeability but  
female pups did not76. Water-avoidance stress reduced the  
visceral motor response to colorectal distension immediately 
after the stressor, and this analgesic effect was opioid-dependent 
(naloxone-sensitive) in females but insensitive to naloxone in  
males, and repeated stress induced hyperalgesia in females  
only77. Sexual dimorphism was also found in mast cell responses 
to stress, with female mice “exhibiting increased clinical scores, 
hypothermia, and serum histamine levels in response to stress  
and greater intestinal permeability and serum histamine  
responses”78. In the above-cited porcine model48,49, responses in 
females overall were larger than in male animals.

The role of stress in patients
Patients with FGIDs report higher levels of chronic stress and more 
adverse life events, and the proportion of patients who present 
with a history of early life stress or trauma is considerable79,80. 
In prospective studies, chronic stress has been identified as 

one of the psychological risk factors for the development  
of an FGID later in life or for post-infectious IBS; in IBD,  
chronic stress prospectively increases the risk of relapse12, but the 
connection between GI symptom (reports), intestinal inflamma-
tion, and stress remains to be clarified81. Importantly, stress and  
other psychological disturbances such as depression or anxiety 
symptoms can both precede the manifestation of chronic GI  
complaints and occur as a consequence of the GI condition82,  
supporting a complex interplay between psychological changes  
and GI symptoms in terms of a vicious cycle.

The ability of acute stress, acute negative emotions, or HPA-axis 
mediators to influence both upper and lower GI sensorimotor  
processes and central pain processing has been extensively 
documented in healthy humans79. In patients with FGID, knowl-
edge is not as extensive, but stress effects appear to be altered,  
especially in patients with hypersensitivity. For example, in  
patients with FD, state anxiety at the time of testing was asso-
ciated with impaired gastric accommodation83 and correlated  
negatively with gastric discomfort and pain thresholds and with 
gastric compliance in hypersensitive FD84. Mental stress failed 
to produce the normal reduction in antral motility in patients 
with FD30,85. The neurobiological mechanisms underlying these  
effects remain incompletely understood, especially in patients,  
but likely involve both brain mechanisms and top-down  
neuroendocrine and autonomic pathways and may include mast 
cell-dependent effects on permeability30,79,86.

Brain mechanisms
Brain imaging studies have started to delineate the neural 
mechanisms underlying the effects of stress and other psy-
chological variables on visceral sensation and central pain  
processing79,87–89. For example, acute stress or negative mood  
demonstrably alters distension-induced neural activation in  
multiple brain regions, including the insula, cingulate cortex, and 
prefrontal areas, in healthy individuals and patients with IBS90,91. 
In FD, anxiety during scanning reportedly contributes to group 
differences between patients and healthy controls92. In IBS,  
effects of acute stress on central pain processing were more pro-
nounced in specific brain regions25. Changes in central nervous  
pain processing in IBS have further been shown to be associ-
ated with anxiety symptoms and depression91, symptoms which 
are distinct from chronic stress but illustrate the broad role of 
both chronic and acute psychological factors. Interestingly, 
patients with IBS also exhibit altered brain activation during pain  
anticipation89. Such anticipatory responses—mainly in brain 
areas linked to attention, threat detection, and emotion regula-
tion—reflect pain-related fear resulting from associative learning  
processes37,93, which influence the processing of visceral stimuli 
even in healthy humans94. In patients with IBD, brain imag-
ing studies have only recently begun to emerge95,96, including  
studies addressing effects of acute stress97,98, laying the founda-
tion for much-needed research on putative similarities and differ-
ences in structure-function relationships along the brain-gut axis  
in IBD and IBS.
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Pain-related learning and memory processes
Stress may contribute to impaired pain-related learning and  
extinction processes and thereby play a role in the transition from 
acute to chronic pain or the maintenance of chronic symptoms 
or both. The conceptual basis for this assumption is evidence 
that functional and structural brain alterations involved in the  
pathophysiology of chronic pain overlap with brain circuits  
involved in emotion regulation and stress99 and with regions medi-
ating fear expression and recovery100. From a learning perspective, 
recurrent painful episodes induce associative and instrumental 
learning processes. The putative clinical relevance is supported 
by evidence that learning-based treatment approaches, particu-
larly of exposure-based interventions, are efficacious in IBS101,102  
and other chronic pain conditions103. Based on mechanistic 
work, it has been proposed that conditioning may lower pain  
thresholds104 or promote sensitization105,106 and thus contrib-
ute to hyperalgesia or hypervigilance or both, impair perceptual  
discrimination acuity107, enhance fear generalization108, or  
interfere with normal habituation processes109, but some of these 
suggestions come from studies implementing somatic rather 
than visceral stimuli. To unravel the mechanisms engaged in  
pain-related associative learning, new research studies have 
implemented innovative experimental paradigms with visceral 
stimuli such as unconditioned stimuli or conditioned stimuli 
(or both) in healthy individuals and patients with IBS93, some 
of them using brain imaging techniques to address underlying  
neural mechanisms37,110. However, virtually nothing is known  
about the possible roles of affective comorbidity and stress in  
shaping disturbed acquisition or impaired extinction of pain- 
related fear. Applying existing findings regarding the effects of 
stress or HPA-axis mediators such as cortisol on memory consoli-
dation and reconsolidation to the field of GI, one could postulate 
that stress results in a reactivation of the pain-related memory 
trace or facilitates its reconsolidation or both, ultimately making 
the pain-related fear memory more lasting. This process may 
contribute to the maintenance of pain-related fear and hyper-
vigilance and thereby to maladaptive avoidance behavior as part  
of a vicious circle maintained by stress and fear111. Furthermore, 
research into interactions between affective comorbidity, acute 
stress, and memory processes may contribute to elucidating  
individual risk and vulnerability factors and neuropharmacologi-
cal treatment options for chronic pain112. In addition to the many 
options available to modify stress responses at the central level  
via medical and psychological strategies, nutritional interven-
tions have recently found increased attention.

Stress and microbiota
Stress induces alterations of the fecal microbiota, and manipula-
tion of the gut microbiota alters stress responses, in both humans 
and animals. Experimental stress in animals showed sustained 
alterations of the gut microbiome across species113. Stress in  
pregnant mice disrupted that natural patterning of the gut micro-
biota during pregnancy. The disruption was observed not only 
in the gut microbiota but also in the vaginal microbiota114; gut  
microbiota disruption may influence maternal nutritional status 

and thus change the energy supplies available to the brain of the  
developing offspring. The development of sexual dimorphism,  
discussed above, is presumably driven by sex differences in the  
gut microbiome–brain axis across the life span115.

In humans, stress-associated disorders have been characterized 
by altered microbiota profiles—for example, in post-traumatic  
stress disorder116, IBS117, depression118, eating disorders such as 
anorexia nervosa119, and other psychiatric or neurological cen-
tral nervous system (CNS)-related disorders120. Acute exercise 
affects the microbiota via mitochondrial mediation121, and long-
term stress exposure altered intestinal permeability and microbial  
composition122. Professional athletes show moderately altered 
microbiota profiles but significantly increased metabolic activity 
(short-chain fatty acids, acetate, and butyrate) compared with 
sedentary adults123, and similar differences were found between 
an active and a sedentary lifestyle in women124. A correlation  
between cardiovascular fitness and microbiota composition was 
also found in breast cancer survivors125.

We have recently reviewed the literature on probiotic effects in 
CNS functions in animals and humans126 and found rather incon-
sistent results. The effects depended on, among other things, 
the bacterial species applied and the CNS function under inves-
tigation, and some positive effects in animals with a specific  
strain127 were not replicable in humans with the same strain128.  
When the probiotic Lactobacillus rhamnosus JB-1 was applied 
locally in ex vivo gut segments, it reversed restraint stress- 
induced gut dysmotility57. In addition, similar strains may exhibit 
different responses; for example, the Lactobacillus pentosus 
strain S-PT84 showed anti-stress activity and ameliorated 
stress-induced immune suppression in mice129, while another  
Lactobacillus strain, Lactobacillus casei 54-2-33, might have  
anxiogenic effects in mice130. Yet another Lactobacillus strain 
reversed stress-induced cognitive, behavioral, and biochemi-
cal alterations in rats131, but a similar effect was seen with strain- 
unspecific dietary interventions (for example, with polyun-
saturated fatty acids)132. In chronically stressed mice, restoring  
stress-decreased Lactobacillus abundance in the gut micro-
biota reversed behavioral alterations133, and oral intake of  
Bifidobacteria significantly increased the number of resilient mice  
compared with vehicle-treated mice in another stress model134.  
Also, prebiotic pretreatent of animals prolonged stress-induced 
visceral analgesia following colorectal distension135, and this was 
associated with a reduction of cecal content of isobutyrate and 
total butyrate. It had anxiolytic effects and reversed the impact 
of chronic stress in mice136. However, it should be kept in mind 
that these experiments were frequently performed in germ-free  
animals colonized by single bacterial species, or complex  
microbiota transplanted from other animals, or “humanized” with 
fecal microbiota from healthy or diseased humans. Germ-free  
mice by themselves are questionable models for regular human 
gut ecology, and elimination or distortion of the gut microbiota by  
antibiotics is feasible only in animals, except with the locally  
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acting antibiotic rifaximin that exerted stress-reducing effects 
in healthy volunteers137 in a stress paradigm mimicking social  
isolation138.

Some Bifidobacteria exert strain-specific beneficial effects on 
stress-related behavior139 and cognitive functions in mice140 and 
in healthy humans141 and may be potential candidates for the  
management of patients with IBS142. In healthy humans, the  
L. casei strain Shirota preserved the diversity of the gut micro-
biota and relieved abdominal dysfunction in healthy medical  
students exposed to academic stress143,144, and this was similar 
to other studies145,146 with the same strain. A probiotic contain-
ing seven different bacterial strains was not effective in reducing 
stress in healthy petrol workers147,148. Whether and to what extent 
specific bacterial strains exert convergent and synergistic effects on 
the (GI) stress response when combined149 are open and unsolved 
issues. Another is the fact that probiotic consumption may exert 
differential effects in men and women depending on nutritional 
habits on the one hand and microbiota composition on the other150, 
together with sex differences in the stress response, as discussed 
above. Whether probiotic consumption or nutritional habits are 
capable of preventing stress vulnerability or increasing stress 
resilience (or both) is currently unknown but warrants further  
investigation.

Closing remarks
Figure 1 is an attempt to summarize current knowledge from  
animal and human studies and condense it into a scheme of  
where, when, and how different types of stress may affect  
central and peripheral functions, mediated by the enteric nervous 
system or the CNS or both along the gut-brain axis151.

As is evident from the amount of literature published in the last 
few years, the stress concept (or GAS) has not only survived in 
gastroenterology, especially the rise of Helicobacter pylori as a  
conditio sine qua non mediator of (stress) ulcer formation, but  
also gained even wider acceptance than in the times of Hans  
Selye, not the least through his pupils and successors and  
ongoing research. It is arguably the major concept to explain the 
cause and course of functional bowel disorders of IBS type (that 
is, for visceral hypersensitivity and hypervigilance). Translational 
animal stress models used nowadays simulate much better than 
ever before the stressors that affect human health in general and 
GI functions specifically, explain sex differences as they are found 
in epidemiological data on functional GI disorders, and pave the 
way for a better understanding of how stress affects the brain in  
health and disease. As was pointed out recently, “the gastrointes-
tinal system is an ideal model to analyze the interaction between  
our genes, emotions and the gut microbiota. … an integrated 

Figure 1. Human (red) and animal (blue) models of stress-induced modulation of visceral sensitivity throughout the life span and for 
different phases of life (from perinatal to adulthood), together with contributions from genetics/epigenetics and sex FSL, Flinders 
Sensitive Line; HAB-M, high-anxiety-related-behavior mice; LE, life events; WK, Wistar Kyoto.
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approach … is the next frontier that awaits the gastroenterologist  
to prevent and treat GI disorders”152.
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