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The innate immune system is the organism’s first line of
defense against pathogens. Pattern recognition receptors
(PRRs) are responsible for sensing the presence of patho-
gen-associated molecules. The prototypic PRRs, the
membrane-bound receptors of the Toll-like receptor
(TLR) family, recognize pathogen-associated molecular
patterns (PAMPs) and initiate an innate immune response
through signaling pathways that depend on the adaptor
molecules MyD88 and TRIF. Deciphering the differences
in the complex signaling events that lead to pathogen
recognition and initiation of the correct response remains
challenging. Here we report the discovery of temporal
changes in the protein signaling components involved in
innate immunity. Using an integrated strategy combining
unbiased proteomics, transcriptomics and macrophage
stimulations with three different PAMPs, we identified
differences in signaling between individual TLRs and
revealed specifics of pathway regulation at the protein
level. Molecular & Cellular Proteomics 16: 10.1074/
mcp.M116.064261, S172–S186, 2017.

The innate immune system is essential for host defense,
providing a rapid initial reaction to infection or tissue damage
and activating adaptive immunity (1). Pathogen recognition

receptors (PRRs)1 recognize structures conserved between
pathogens (pathogen-associated molecular patterns, PAMPs)
(2, 3). The Toll-like receptors (TLRs) are a prototypic PRR
family (4) of transmembrane proteins predominantly ex-
pressed by professional innate immune cells such as macro-
phages and dendritic cells. TLRs are located on the cell
surface and in endosomes, where they recognize diverse
microbial molecules and trigger tightly regulated signaling
cascades through a complex network of signal transduction
proteins. To date, eleven human and thirteen mouse TLRs
have been identified, each of which recognizes specific ago-
nists derived from bacteria, fungi or viruses (5, 6). TLRs differ
in their expression profile, ligand specificity and signaling;
however, they all activate the NF-�B signaling pathway, the
most ancient host defense mechanism found in mammals,
plants and insects (7). The downstream signaling events ini-
tiated by TLR stimulation can be divided into two main path-
ways based on the adapter recruited by the activated TLR.
Upon stimulation, TLR2 and TLR7 recruit the cytoplasmic
adapter myeloid differentiation primary response gene 88
(MyD88). TLR4 is the only TLR that signals through two path-
ways; the MyD88-dependent response that signals from the
plasma membrane and results in production of pro-inflamma-
tory cytokines, and the TRIF (TIR-domain-containing adapter-
inducing interferon-�)-dependent response that originates
from the early endosome and results in type 1 interferon
production (8). TLR4 and TLR2 signal from the cell surface in
response to bacterial components and can also signal from
the endosome (9–11). TLR7 is located exclusively in the late
endosome where it signals in response to its natural ligand,
single stranded nucleic acids (8).

Many of the proteins that are responsible for the immune
response subsequent to TLR activation are secreted (e.g. the
cytokines TNF-� and IL6) to propagate the inflammatory re-
sponse in an autocrine or paracrine manner, attracting and/or
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activating other immune cells (12). Proteins released from
macrophages in response to an invading pathogen are de-
tected by neighboring cells and thus play a key role in immune
cell communication. These proteins make up a subproteome
referred to as the secretome which comprises of proteins
released through various mechanisms including classical and
nonclassical secretory pathways as well as exosome-medi-
ated secretion and membrane shedding (13, 14). So far, only
a handful of proteomic studies of the secretome response to
TLR activation have been reported in the literature, and these
studies focused on the stimulation of TLR4 with LPS and did
not include other TLR ligands. Although some studies were
performed in different cell types (15–17), specific studies in-
vestigating the secretome response to LPS stimulated macro-
phages generated sparse data (18–20).

The inflammatory response is counteracted in various ways
by actions on NF-�B itself (21) or by the degradation or
destabilization of NF-�B target gene transcripts (22). The sec-
ond set of regulators is provided by the MAPK pathway, and
the type 1 interferon response is regulated by the interferon
regulatory factors (IRFs) (23). It is essential that the signaling is
robust enough for an appropriate immune response yet care-
fully balanced so that an infection can be eradicated without
over-activation, which could lead to pathological reactions,
including septic shock—the major cause of mortality in the
case of bacterial infection (24, 25), and autoimmunity. Identify-
ing novel factors involved in the propagation and regulation of
TLR signaling is necessary to further our understanding of this
important immune response area and can provide insight into
autoimmune and inflammatory disorders where TLR signaling is
implicated, leading to rational design of vaccines and drugs (26).

Many systems biology studies of TLR signaling in macro-
phages focus on TLR4 as a model system (27, 28) and rely on
transcriptional profiling methods. Although extremely inform-
ative, such studies cannot account for all of the differences in
the responses to various pathogens. For example, they do not
provide information on secreted proteins, which play a critical
role in intercellular communications, or on intercellular protein
and phospho-protein concentrations, which are the essential
components of cellular signaling.

Despite extensive studies, many components of TLR net-
work are unknown and therefore systematic, multidisciplinary
discovery is needed to determine the impact of cellular com-
ponents on the pathway activation (29). Also, gene expression
changes in many studies poorly correlate with changes at the
functional level (30–38). Thus, proteomic studies are needed
to achieve an integrated analysis of cellular processes. In the
current study, we used mass spectrometry-based proteomic
methods to investigate the intracellular (proteome) and extra-
cellular (secretome) responses of murine macrophages to TLR
ligands. This approach enables an unbiased profiling of the
protein expression changes in response to TLR stimulation
that provides a systems-level characterization of TLR signal-
ing. The comparison to the transcriptome revealed a signifi-

cant number of proteins regulated at the post-transcriptional
level, emphasizing the importance of systematic and global
studies that reach beyond gene expression profiling.

EXPERIMENTAL PROCEDURES

Cell Culture and Reagents—The murine macrophage cell line
RAW264.7 was obtained from Sigma-Aldrich Co. (St. Louis, MO).
Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 2 mM L-glutamine, 20 mM HEPES and 10% fetal
bovine serum (FBS) in a humidified incubator at 37 °C, 5% CO2 and
passaged every 2–3 days on sterile tissue-culture treated plates. DMEM
medium, HEPES and L-glutamine were obtained from Lonza (Walkers-
ville, MD), and FBS from Gemini Bio-Products (West Sacramento, CA).

Cell viability was assessed using DEAD green stain (Thermo Fisher
Scientific, Waltham, MA) according to manufacturer’s protocol upon
stimulation of the cells with 100 ng/ml lipopolysaccharide (LPS) from
Salmonella Minnesota R595 (Enzo Life Sciences Inc., Plymouth Meet-
ing, PA) in serum-containing and serum-free media at 0, 3, and 24 h.

For SILAC labeling, DMEM with stable glutamine deficient in argi-
nine and lysine (Cambridge Isotope Laboratories, Tewksbury, MA)
was supplemented with 10% FBS and 20 mM HEPES. Stable isotopes
were introduced by adding unlabeled (Sigma-Aldrich Co.) or stable
isotope-labeled (Cambridge Isotope Laboratories) L-arginine�HCl and
L-lysine�2HCl at concentrations of 0.398 mM and 0.798 mM, respec-
tively. Light media contained unlabeled L-arginine (Arg0) and L-lysine
(Lys0), medium media contained 13C6-L-arginine (Arg6) and 2D4-L-
lysine (Lys4), and heavy media contained 13C6

15N4-L-arginine (Arg10)
and 13C6

15N2-L-lysine (Lys8). After five passages on tissue culture
dishes, incorporation of the isotopes was evaluated in whole cell
lysates by mass spectrometry.

Preparation of the Proteome Samples—For each labeling condi-
tion, RAW264.7 macrophages were grown in 12-well dishes, seeded
at a concentration of 106 cells/ml, 1 ml per well, and incubated
overnight at 37 °C, 5% CO2. The light (Arg0, Lys0)-labeled cells were
left untreated, whereas the medium (Arg6, Lys4)-labeled cells were
treated for 6 h and the heavy (Arg10, Lys8)-labeled cells were treated
for 12 h with either 100 ng/ml lipopolysaccharide (LPS) from Salmo-
nella Minnesota R595 (Enzo Life Sciences Inc.), 1 �M resiquimod
(R848) (Enzo Life Sciences Inc.), or 1 �M Pam3CSK4 (P3C) (Invivogen,
San Diego, CA). A basal state, unstimulated time course of nontreated
light, medium, and heavy cells was also performed with lysates col-
lected at 0, 6, and 12 h. Each treatment was performed in quadrupli-
cate. At the designated timepoints post-treatment, the cells were
washed three times with ice-cold phosphate-buffered saline and
lysed in 50 �l modified RIPA buffer (50 mM Tris pH 7.5, 150 mM NaCl,
1 mM EDTA, 0.1% Na-deoxycholate, 1% IGEPAL) containing prote-
ase and phosphatase inhibitors (Roche, Indianapolis, IN). The cell
lysate was kept on ice for 20 min with occasional vortexing. Cell
lysates were centrifuged at 12,000 g at 4 °C for 10 min and the
resulting supernatant was collected for proteomic analysis. The pro-
tein concentration was determined using the bicinchoninic acid assay
(Thermo Fisher Scientific Inc.). The light (untreated), medium (6 h) and
heavy (12 h) stimulated cell lysates were combined at a 1:1:1 ratio
(w/w), using 10 �g total protein from each time point.

Preparation of the Secretome Samples—SILAC-labeled RAW264.7
cells were seeded in 12-well dishes at a concentration of 106 cells/ml,
1 ml per well, and incubated overnight at 37 °C, 5% CO2. Prior to
treatment with TLR ligands, the media containing FBS was removed,
and the cells were washed once with serum-free media. The light
(Arg0, Lys0)-labeled cells were left untreated for 24 h in serum-free
media. The medium (Arg6, Lys4) and heavy (Arg10, Lys8)-labeled
cells were treated for 6 and 24 h, respectively, with either 100 ng/ml
LPS, 1 �M R848, or 1 �M P3C in media without serum. A basal state,
unstimulated time course was performed in serum-free media with
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samples collected at 0, 6, and 24h. Each treatment was performed in
quadruplicate. At the designated timepoints, 900 �l of conditioned
media was removed and filtered using centrifugal filter units with a
0.22 �m pore size (EMD Millipore, Tullagreen, Ireland) to remove any
dead cells. The filtered media was flash-frozen in liquid nitrogen and
stored at �80 °C. The light (untreated), medium (6 h), and heavy (24
h) stimulated samples were combined at a 1:1:1 ratio (v:v) using 250
�l from each time point. The samples were then concentrated by
vacuum centrifugation.

Pathogen Challenge—SILAC-labeled RAW264.7 cells were seeded
in 48-well plates at a concentration of 2.5 � 105 cells/well, and
incubated overnight at 37 °C, 5% CO2. Prior to treatment with patho-
gens, the media containing serum was removed, and the cells were
washed once with media lacking serum. The light (Arg0, Lys0)-labeled
cells were left untreated for 24 h in serum-free media. The medium
(Arg6, Lys4) and heavy (Arg10, Lys8)-labeled cells were treated with
pathogens for 6 and 24 h, respectively, in media lacking serum.

Pseudomonas aeruginosa was used as an exemplar Gram-nega-
tive pathogen signaling through TLR4, Staphylococcus aureus as a
Gram-positive pathogen signaling through TLR2, and Burkholderia
cenocepacia as an intracellular pathogen signaling through endo-
somal TLR7. Cultures of Pseudomonas aeruginosa GFP, PAO1 pMRP
9–1 (from Dr. Bradley Borlee, University of Washington, Seattle, WA
(39)), Staphylococcus aureus FDA209 (ATCC, Manassas, VA), and
Burkholderia cenocepacia J2315 (a prototypic strain of the highly
transmissible ET12 clone (40, 41)) were inoculated in Luria-Bertani
medium and grown overnight at 37 °C with shaking. Aliquots of
pelleted P. aeruginosa and S. aureus were washed with normal saline
and heat killed at 65 °C and 90 °C, respectively, for one hour. SILAC-
labeled RAW264.7 cells were treated with heat-killed P. aeruginosa or
S. aureus at a ratio of 20 bacteria per macrophage, or with live B.
cenocepacia at a ratio of one bacterium per macrophage. For the B.
cenocepacia challenge, the plates were centrifuged for 5 min at 200 �
g, and then incubated at 37 °C in 5% CO2. After 1 h of B. cenocepacia
infection, the treatment medium was removed, and the cells were
washed three times with PBS to remove extracellular bacteria and
incubated with an antibiotic combination of 250 �g/ml gentamicin
(Sigma-Aldrich Co.) and 500 �g/ml of ceftazidime (Sigma-Aldrich Co.)
for 2 h to kill the remaining extracellular bacteria (42). After 2 h the
media with antibiotics was removed and replaced with serum-free
media for the remainder of the treatment time course.

At the designated timepoints, 250 �l of conditioned media was
removed and filtered using centrifugal filter units with a 0.22 �m pore
size to remove any dead cells. The filtered media was flash-frozen in
liquid nitrogen and stored at �80 °C. The light (untreated), medium
(6h), and heavy (24 h) stimulated samples were combined at a 1:1:1
ratio (v:v) using 250 �l from each time point. The combined samples
were concentrated by vacuum centrifugation.

SDS-PAGE separation and in-gel trypsin digestion—The proteome
and secretome samples were separated by one-dimensional SDS-
PAGE using NuPage 10% or 4–12% Bis-Tris gels with NuPage MES
or MOPS running buffer (Life Technologies Corp., Carlsbad, CA). Gels
were stained with Colloidal Coomassie blue (SimplyBlue™ SafeStain,
Life Technologies Corp.). After destaining, each gel lane was cut into
20 bands and each band was cut into approx. 1 mm3 cubes for in-gel
trypsin digestion (43). Briefly, the gel cubes were dehydrated with
acetonitrile, reduced with 10 mM dithiothreitol in 100 mM ammonium
bicarbonate for 30 min at 56 °C. The gel pieces were again dehy-
drated with acetonitrile and alkylated with 55 mM iodoacetamide in
100 mM ammonium bicarbonate for 20 min at room temperature in the
dark. After a third dehydration step with acetonitrile the gel pieces
were saturated with 13 ng/�l trypsin in 10 mM ammonium bicarbonate
containing 10% (v:v) acetonitrile. Digestion was allowed to proceed
overnight at 37 °C. Peptides were extracted from the gel pieces with

1:2 (v:v) 5% formic acid/acetonitrile after incubation for 15 min at
37 °C. The organic solvent was removed from the extracts using a
vacuum centrifuge and the dried peptides were resuspended in 0.1%
(v:v) formic acid for LC-MS/MS analysis.

Peptide Sequencing by Tandem Mass Spectrometry—All LC-MS
analyses were performed using an Eksigent nano-LC system (ABI
Sciex, Framingham, MA) directly coupled to an LTQ Orbitrap Velos
mass spectrometer (Thermo Fisher Scientific Inc., Waltham, MA) that
was operated in a data-dependent acquisition mode to automatically
switch between Orbitrap full scan MS and LTQ MS/MS using a top 10
method. The single-ligand proteome and secretome samples were
run using a 60-min linear gradient. The pathogen-treated secretome
samples were run using a 120-min linear gradient and using a pre-
cursor ion inclusion list to select specific peptides for fragmentation
corresponding to the proteins of interest.

Protein Identification and Quantification—Mass spectra were ana-
lyzed using MaxQuant version 1.4.1.2 and the Andromeda search
engine (44, 45). The maximum mass deviation allowed for the
monoisotopic precursor ions was 4.5 ppm for monoisotopic precur-
sors and 0.5 Da for fragment ions. Trypsin was set as the digestion
enzyme with a maximum of two allowed missed cleavages. Cysteine
carbamidomethylation was set as a fixed modification, and N-terminal
acetylation and methionine oxidation were allowed as variable mod-
ifications. The spectra were searched using the Andromeda search
engine against the mouse Uniprot sequence database (downloaded
July 2014, 51574 entries) combined with 247 common contaminants
and concatenated with the reversed versions of all sequences. The
mass spectrometry proteomics data have been deposited in the
ProteomeXchange Consortium via the PRIDE (46) partner repository
with the data set identifier PXD004113. Protein identification required
at least two unique peptides per protein group. The data were filtered
for a 1% FDR at the peptide and protein level. The protein abundance
ratios were calculated referring to time 0 h as the reference (the time
point choice for proteome and secretome is explained in the above
sections on sample preparation). Each time point for each treatment
was normalized using the median value to correct for unequal sample
mixing. Only the proteins identified by at least two unique peptides
and quantified in at least two biological replicates out of the four were
considered reliably identified and quantified for use in further analysis.
The unstimulated time course samples were used to determine the
basal level of variation in protein abundance and secretion in
RAW264.7 macrophages over the time course of our experiments (0,
6, and 12 h for the proteome, and 0, 6, and 24 h for the secretome).
From these basal fluctuation data we determined fold change thresh-
olds to be considered significant in our TLR-stimulated samples. For
the basal proteome, 99% of the proteins did not change their expres-
sion levels beyond a fold change of 1.5 during the entire time course
of measurement. For the basal secretome, 88% of the proteins ex-
hibited a fold change of less than 2 in their abundance values.

Microarray—RAW264.7 cells were treated with individual TLR li-
gands (100 ng/ml LPS, 1 �M P3C, and 1 �M R848 for stimulation of
TLR4, TLR2, and TLR7, respectively) for either 1, 2, or 4 h. Total RNA
was isolated from �106 cells for each condition with an RNeasy Mini
Kit (Qiagen) and high quality RNA was confirmed using a Bioanalyzer
2100 (Agilent Technologies, Columbia, MD). Duplicate biological
samples were run for each condition. Amplification and labeling
of complementary RNA (cRNA) were performed using the Illumina
TotalPrep RNA Amplification Kit (Life Technologies Corp.), and the
cRNAs were hybridized to Illumina MouseRef-8 microarrays (Life
Technologies Corp.) according to the manufacturer’s instructions.
The raw intensity values were log2-transformed and quantile-normal-
ized for subsequent analyses. The data discussed in this publication
have been deposited in NCBI’s Gene Expression Omnibus (47) and
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are accessible through GEO Series accession number GSE85448
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE85448).

ELISA—Cytokine output was measured in conditioned media sam-
ples by sandwich ELISA in 384-well plates (Thermo Fisher Scientific
Inc.) according to the manufacturer’s instructions. TNF-� output was
measured using the Mouse TNF-� DuoSet ELISA Development Sys-
tem (R&D Systems, Minneapolis, MN). IL6 and IL12p40 output were
measured using the respective BD OptEIA mouse ELISA kits (BD
Biosciences, San Jose, CA).

Data analysis—We used the Database for Annotation, Visualization
and Integrated Discovery (DAVID, https://david-d.ncifcrf.gov/; (48,
49)) to assign Gene Ontology (GO) annotations for cellular component
(GOCC), molecular function (GOMF), and biological process (GOBP).
Obsolete GOCC terms such as “membrane fraction” were ignored for
assignment of the main GOCC annotation. Organelle-related GOCC
terms were combined into a single GOCC assignment; for example:
GOCC assignment “nucleus” used in this study includes the terms
nucleoplasm, nuclear membrane, chromosome, chromatin, etc.

Proteins detected in secretome samples were analyzed with the
SignalP 4.1 (50) and SecretomeP 2.0 (51) prediction algorithms to
determine which proteins are predicted to be secreted via classical
(signal peptide-directed) and nonclassical secretion mechanisms.

Principal component analysis (PCA) was performed using the Per-
seus software version 1.5.0.9 on the 1083 proteins common between
the three ligands stimulation data sets for the proteome samples, and
the 253 common secretome proteins.

Additional PCA was performed using the MeV software (version
4.8.1) downloaded from http://www.tm4.org/mev.html. For proteome
and secretome samples, PCA analysis was carried out separately. For
each time point and treatment, median abundance values were cal-
culated across the four biological replicates. Although calculating
medians, replicates with missing values were ignored. Samples were
projected onto two different two-dimensional planes, consisting of
PC1 versus PC2 and PC2 versus PC3.

Experimental Design and Statistical Rationale—For mass spec-
trometry, all the treatments for the proteome and secretome samples
were performed in quadruplicate, starting from the cell culture (bio-
logical replicates). There were 12 experimental conditions (proteome
and secretome, 2 timepoints, 3 ligands). The proteins were consid-
ered if they were found in at least two samples. Untreated cells (time
“0”) were used as a control and for the secretome analysis the
conditioned media were collected from the cells grown for 24 h in the
serum-free media to account for the cell death background.

Hierarchical clustering analyses were performed using Genesis
(52). Protein expression fold change values were log transformed
(base 2). Samples in this figure were named by appending data type
(Sec for secretome and Prot for proteome), treatment (LPS, P3C, and
R848), time point (6 h, 12 h, and 24 h), and replicates (letters A–D).
Log transformed fold change data showed bell shaped distributions
and were symmetric around 0. As the overlap of proteins from secre-
tome and proteome experiments was quite low, only the overlapping
proteins from all timepoints and stimulations were used in the clus-
tering analysis. Although the clustering analysis allowed us to directly
compare the proteome and secretome data, considerable numbers of
proteins, some showing strong up- and downregulation, were not
included in the analysis as they were missing in one of the data sets.
To specifically focus on proteins showing the strongest changes, we
further carried out clustering using proteins showing at least 2-fold
up- or downregulation at any of the timepoints and stimulations. For
computing fold changes, we used the same sampling nomenclature
as above, except for the replicate names as they were averaged. Even
if a protein was only present in one data set (proteome or secretome)
it was included in the analysis (missing values are colored gray).

Overlap analysis was carried out between the proteome and se-
cretome data from the different stimulations and timepoints. Specif-
ically, the diagonal elements of this matrix show the numbers of
proteins identified for each of the experimental conditions. The num-
bers varied significantly between the different experiments with a
general trend that the numbers of proteins from the proteome anal-
yses are always higher than the corresponding secretome analysis.
The values in the upper triangle of the matrix are the numbers of
proteins overlapping between the different conditions. The lower
triangle of the matrix shows the normalized percentage overlap of the
proteins between two conditions (calculated by dividing the number
of overlapping proteins by the total number of proteins).

Correlation of Proteome and Secretome Data with Microarray
Data—Protein IDs from the proteome and secretome data were
mapped to gene symbols. Pairwise correlations were calculated be-
tween log transformed (base 2) proteome/secretome fold change
data (three treatments, two timepoints, and two data types) with
microarray log transformed fold change data from twelve experimen-
tal conditions (untreated and three treatments and three timepoints).
Corresponding untreated samples were used for computing fold
change in each of the data sets. For computing each pairwise corre-
lation, microarray data were merged with the corresponding pro-
teome/secretome data using gene symbols. For merging two types of
data tables we used “inner join,” which means only genes present in
both transcriptome and secretome/proteome data tables will be used.
Pearson correlation was calculated using the R function “cor.” If
multiple measurements were present for a gene symbol, they were
averaged.

RESULTS

Quantitative Proteome and Secretome Analysis of the TLR
Responses in Macrophages—To examine the signaling path-
way activation after different TLR stimulations (Fig. 1A), we
performed a global and quantitative mass spectrometry-
based proteomic analysis of the intracellular protein changes
(proteome) and extracellular protein response (secretome) of
TLR-stimulated RAW264.7 macrophages using the estab-
lished strategies of SILAC quantification, SDS-PAGE fraction-
ation, and high-accuracy mass spectrometry (53, 54). The
macrophage proteins were SILAC labeled with three distinct
isotopic forms of both arginine and lysine to facilitate relative
protein quantification between the timepoints (Fig. 1B). The
cells were passaged five times in SILAC media resulting in a
high incorporation level of the isotopes (supplemental Fig.
S1A). We analyzed the proteome and secretome changes in
macrophages stimulated with LPS (TLR4 ligand), P3C (TLR2
ligand), and R848 (TLR7 ligand). Pools of lysates were pre-
pared from unstimulated RAW264.7 cells and from cells stim-
ulated with each individual ligand for 6 and 12 h for the
proteome analysis. We chose these timepoints to capture
protein changes arising from early-to-intermediate transcrip-
tional regulation events (6 h stimulation) as well as intermedi-
ate-to-late changes in transcriptional regulation (12 h stimu-
lation) (55). Pools of conditioned media from nonstimulated
macrophages or cells stimulated for 6h or 24h with each
individual ligand were combined for the secretome analysis.
Our analysis does not differentiate between the various mech-
anisms the cell may use to release proteins into the outside
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environment, thus we define the secretome here as encom-
passing proteins secreted via classical, nonclassical, and
exosomal pathways, as well as proteins shed from the cell
surface. This definition has been used in other secretome
profiling studies as discussed in (13, 14). A later time point (24
h versus 12 h) was chosen for the secretome analysis to
account for the lag between changes in protein production
and protein secretion and to detect late-stage secreted pro-
teins (19). Effective stimulation of the macrophages was con-
firmed by two independent methods: (1) assessing the in-
crease in MARCKSL1 (MacMARCKS, MRP), a protein known
to be induced by LPS treatment (56), by Western blot after
treatment of the cells for 6 and 12 h with all three ligands with
respect to the untreated cells (supplemental Fig. S1B), and (2)
by measuring the levels of TNF-� in the conditioned media of
untreated and treated cells for the three TLR ligand stimula-
tions after 6 and 24 h (supplemental Fig. S1C).

Using high-resolution MS and the MaxQuant proteomics
software package for computational analysis we detected
relative protein abundances in the lysates and conditioned
media of TLR-stimulated macrophages. For each treatment
replicate we required a minimum of two unique peptides per
protein group for the identification to be considered reliable.
We determined the overlap in protein group identifications
between treatment replicates to assess the quality of our
proteome and secretome data sets and observe that 75–86%
of protein groups are identified in two or more replicates
depending on the treatment and data set (supplemental
Fig. S2).

Overview of the Proteome and Secretome Changes—We
investigated the time-dependent changes in protein expres-
sion levels following TLR activation by three different ligands.
For increased confidence in the protein identification numbers
we required that a protein be identified on the basis of at least
two unique peptides in a given treatment replicate and data
set (proteome or secretome). When assessing the relative
protein abundance levels, we considered proteins identified
on the basis of at least two unique peptides and quantified in
a minimum of two replicates. We identified a total of 1932,
2244, and 2484 proteins across timepoints in lysates of cells
stimulated with LPS, P3C, and R848, respectively. Of these,
1531 (LPS), 1802 (P3C), and 1825 (R848) proteins were con-
sidered reliably identified and quantified in a minimum of two
biological replicates with two unique peptides (Fig. 2A). Out of
the proteins reliably identified and quantified in each stimula-
tion, 1083 proteins are common to all three ligand stimula-
tions in the proteome data set (supplemental Table S1).

To correlate the intracellular protein response (proteome) of
TLR-stimulated macrophages with changes in the extracellu-
lar macrophage response following TLR activation, we inves-
tigated the changes in the secretome of RAW264.7 cells
stimulated for 6 h and 24 h. In total, 947, 506, and 528
proteins were identified for the LPS, P3C, and R848 stimula-
tions, respectively. Of these, we considered 622 (LPS), 317
(P3C), and 404 (R848) secretome proteins to be reliably iden-
tified and quantified using the same criteria as for the pro-
teome (Fig. 2A). We found 298 proteins common to all three
treatments in the secretome data set (supplemental Table S2).
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FIG. 1. Experimental design used to identify and quantify changes in the proteome and secretome during macrophage stimulation
with TLR ligands. A, A schematic diagram of the canonical Toll-like receptor signaling through TLR2, TLR4 and TL7. B, 3-plex SILAC strategy
with LC-MS/MS was used to study the effects of TLR stimulation. RAW264.7 cells were labeled with heavy (K8, R10), medium (K4, R6) and
light (K0, R0), isotopes in culture and simulated with one of the three TLR ligands (LPS, P3C, or R848) or left unstimulated. The cell lysates were
collected for the proteome study and conditioned media were collected for the secretome study. The proteins were extracted from each of the
three samples, the samples were combined, the proteins were separated via SDS-PAGE and digested with trypsin as described in
Experimental Procedures. Four biological replicates were used to perform independent experiments for each type of analysis.
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Effect of Stress on the Secretome—One of the technical
difficulties in measuring the secretome response is that in the
absence of stimulation, cells in fresh media will have little to
no secreted proteins, making the relative quantification by
SILAC challenging. To circumvent this issue, our nontreated
samples were collected 24 h after the cells were placed into
the fresh media. However, this means that the secretome of
our nontreated samples may contain proteins released be-
cause of the stress of being cultured for 24 h in serum-free
media. To measure this effect, we performed an untreated
time course using SILAC-labeled cells switched to serum-free
media but not stimulated with TLR ligands. Conditioned me-
dia samples were collected at 0, 6, and 24 h, allowing us to
compare effects of stress and effects of the stimulation at 24 h
(supplemental Fig. S3). It should be noted that for all data
presented, only the effect of stimulation is taken into account.
The unstimulated time course samples were used to deter-
mine the basal level of variation in protein abundance and
secretion above which the changes were considered signifi-
cant (supplemental Fig. S4). Notably, we did not detect in-
creased levels of cell death during the 24 h time course when
the cells were grown in the serum-free media (supplemental
Fig. S4B).

Cellular Localization of the Identified Proteins in the Pro-
teome and Secretome—Our analysis detected 993 proteins

that were released by macrophages across all ligand stimu-
lations compared with a total of 2951 proteins identified in the
macrophage proteome (supplemental Table S3 contains all
the results). We used the DAVID bioinformatics tool to assess
the subcellular localization of the proteins identified in our
proteome and secretome data sets. For the proteome, we
observe an enrichment of organelle-associated Gene Ontol-
ogy cellular compartment (GOCC) terms, with mitochondrion,
nucleus, plasma membrane, and endoplasmic reticulum terms
accounting for 57% of the proteins with GOCC assignments
(supplemental Fig. S5). In the secretome study, we see the
enrichment in the GOCC terms for extracellular, cytoskeletal,
and large protein complexes including GOCC terms protea-
some, ribosome, ribonucleoprotein complex, and translation
complex. We used the SignalP and SecretomeP prediction
algorithms to determine which of the proteins in our secre-
tome data set are predicted to be secreted via classical and
nonclassical (leaderless) secretion pathways, respectively. Of
the proteins detected in the secretome, 183 are predicted to
contain a signal peptide, whereas 194 proteins are predicted
to be secreted via the nonclassical secretory pathway (sup-
plemental Table S4). Together, these predictions account for
�38% of the proteins we detect in conditioned media. In
addition to classical and nonclassical secretion, proteins can
also be released via exosomes, and there is mounting evi-

FIG. 2. Global comparison of the proteome and secretome data sets. A, Total numbers of proteins quantified in a minimum of two
biological replicates for LPS, P3C, and R848. B, Principal Component Analysis with Perseus software. Squares represent the LPS treatment,
circles - the P3C treatment, and triangles—the R848 treatment. The 6 h time point is shown in black and the 12 h time point—in red. C, Pairwise
comparison between the six data sets. The triangle to the right of the diagonal with cells marked in red shows the absolute numbers of identified
proteins overlapping between the two given data sets, and the triangle to the left of the diagonal with cells marked in green shows the
percentage of proteins common between the two given data sets. The intensity of the color increases with the increase of the overlap.
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dence that cells use these vesicles for intercellular communi-
cation (discussed in (57)). We investigated if exosome-related
proteins were present in our data sets and observe seven
of the top 10 exosomal markers listed in ExoCarta (http://
exocarta.org/index.html) in our proteome and secretome data
sets (CD9, HSPA8, PDCD6IP, ANXA2, SDCBP, ENO1, and
HSP90AA1). Interestingly, only one of these, ANXA2, is pre-
dicted to be secreted using the SecretomeP prediction algo-
rithm and none are predicted to contain a signal peptide.
Thus, these algorithms alone cannot predict which subsets of
proteins may be released from cells, and the evolution of the
term “secretome” as discussed in (13, 14) reflects the obser-
vation that proteins from various subcellular locations may be
released by different mechanisms to play a role outside of the
cell.

The TLR4 Response is Distinct from the TLR2 and TLR7
Responses—Principal component analysis (PCA) of the over-
all proteome or secretome response to the different ligands
shows a clear separation by treatment time but also that the
TLR4 (LPS) response is distinct from the TLR2 and TLR7
responses, which show little separation for either time point
(Fig. 2B). For the proteome and secretome data sets, the first
three principal components together captured 80% (PC1:
40%, PC2: 26%, PC3: 14%) and 96% (PC1: 85%, PC2: 7%,
PC3: 4%) variability in the data, respectively. As the first three
components captured 80% or more variability in the data, we
only showed these three components (supplemental Fig. S7).
Proteins common to all three stimulations in the proteome
data set are well separated with the experimental timeline
captured by principal component 1 and stimulation type by
principal component 2. PCA of the common secretome
shows that the 6 h LPS response is distinctly different from
the rest of the secretome samples. Two additional principal
component axes are necessary to distinguish secretome
timepoints and stimulation type.

Pairwise comparison of the six data sets shows the highest
overlap in identified proteins between the TLR2 and TLR7
stimulations with 70% overlap in both the proteome and
secretome data sets, weighted to account for the differences
in group sizes (Fig. 2C). By contrast, the overlap with the TLR4
response is 57 and 55% for the TLR2 and TLR7 proteomes,
respectively, and 47 and 56% for the TLR2 and TLR7 secre-
tomes, respectively.

Shared Proteins Exhibit Different Temporal Responses—
Given the overlap in the signaling components used by the
different TLRs, we evaluated the responses of the common
proteins identified in all three stimulations in both the pro-
teome and the secretome. Hierarchical clustering analysis of
these common proteins reveals that this subset of proteins for
the secretome behaves like the entire secretome: the LPS
stimulation clusters together for the 6 and 24 h stimulation
(Fig. 3 depicts LPS stimulated secretome samples) and the
P3C and R848 responses cluster together for the 6 h stimu-
lation and the 24 h stimulation, respectively, but overall, the

FIG. 3. Changes in the proteins common to all the data sets. The
heatmap represents the hierarchical clustering of the common proteins
in the secretome for all the timepoints for the cells treated with LPS. The
color key above represents the changes (log2 scale), from dark blue
representing the largest decrease, to red representing the largest in-
crease. Cells colored gray represent missing data. Each row is a protein
and each column is a sample. Samples are named based on data type,
treatment type, time point and replicate as described in “Data analysis”.
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24 h secretome response to the three stimulations is signifi-
cantly different from the other timepoints and treatments
(supplemental Fig. S6 - 24h secretome data for all the treat-
ments are clustered on the right). At the 6 h time point, TLR2
and TLR7 secretome responses cluster together, whereas the
TLR4 response is more separated. On the other hand, this
subset of proteins for the proteome has a different clustering
pattern than the global proteome response discussed above.
The LPS treatment no longer clusters separately from P3C
and R848 and the different treatments cluster by time point,
with LPS segregating from P3C and R848 within each time
point. The general magnitude of up-regulation and down-
regulation is also much higher in the secretome data than the
proteome data.

Most Evident Protein Level Changes in the Proteome and
Secretome—We found a subset of proteins whose levels
changed 2-fold or more (in any direction) in one or more of the
treatment conditions for either the proteome or the secretome
(Fig. 4). Clustering of this subset of proteins showing expres-
sion changes indicate samples from proteome and secretome
are completely separated. We also observed this distinctive
response of LPS treatment from PCA analysis (Fig. 2B). The
proteins in the heatmap were sorted in the decreasing order
based on the average expression fold change across all stim-
ulations and timepoints. The top five proteins showing the
strongest expression fold changes, i.e. Cxcl10, Cxcl2, Saa3,
Tnf, and Ccl4, were identified only in the secretome analysis.
Using this heatmap, we chose proteins from each group for
the follow-up targeted proteomics experiment where cells
were challenged with whole pathogens, described below.

Proteome, Secretome, and Transcriptome Correlation—In
addition to our analysis of expression changes at the protein
level, we also investigated if there was a correlation with
microarray data profiling expression changes at the transcript
level from RAW264.7 cells treated with the same TLR ligands
for one, two, or four hours (Fig. 5A). As untreated samples
from the corresponding transcriptome, proteome, and secre-
tome samples were used for calculating fold changes, these
samples were not included in correlation analysis. We see a
strong correlation (Pearson correlation of �0.5) between the
transcriptome data and the 24 h secretome data for the TLR2
(P3C) and TLR7 (R848) stimulations, which is consistent with
the lag needed for protein production and export. The TLR4
(LPS) secretome shows the weakest correlation with the tran-
scriptome. This may be because of the large amount of down-
regulation we see in the LPS secretome at the timepoints we
examined. Interestingly, LPS proteome data shows the
strongest correlation with the corresponding LPS transcrip-
tome data. However, no such trend was observed for pro-
teome data with R848 and P3C stimulations, as in both cases
strong correlation was observed in secretome and transcrip-
tome data. The signaling pathway stimulated by LPS is quite
different from the pathways stimulated by R848 and P3C,
which might have contributed to this difference in correlation

patterns. Given that regulation of protein levels and activity
can occur post-transcriptionally, proteome and secretome
studies provide additional information about the cellular re-
sponse to TLR activation that would be missed when looking
at transcriptome data alone.

We queried the transcriptomic and proteomic data sets for
proteins that show less than 1.5- fold change in expression at
the gene level but more than 1.5-fold change in expression at
the protein level in the proteome or 2-fold in the secretome to
identify proteins that may be subject to posttranscriptional
regulation during the immune response to TLR activation. We
observed 82, 70, and 72 proteins that exhibit significant
changes in expression level at the protein level, but not at the
gene level for the LPS, P3C, and R848 stimulations, respec-
tively (Fig. 5B and supplemental Table S5). Included in these
are immune-related proteins important for TLR signaling, such
as complement C3, lysozyme C2, lymphocyte antigen 86, and
IL6.

We performed the enrichment analysis of the biological
processes for the proteins that were up- or down- regulated
without a change at the transcript level or vice versa, and for
the proteins whose changes correlated with the transcript
level change. In the proteome data set, the main biological
processes identified as enriched by DAVID were: immune
response, response to wounding, and DNA metabolic process
(Fig. 6A). The immune response was controlled both at the
transcript and protein level for all three ligands, though the
LPS data set had a much stronger transcript component in
the response than the P3C and R848 data sets. The response
to wounding was controlled only at the transcript level for the
LPS stimulation (except for NOS2 and PTGS2) whereas both
the P3C and R848 stimulations displayed responses that were
either solely at the transcript level (for example STAT3, CD44)
or at the protein level (for example NOS2, CD81). Both the
immune response and the response to wounding associated
genes and proteins were up-regulated for both the transcrip-
tome and the proteome for all three ligands. The DNA meta-
bolic process was negatively regulated for all three ligands at
the transcript level except for SOD2, which was positively
regulated at the protein and transcript level for all three li-
gands. The immune response was ligand dependent with the
strongest amplitude in the response seen for the TLR4 stim-
ulation. Both the response to wounding and the DNA meta-
bolic process did not seem to be ligand dependent. (Fig. 6A).

For the secretome (Fig. 6B), the three main processes that
were enriched are: translation, chemotaxis and response to
wounding. Translation was identified only in the LPS stimula-
tion data set and only at the protein level. Response to
wounding was identified for the three stimulations at the pro-
tein and transcript level. The protein response for all three
ligands was mostly positive for all three ligands; the transcript
response was mostly positive in the P3C data set whereas the
responses to LPS and R848 had more of a negative transcript
response component. Chemotaxis was also identified for all
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FIG. 4. Heatmap of proteins present in either the secretome or the proteome with fold change equal or larger than 2 induced by any
TLR treatment. The color key is on the left and represents the changes (log2 scale, fold change equal or larger than 2 (in either direction), from
dark blue representing the largest decrease, to red representing the largest increase. Cells colored gray represent missing data. Each row is
a protein and each column is a sample. Samples are named based on data type, treatment type, and time point as described in Data analysis.
Proteins (or rows) are sorted (decreasing order) based on average fold change across all treatments.
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three stimulations, and the changes were observed at the
transcript and protein level. Again, the response amplitude for
all three ligands for both the response to wounding and che-
motaxis was not ligand dependent.

Whole Bacteria Stimulation Results—To investigate the
changes in protein expression when macrophages are pre-
sented with complex combinations of ligands, we performed
stimulations of the cells with whole pathogens. A similar time
course to the one with the single ligand treatments was per-
formed using heat-killed Gram-positive S. aureus or Gram-
negative P. aeruginosa or live B. cenocepacia as an intracel-
lular pathogen. For this analysis, a targeted proteomics
approach was used to specifically measure a subset of pro-
teins exhibiting significant fold changes in the secretome
samples of the single ligand stimulations. This subset con-
sisted of 28 proteins associated with the top 10 biological
process GO terms showing significant regulation (supplemen-
tal Table S6). Among these, we chose cytokines (IL6, TNF-�),
chemokines (Ccl4, Cxcl2, Ccl9), and complement factors
(C1qa, C1qb, C1qc, C3, Cfp), because of their biological
importance in the immune response, and other proteins
whose fold changes at the protein level were significant. We
have obtained quantitative measurements for 24 of the 28
targeted proteins. For most of the targeted proteins we ob-
served the same direction of changes (Fig. 7), although the
magnitude of the response varied. The response for some of
the proteins suggested roughly the same magnitude of
changes when comparing the single-ligand and whole-patho-
gen stimulations (CD14, Man2b1; Fig. 7A and 7B). For others,
stimulation with whole pathogens suggested a response dis-
tinct from the treatment with individual ligands. For example,
the results for C3 (Fig. 7C) and CCL9 (Fig. 7D) suggested a
weaker response to whole pathogens than single ligands,
whereas other proteins, including Bax, C1qb, Lyz2, and
H2-K1 (Fig. 7E, 7F 7G, and 7H, respectively), seemed to be
more up-regulated with whole pathogen treatment compared
with single ligands.

DISCUSSION

TLRs are essential sensors of the innate immune system
and among the first to detect invading microbial pathogens.
Each TLR recognizes different microbe-derived molecules
and elicits a different immune response despite activating the
canonical signaling components that are shared by all TLRs.
As a result of these signaling cascades, immune cells release
factors important for cellular communication and propagation
of the immune response. These proteins can be released by a
variety of mechanisms and make up a subproteome known as
the secretome. We have used mass spectrometry-based pro-
teomic methods to perform global profiling of both the intra-
cellular and extracellular macrophage responses to three TLR
ligands at the protein level to gain a systems-level under-
standing of this important innate immune signaling network.
Of the three ligands used, we observe that the response to
TLR4 activation is more distinct than the responses to TLR2
and TLR7 stimulation, which are more similar to each other.

The significant amount of downregulation after the initial
burst of upregulation for many inflammatory cytokines during
the LPS stimulation may suggest that the TLR4 response,
although the most intense, is rapidly shut off. We also ob-
served that the magnitude of upregulation and downregula-
tion is stronger in the secretome data set than the proteome
data set. This strong response is likely required to accumulate
sufficient signaling components in the extracellular milieu for
activation of neighboring cells and propagation of the immune
response. The difference between TLR4 and TLR2/TLR7 in-
duced signals can likely be explained by TLR4 uniquely acting
through two adaptor pathways, MyD88 and TRIF.

There is continuing debate on the concordance of tran-
scripts and protein abundances (58), and the precise mech-
anisms that act at the post-transcriptional level remain to be
elucidated (59–61). Cross-species comparisons suggest that
orthologous protein levels correlate better than the corre-
sponding transcript abundances indicating that the mecha-

FIG. 5. Correlation between the proteome, secretome and transcriptome. A, Pearson correlation values for the proteome and secretome
data with microarray data from RAW264.7 cells treated with the same TLR ligands for one, two, or four hours. Log transformed (base 2) fold
change data was used in call cases. B, The proportion of transcripts and proteins that exhibit more than 2-fold change in either direction at
the protein level, but not at the transcript level (and vice versa) for each treatment.

Proteome and Secretome Profiling of TLR Stimulation

Molecular & Cellular Proteomics 16 Supplement 4 S181

http://www.mcponline.org/cgi/content/full/M116.064261/DC1
http://www.mcponline.org/cgi/content/full/M116.064261/DC1


FIG. 6. Enrichment analysis using DAVID. Three most enriched processes are shown for (A) proteome and (B) secretome data sets. The
color of the symbols indicates treatment type: the blue symbols represent data points from the LPS treatment, the red symbols represent data
points from the P3C treatment, and the green symbols represent data points from the R848 treatment. The shape of the symbols indicates the
cellular process: circles represent the immune response, diamonds represent the response to wounding, squares represent the DNA metabolic
process, triangles represent chemotaxis and crosses represent translation.
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nisms to achieve a particular protein level evolve rapidly (35)
and may include many different mechanisms such as altered
protein stability, translational efficiency and ribosomal abun-

dance (62–64). This could explain why the proteins involved in
the innate immune response do not correlate well with their
corresponding transcripts as they are the first line of defense

FIG. 7. The targeted proteomics results of the heat-killed pathogen challenge compared with the results obtained for the single
ligand stimulations. Eight representative proteins are depicted. (A: Cd14, cluster of differentiation 14; B: Man2B1, lysosomal alpha-
mannosidase; C: C3, complement factor 3; D: Ccl9, chemokine (C-C motif) ligand 9; E: Bax, Bcl-2-associated X protein; F: C1qb, complement
factor C1qb; G: Lyz2, lysozyme C2; H: H2-K1, H-2 class I histocompatibility antigen, K-B alpha chain). The top graphs in each panel indicate
fold changes upon 6h and 24h treatments with LPS (light gray), P3c (dark gray) and R848 (black). The bottom panels indicate fold changes upon
6h and 24h treatments with P. aeruginosa (white), S. aureus (dotted) and B. cenocepacia (hatched).
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and have evolved to act rapidly in the presence of a pathogen.
On the other hand, the adaptive immune system needs more
time to react and perhaps this can account for a better cor-
relation between the transcript and the protein levels for that
particular pathway. The poorer correlation between transcript
and protein for the secretome for all three biological pro-
cesses can be explained in the same manner as above; they
are all essential for the survival of the cell and need to be
established quickly. We have observed select proteins in-
volved in chemotaxis and the innate immune response that do
not display any change in the transcript levels at the time-
points we have investigated (for example, CXCL16, C3, and
IL6). However, in a general analysis, chemotaxis proteins
exhibit a correlation between transcript and protein in the
secretome study. The fact that there are a few proteins that
are also involved in chemotaxis and do not show a change in
transcript level in our study could be because of a sampling
time problem because those proteins are not found in the
proteome analysis and thus most likely are not stored in the
cell. Accumulation of protein in the media cannot account for
the poor correlation because for all three stimulations, pro-
teins belonging to the 20S and the 26S proteasome subunits
have been identified in the secretome. Previous studies have
shown that the proteasome retains its enzymatic activity in the
extracellular environment (65), and this could have contrib-
uted to the decrease in the amounts of certain proteins in the
conditioned media with time (IL6, TNF-�) even without a
change at the mRNA levels (for IL6) or with an increase in
mRNA (for TNF-�) at the timepoints included in our study. It is
interesting that the immune response processes detected at
both the protein level and the protein/transcript level were
more robust for the LPS stimulation than for the other two
ligands. Perhaps the enrichment is because of the dual
(MyD88/TRIF) signaling pathway of TLR4, and the late signal-
ing component changes of LPS are captured at the transcript/
protein level, but the changes because of the early signaling
are not captured at the transcript level at the timepoints we
examined; this needs to be investigated further.

It is challenging to compare our data with previously pub-
lished data sets (which only report LPS stimulation) because
of the differences in experimental parameters, including cell
types, cell lines, timepoints, and LPS concentrations. In the
most similar analysis by Meissner et al., 2013 (19) (using 200
ng/ml LPS, mouse bone marrow derived macrophage cells,
and a 16 h late time point) the general trend for LPS appears
similar (see supplemental Fig. S6 of that paper): several cy-
tokines and chemokines, for example TNF-�, increase secre-
tion up to 8 h post-treatment and then decrease. In the current
study, our major focus is on the differences between specific
TLR ligands, which have not been examined before at the
proteome level, and the differences between gene expression
and protein levels.

The general agreement in the trend of response to the
whole heat-killed pathogens with the purified ligand experi-

ments (66) suggests that the omics studies that use single
ligands can, in general, inform about the TLR-induced re-
sponse to the pathogens presenting these ligands as their
dominant PAMPs. The differences in the magnitude of the
response may be because of the differences in the concen-
trations or availability of the single ligands compared with the
whole pathogens. Higher than physiological concentrations of
single ligands used in our study can explain the weaker re-
sponses to the whole bacteria. In contrast, the stronger up-
regulation of proteins such as Bax, C1qb, and Lyz2 may
indicate that under certain circumstances treatment with
complex combinations of ligands can lead to synergistic re-
sponses. In other cases, the choice of pathogen may influ-
ence differences between soluble ligand and bacterial stimu-
lation results. For example, we could not detect IL-6, Ccl4 and
Cxcl2 in the whole pathogen experiment, likely because of the
fact that we used P. aeruginosa as a Gram-negative pathogen
and its LPS does not trigger the secretion of certain cytokines
as efficiently as the LPS from E. coli or S. minnesota. The
pro-apoptotic factor Bax showed the strongest up-regulation
in response to the intracellular pathogen B. cenocepacia
(and to R848, the ligand presented by the intracellular
pathogens) This is consistent with the induction of cell
death as part of the host response to intracellular infection
and highlights stimulus specific protein induction detected
in our proteomic data.

Our study demonstrates the utility of combining targeted
and global proteomic analyses in the study of the innate
immune response to invading pathogens. Our findings rein-
force the argument that proteomics-related studies comple-
ment gene expression studies to show different levels and
modes of post-transcriptional regulation (29). Furthermore, as
proteomic approaches can explain rapid functional changes
supporting effective defense against pathogen, they represent
an important direction for the future of systems immunology.

Acknowledgments—We thank Tim Myers at the Genomic Technol-
ogies Section (NIAID/NIH) for processing the microarray experiments,
Arthur Nuccio for excellent technical assistance with the mass spec-
trometry and Parizad Torabi-Parizi for help with the experiments
involving the whole bacteria.

DATA AVAILABILITY

The mass spectrometry proteomics data have been depos-
ited to the ProteomeXchange Consortium via the PRIDE (46)
partner repository with the data set identifier PXD004113. The
microarray data have been deposited in NCBI’s Gene Expres-
sion Omnibus (47) and are accessible through GEO Series
accession number GSE85448 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc�GSE85448).

* This research was supported by the Intramural Research program
of NIAID, NIH. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National
Institutes of Health. Authors declare no conflict of interest.

□S This article contains supplemental material.

Proteome and Secretome Profiling of TLR Stimulation

S184 Molecular & Cellular Proteomics 16 Supplement 4

http://www.mcponline.org/cgi/content/full/M116.064261/DC1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85448
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85448
http://www.mcponline.org/cgi/content/full/M116.064261/DC1


§ To whom correspondence should be addressed: Address: Cellu-
lar Networks Proteomics Unit, Laboratory of Systems Biology, Na-
tional Institute of Allergy and Infectious Diseases, National Institutes
of Health, Bethesda, MD, 20892. Tel.: �1 301-451-4394; Fax: �1
301-480-5170; E-mail: nitalazarau@niaid.nih.gov.

¶ These authors contributed equally to this work and are listed in
alphabetical order.

� Current address: University of Oklahoma Health Sciences Center,
975 NE 10th St., BRC 1106, Oklahoma City, OK 73104.

REFERENCES

1. Iwasaki, A., and Medzhitov, R. (2015) Control of adaptive immunity by the
innate immune system. Nat. Immunol. 16, 343–353

2. Brubaker, S. W., Bonham, K. S., Zanoni, I., and Kagan, J. C. (2015) Innate
immune pattern recognition: a cell biological perspective. Annu. Rev.
Immunol. 33, 257–290

3. Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflam-
mation. Cell 140, 805–820

4. Kawai, T., and Akira, S. (2005) Pathogen recognition with Toll-like recep-
tors. Curr. Opin. Immunol. 17, 338–344

5. Kang, J. Y., and Lee, J. O. (2011) Structural biology of the Toll-like receptor
family. Annu. Rev. Biochem. 80, 917–941

6. Werling, D., Jann, O. C., Offord, V., Glass, E. J., and Coffey, T. J. (2009)
Variation matters: TLR structure and species-specific pathogen recog-
nition. Trends Immunol. 30, 124–130

7. Wilson, I., Vogel, J., and Somerville, S. (1997) Signalling pathways: a
common theme in plants and animals? Curr. Biol. 7, R175–178

8. Kagan, J. C. (2012) Signaling organelles of the innate immune system. Cell
151, 1168–1178

9. Dietrich, N., Lienenklaus, S., Weiss, S., and Gekara, N. O. (2010) Murine
toll-like receptor 2 activation induces type I interferon responses from
endolysosomal compartments. PLoS ONE 5, e10250

10. Marre, M. L., Petnicki-Ocwieja, T., DeFrancesco, A. S., Darcy, C. T., and
Hu, L. T. (2010) Human integrin alpha(3)beta(1) regulates TLR2 recog-
nition of lipopeptides from endosomal compartments. PLoS ONE 5,
e12871

11. Sjoelund, V., Smelkinson, M., and Nita-Lazar, A. (2014) Phosphoproteome
profiling of the macrophage response to different toll-like receptor li-
gands identifies differences in global phosphorylation dynamics. J. Pro-
teome Res. 13, 5185–5197

12. Mosser, D. M., and Edwards, J. P. (2008) Exploring the full spectrum of
macrophage activation. Nat. Rev. Immunol. 8, 958–969

13. Agrawal, G. K., Jwa, N. S., Lebrun, M. H., Job, D., and Rakwal, R. (2010)
Plant secretome: unlocking secrets of the secreted proteins. Proteomics
10, 799–827

14. Makridakis, M., and Vlahou, A. (2010) Secretome proteomics for discovery
of cancer biomarkers. J. Proteomics 73, 2291–2305

15. Gundacker, N. C., Haudek, V. J., Wimmer, H., Slany, A., Griss, J., Bochkov,
V., Zielinski, C., Wagner, O., Stockl, J., and Gerner, C. (2009) Cytoplas-
mic proteome and secretome profiles of differently stimulated human
dendritic cells. J. Proteome Res. 8, 2799–2811

16. Haglund, L., Bernier, S. M., Onnerfjord, P., and Recklies, A. D. (2008)
Proteomic analysis of the LPS-induced stress response in rat chondro-
cytes reveals induction of innate immune response components in ar-
ticular cartilage. Matrix Biol. 27, 107–118

17. Tarasova, N. K., Ytterberg, A. J., Lundberg, K., Zhang, X. M., Harris, R. A.,
and Zubarev, R. A. (2016) Establishing a proteomics-based monocyte
assay to assess differential innate immune activation responses. J. Pro-
teome Res. 15, 2337–2345

18. Eichelbaum, K., and Krijgsveld, J. (2014) Rapid temporal dynamics of
transcription, protein synthesis, and secretion during macrophage acti-
vation. Mol. Cell. Proteomics 13, 792–810

19. Meissner, F., Scheltema, R. A., Mollenkopf, H. J., and Mann, M. (2013)
Direct proteomic quantification of the secretome of activated immune
cells. Science 340, 475–478

20. Erdogan, O., Xie, L., Wang, L., Wu, B., Kong, Q., Wan, Y., and Chen, X.
(2016) Proteomic dissection of LPS-inducible, PHF8-dependent secre-
tome reveals novel roles of PHF8 in TLR4-induced acute inflammation
and T cell proliferation. Sci. Rep. 6, 24833

21. Hinz, M., Arslan, S. C., and Scheidereit, C. (2012) It takes two to tango:

IkappaBs, the multifunctional partners of NF-kappaB. Immunol. Rev.
246, 59–76

22. Liang, J., Lei, T., Song, Y., Yanes, N., Qi, Y., and Fu, M. (2009) RNA-
destabilizing factor tristetraprolin negatively regulates NF-kappaB sig-
naling. J. Biol. Chem. 284, 29383–29390

23. O’Neill, L. A., Golenbock, D., and Bowie, A. G. (2013) The history of Toll-like
receptors - redefining innate immunity. Nat. Rev. Immunol. 13, 453–460

24. Huet, O., and Chin-Dusting, J. P. (2014) Septic shock: desperately seeking
treatment. Clin. Sci. 126, 31–39

25. Lawrence, T., and Natoli, G. (2011) Transcriptional regulation of macro-
phage polarization: enabling diversity with identity. Nat. Rev. Immunol.
11, 750–761

26. Hennessy, E. J., Parker, A. E., and O’Neill, L. A. (2010) Targeting Toll-like
receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9, 293–307

27. Gilchrist, M., Henderson, W. R., Jr, Morotti, A., Johnson, C. D., Nachman,
A., Schmitz, F., Smith, K. D., and Aderem, A. (2010) A key role for ATF3
in regulating mast cell survival and mediator release. Blood 115,
4734–4741

28. Cheng, Z., Taylor, B., Ourthiague, D. R., and Hoffmann, A. (2015) Distinct
single-cell signaling characteristics are conferred by the MyD88 and TRIF
pathways during TLR4 activation. Sci. Signal. 8, ra69

29. Chevrier, N., Mertins, P., Artyomov, M. N., Shalek, A. K., Iannacone, M.,
Ciaccio, M. F., Gat-Viks, I., Tonti, E., DeGrace, M. M., Clauser, K. R.,
Garber, M., Eisenhaure, T. M., Yosef, N., Robinson, J., Sutton, A., An-
dersen, M. S., Root, D. E., von Andrian, U., Jones, R. B., Park, H., Carr,
S. A., Regev, A., Amit, I., and Hacohen, N. (2011) Systematic discovery
of TLR signaling components delineates viral-sensing circuits. Cell 147,
853–867

30. de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M., and Vogel, C. (2009)
Global signatures of protein and mRNA expression levels. Mol. Biosyst.
5, 1512–1526

31. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation
between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19,
1720–1730

32. Jovanovic, M., Rooney, M. S., Mertins, P., Przybylski, D., Chevrier, N.,
Satija, R., Rodriguez, E. H., Fields, A. P., Schwartz, S., Raychowdhury,
R., Mumbach, M. R., Eisenhaure, T., Rabani, M., Gennert, D., Lu, D.,
Delorey, T., Weissman, J. S., Carr, S. A., Hacohen, N., and Regev, A.
(2015) Immunogenetics. Dynamic profiling of the protein life cycle in
response to pathogens. Science 347, 1259038

33. Maier, T., Guell, M., and Serrano, L. (2009) Correlation of mRNA and protein
in complex biological samples. FEBS Lett. 583, 3966–3973

34. Marguerat, S., Schmidt, A., Codlin, S., Chen, W., Aebersold, R., and Bahler,
J. (2012) Quantitative analysis of fission yeast transcriptomes and pro-
teomes in proliferating and quiescent cells. Cell 151, 671–683

35. Schrimpf, S. P., Weiss, M., Reiter, L., Ahrens, C. H., Jovanovic, M., Malm-
strom, J., Brunner, E., Mohanty, S., Lercher, M. J., Hunziker, P. E.,
Aebersold, R., von Mering, C., and Hengartner, M. O. (2009) Comparative
functional analysis of the Caenorhabditis elegans and Drosophila mela-
nogaster proteomes. PLos Biol. 7, e48

36. Vogel, C., Abreu Rde, S., Ko, D., Le, S. Y., Shapiro, B. A., Burns, S. C.,
Sandhu, D., Boutz, D. R., Marcotte, E. M., and Penalva, L. O. (2010)
Sequence signatures and mRNA concentration can explain two-thirds of
protein abundance variation in a human cell line. Mol. Syst. Biol. 6, 400

37. Vogel, C., and Marcotte, E. M. (2012) Insights into the regulation of protein
abundance from proteomic and transcriptomic analyses. Nat. Rev.
Genet. 13, 227–232

38. Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A. M., Lieberenz, M., Savitski,
M. M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., Mathieson, T.,
Lemeer, S., Schnatbaum, K., Reimer, U., Wenschuh, H., Mollenhauer,
M., Slotta-Huspenina, J., Boese, J. H., Bantscheff, M., Gerstmair, A.,
Faerber, F., and Kuster, B. (2014) Mass-spectrometry-based draft of the
human proteome. Nature 509, 582–587

39. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton,
J. W., and Greenberg, E. P. (1998) The involvement of cell-to-cell
signals in the development of a bacterial biofilm. Science 280,
295–298

40. Govan, J. R., Brown, P. H., Maddison, J., Doherty, C. J., Nelson, J. W.,
Dodd, M., Greening, A. P., and Webb, A. K. (1993) Evidence for trans-
mission of Pseudomonas cepacia by social contact in cystic fibrosis.
Lancet 342, 15–19

Proteome and Secretome Profiling of TLR Stimulation

Molecular & Cellular Proteomics 16 Supplement 4 S185

mailto:nitalazarau@niaid.nih.gov


41. Johnson, W. M., Tyler, S. D., and Rozee, K. R. (1994) Linkage analysis of
geographic and clinical clusters in Pseudomonas cepacia infections by
multilocus enzyme electrophoresis and ribotyping. J. Clin. Microbiol. 32,
924–930

42. Al-Khodor, S., Marshall-Batty, K., Nair, V., Ding, L., Greenberg, D. E., and
Fraser, I. D. (2014) Burkholderia cenocepacia J2315 escapes to the
cytosol and actively subverts autophagy in human macrophages. Cell
Microbiol. 16, 378–395

43. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., and Mann, M. (2006)
In-gel digestion for mass spectrometric characterization of proteins and
proteomes. Nat. Protoc. 1, 2856–2860

44. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and proteome-wide
protein quantification. Nat. Biotechnol. 26, 1367–1372

45. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., and
Mann, M. (2011) Andromeda: a peptide search engine integrated into the
MaxQuant environment. J. Proteome Res. 10, 1794–1805

46. Vizcaino, J. A., Csordas, A., del-Toro, N., Dianes, J. A., Griss, J., Lavidas,
I., Mayer, G., Perez-Riverol, Y., Reisinger, F., Ternent, T., Xu, Q. W.,
Wang, R., and Hermjakob, H. (2016) 2016 update of the PRIDE database
and its related tools. Nucleic Acids Res. 44, D447–456

47. Edgar, R., Domrachev, M., and Lash, A. E. (2002) Gene Expression Omni-
bus: NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 30, 207–210

48. Huang da, W, Sherman, B. T., and Lempicki, R. A. (2009) Systematic and
integrative analysis of large gene lists using DAVID bioinformatics re-
sources. Nat. Protoc. 4, 44–57

49. Huang da, W, Sherman, B. T., and Lempicki, R. A. (2009) Bioinformatics
enrichment tools: paths toward the comprehensive functional analysis of
large gene lists. Nucleic Acids Res. 37, 1–13

50. Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011) SignalP
4.0: discriminating signal peptides from transmembrane regions. Nat.
Methods 8, 785–786

51. Bendtsen, J. D., Jensen, L. J., Blom, N., Von Heijne, G., and Brunak, S.
(2004) Feature-based prediction of non-classical and leaderless protein
secretion. Protein Eng. Des. Sel. 17, 349–356

52. Sturn, A., Quackenbush, J., and Trajanoski, Z. (2002) Genesis: cluster
analysis of microarray data. Bioinformatics 18, 207–208

53. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H.,
Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids
in cell culture, SILAC, as a simple and accurate approach to expression
proteomics. Mol. Cell. Proteomics 1, 376–386

54. Blagoev, B., Ong, S. E., Kratchmarova, I., and Mann, M. (2004) Temporal

analysis of phosphotyrosine-dependent signaling networks by quantita-
tive proteomics. Nat. Biotechnol. 22, 1139–1145

55. Nilsson, R., Bajic, V. B., Suzuki, H., di Bernardo, D., Bjorkegren, J., Katay-
ama, S., Reid, J. F., Sweet, M. J., Gariboldi, M., Carninci, P., Hayashizaki,
Y., Hume, D. A., Tegner, J., and Ravasi, T. (2006) Transcriptional network
dynamics in macrophage activation. Genomics 88, 133–142

56. Chang, S., Stacey, K. J., Chen, J., Costelloe, E. O., Aderem, A., and Hume,
D. A. (1999) Mechanisms of regulation of the MacMARCKS gene in macro-
phages by bacterial lipopolysaccharide. J. Leukoc. Biol. 66, 528–534

57. De Toro, J., Herschlik, L., Waldner, C., and Mongini, C. (2015) Emerging
roles of exosomes in normal and pathological conditions: new insights
for diagnosis and therapeutic applications. Front. Immunol. 6, 203

58. Liu, Y., Beyer, A., and Aebersold, R. (2016) On the Dependency of Cellular
Protein Levels on mRNA Abundance. Cell 165, 535–550

59. Juschke, C., Dohnal, I., Pichler, P., Harzer, H., Swart, R., Ammerer, G.,
Mechtler, K., and Knoblich, J. A. (2013) Transcriptome and proteome
quantification of a tumor model provides novel insights into post-tran-
scriptional gene regulation. Genome Biol. 14, r133

60. Olivares-Hernandez, R., Usaite, R., and Nielsen, J. (2010) Integrative analysis
using proteome and transcriptome data from yeast to unravel regulatory
patterns at post-transcriptional level. Biotechnol. Bioeng. 107, 865–875

61. Robles, M. S., Cox, J., and Mann, M. (2014) In-vivo quantitative proteomics
reveals a key contribution of post-transcriptional mechanisms to the
circadian regulation of liver metabolism. PLoS Genet. 10, e1004047

62. Arava, Y., Wang, Y., Storey, J. D., Liu, C. L., Brown, P. O., and Herschlag,
D. (2003) Genome-wide analysis of mRNA translation profiles in Saccha-
romyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 100, 3889–3894

63. Pratt, J. M., Petty, J., Riba-Garcia, I., Robertson, D. H., Gaskell, S. J., Oliver,
S. G., and Beynon, R. J. (2002) Dynamics of protein turnover, a missing
dimension in proteomics. Mol. Cell. Proteomics 1, 579–591

64. Tuller, T., Waldman, Y. Y., Kupiec, M., and Ruppin, E. (2010) Translation
efficiency is determined by both codon bias and folding energy. Proc.
Natl. Acad. Sci. U.S.A. 107, 3645–3650

65. Zhu, Z., Yang, F., Zhang, K., Cao, W., Jin, Y., Wang, G., Mao, R., Li, D.,
Guo, J., Liu, X., and Zheng, H. (2015) Comparative Proteomic Analysis of
Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-
Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1
Required for Virus Replication. J. Proteome Res. 14, 4194–4206

66. Nau, G. J., Richmond, J. F., Schlesinger, A., Jennings, E. G., Lander,
E. S., and Young, R. A. (2002) Human macrophage activation pro-
grams induced by bacterial pathogens. Proc. Natl. Acad. Sci. U.S.A.
99, 1503–1508

Proteome and Secretome Profiling of TLR Stimulation

S186 Molecular & Cellular Proteomics 16 Supplement 4


