
RESEARCH ARTICLE

Dynamic classification of fetal heart rates by

hierarchical Dirichlet process mixture models

Kezi Yu1, J. Gerald Quirk2, Petar M. Djurić1*

1 Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, United

States of America, 2 Department Of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook

University, Stony Brook, NY, United States of America

* petar.djuric@stonybrook.edu

Abstract

In this paper, we propose an application of non-parametric Bayesian (NPB) models for clas-

sification of fetal heart rate (FHR) recordings. More specifically, we propose models that are

used to differentiate between FHR recordings that are from fetuses with or without adverse

outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP)

and the Chinese restaurant process with finite capacity (CRFC). Two mixture models were

inferred from real recordings, one that represents healthy and another, non-healthy fetuses.

The models were then used to classify new recordings and provide the probability of the

fetus being healthy. First, we compared the classification performance of the HDP models

with that of support vector machines on real data and concluded that the HDP models

achieved better performance. Then we demonstrated the use of mixture models based on

CRFC for dynamic classification of the performance of (FHR) recordings in a real-time

setting.

Introduction

Fetal heart rate (FHR), along with other physiological signals, is routinely monitored before

and during labor to assess fetal health. The first fetal monitor became commercially available

in 1968 [1], and ever since, electronic fetal monitoring (EFM) has been widely used in hospitals

in the U.S. Its rate of use in obstetric practice has climbed from 68.4% in 1989 to 85.2% in 2002

[2].

Nowadays, the evaluation of FHR signals is primarily performed visually by experienced

physicians, following guidelines published by various medical institutions including the

National Institute of Child Health and Human Development (NICHD) [3] and the Interna-

tional Federation of Gynecology and Obstetrics (FIGO) [4]. These guidelines define different

patterns of FHR, such as baseline, variability, acceleration and deceleration. Based on the com-

bination of appearances of certain patterns, the FHR tracings are classified into three classes,

“normal”, “indeterminate” and “abnormal.”

Notwithstanding the long presence of FHR tracings in obstetrics, their use for assessing the

well-being of fetuses has constantly been questioned. For example, in a recent study, it has
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been reported that the subjective assessment of FHR tracings exhibits large inter- and intra-

variability [5]. The study has also shown that the sensitivity of clinicians’ majority vote to

objective outcomes was only 39%. This and similar findings suggest that the high false positive

rates have led to increase in the rate of cesarean section deliveries [6], which altogether have

put the benefits of using EFM under criticism [7].

The deficiencies of subjective assessment of FHRs raise the need for modern and computer-

ized methods for their processing. Such methods would be able to provide objective and con-

sistent evaluation and to capture hidden dynamics in FHR signals, which are often too

challenging for human’s eyes’ inspection. Furthermore, machine learning techniques have

been proved to be extremely successful in real-world applications in various fields in recent

years. The advances in machine learning have been also reflected in research on FHR classifi-

cation. This research has produced a number of newly proposed computerized methods.

In one approach, in addition to morphological features proposed in the guidelines [3], for

quantifying the underlying patterns of FHR, advanced features extraction algorithms were

applied. In [8], the authors worked with several linear and nonlinear features. The former

included short-term and long-term variabilities whereas the latter were features related to

power spectra and entropy. In [9], a more comprehensive collection of non-linear features

were used to model the non-linearity of FHR signals. These features included fractal dimen-

sion, approximate entropy, sample entropy, and the Lempel Ziv complexity. The classification

of the features was carried out by a support vector machine (SVM) algorithm.

SVMs have not been in the only machine learning methodology for classification of FHR

signals. In [10], artificial neural networks were employed as the classifier with 6 FHR features

and 6 clinical variables as inputs. Two types of generative models, naïve Bayes and hidden

Markov models, were implemented in [11], which were novel attempts because the majority of

the methods in the literature were based on discriminative models. In [12], the authors

explored the performance of linear regression and SVMs with different kernels. This work also

included feature selection and the use of reduction methods such as random forest and princi-

ple component analysis (PCA).

The search for better solutions based on machine learning algorithms with more flexibility

and robustness as well as better overall performance has continued. Hierarchical Dirichlet pro-

cess (HDP) mixture models [13], for instance, free the classic mixture models from fixing the

number of mixing components, and allow for modeling of grouped data jointly. These models

exhibit excellent performance in areas such as information retrieval and topic modeling [14].

In this paper, for classifying FHR signals, we propose two novel approaches based on HDP.

We describe the underlying principles of the approaches and show on real-world data that

they have very good performance in terms of accuracy and probabilistic interpretations of the

results.

The paper is organized as follows. First, we provide some background on non-parametric

Bayesian statistical models used in the paper, and we discuss their advantages over traditional

parametric models (Hierarchical Dirichlet Process Mixture Models). Then, in the subsequent

section, Features for Classification, we describe the set of features we used in our experiments.

The details of our experimental setting, including the database, the pre-processing of the data,

the dimensionality reduction of the feature space, and the performance assessment are

explained in the section Experimental Settings. Results obtained by our approach and compar-

isons with an existing method are provided in the section Results. In the last section, we dis-

cuss the results and make final conclusions.

The main contribution of this paper lies in the novelty in applying hierarchical Dirichlet

process-based mixture models to FHR classification. In our previous research, we explored a

set of suitable features for our models and obtained several preliminary results with HDP
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mixture models [15, 16]. Here, we continue to explore the potential of the models and present

classification results with probabilistic interpretations. An important extension of our work is

the use of the time-varying models from [17] to achieve dynamic real-time classification.

Hierarchical Dirichlet process mixture models

In this section, we describe the two mixture models that we implemented in our experiments,

the well-known HDP mixture model and our time-varying modification of it. We explain how

one can generate data by using the models and then how one can conduct inference about the

model unknowns from data that are generated by the model.

Notation

In the problems of our interest, the observations are organized into groups. We adopt the nota-

tion from [13], where xj,i denotes the ith observation in the jth group. We consider that each

observation is drawn independently from a mixture model. In the context of FHR problems,

each group xj = (xj,1, xj,2, . . .) corresponds to features of one FHR recording, and each observa-

tion xj,i to features of one segment of the recording.

Models

We start with the HDP mixture models proposed in [13] and then describe their modification

proposed in [17] to accommodate for time-evolving statistics of the data.

Hierarchical Dirichlet process mixture models. A hierarchical Dirichlet process defines

a set of random probability measures Gj linked to a global random probability measure G0.

Specifically, G0 is distributed as a Dirichlet process (DP) with concentration parameter γ and

base probability measureH, i.e.,

G0jg;H � DPðg;HÞ: ð1Þ

The random measures Gj’s are conditionally independent given G0, and distributed according

to

Gjja;G0 � DPða;G0Þ; ð2Þ

where α is also a concentration parameter. We explain this model and its extension to mixture

models by way of the Chinese restaurant franchise (CRF) metaphor.

Suppose that there is a restaurant franchise with a shared menu across the restaurants. With

xj,i we denote the ith customer in the jth restaurant, and with θj,i, the dish type served to this

customer. In this setup, the customers correspond to the observations xj,i, a restaurant corre-

sponds to an FHR recording xj and the dish type to a parameter set of a distribution used for

drawing the observations. The index zj,i is the index of such parameter set and associated with

the observation xj,i.
Next, we introduce K iid random variables ϕ1, . . ., ϕK, which represent global dishes and

which are distributed according toH. Each customer xj,i is seated at a table, denoted by tj,i, and

each table is paired with one dish ϕk. Furthermore, let ψj,t represent the dish served on table

t in restaurant j, and kj,t be the indicator of the dish served on table t in restaurant j. For exam-

ple, t3,4 = 6 means that customer 4 in restaurant 3 sits at table 6, ψ3,6 = ϕk3,6
signifies that on

table 6 in restaurant 3 dish ϕk3,6
is served, where k3,6 2 {1, 2, � � �, K}. With this notation, we have

that θ3,4 = ϕz3,4
, where z3,4 2 {1, 2, � � �, K}. Note the difference between kj,t and zj,i. The former is

the index of the dish served in restaurant j on table t, and the latter, the index of the dish served

to customer i in restaurant j.
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We also need a notation for counts. With nj,t,k we denote the number of customers in res-

taurant j at table t serving dish k, and withmj,k, the number of tables in restaurant j serving

dish k. We represent marginal counts by dots. For example, nj,�,k represents the number of cus-

tomers in restaurant j eating dish k;mj,� represents the number of tables in restaurant j, and so

on. At each table in each restaurant, one dish from the menu is ordered by the first customer

at that table and shared by the remaining customers sitting at the same table.

A customer entering a restaurant can either choose an occupied table according to a proba-

bility proportional to the number of customers already seated at the table, or get a new table

with a probability determined by the concentration parameter α. Specifically, in restaurant j,
the ith customer chooses a dish (and thereby a table) according to

yj;ijyj;1; � � � ; yj;i� 1; a;G0 �
Xmj;�

t¼1

nj;t;�
i � 1þ a

dcj;t
þ

a

i � 1þ a
G0; ð3Þ

where δψj,t is probability measure concentrated at ψj,t. If a customer chooses an existing table,

say t, then we increment nj,t by one, and set θj,i = ψj,t, tj,i = t, and zj,i = kj,t. If a new table is cho-

sen, then we incrementmj,� by one, draw the dish for that table ψj,mj,�+1 * G0 and set

θji = ψj,mj,�+1, tj,i =mj,� + 1, and zj,i = kj,mj,�+1, where kj,mj,�+1 is the index of the drawn dish from G0.

Now let us consider the dish-level distributions. Similarly, a table can be served with an

existing dish with probability proportional to the number of tables already serving the dish in

the whole franchise, or with a new dish with probability determined by the concentration

parameter γ. To be specific, the probability distribution of table t in restaurant j serving a par-

ticular dish is given by

cj;tjc1;1;c1;2; � � � ;c2;1; � � � ;cj;t� 1; g;H �
XK

k¼1

m�;k
m�;� þ g

d�k þ
g

m�;� þ g
H: ð4Þ

If an existing dish is served, i.e., kj,t 2 {1, 2, � � �, K}, we increment the count of that dish,m�,kj,t,
by one, and set ψj,t = ϕkj,t. If we choose a new dish, then we increment K by one. We also draw

the new dish by ϕK+1 *H, and set kj,t = K + 1.

This completes the description of the CRF metaphor. We summarize the variables, their

meanings and how they relate to our problem in Table 1. We reiterate that the dishes are

shared among the restaurants, which corresponds to a key property of the HDP.

Table 1. Meaning of the variables of the HDP process and their relationship to the FHR classification

problem.

Variable meaning

xj,i served dish to the ith customer in the jth restaurant (observed features in the (j, i)th segment, i.e.,

in the ith segment of the jth recording)

zj,i index of dish type served to the ith customer in the jth restaurant (index of the parameter of the

(j, i)th segment)

ϕk kth dish type from the global menu (the kth parameter from the global set of parameters)

ψj,t dish type served on the tth table in the jth restaurant, (parameter of segments of the jth recording

that belongs to the tth group)

θj,i dish type served to the ith customer in the jth restaurant (parameter of the (j, i)th segment)

tj,i index of the table assigned to the ith customer in the jth restaurant (index of the group assigned

to the (j, i)th segment)

kj,t index of the dish type served on the tth table in the jth restaurant (index of the parameter of the

tth group of the jth recording)

https://doi.org/10.1371/journal.pone.0185417.t001
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The HDP mixture model is a non-parametric Bayesian approach to data processing. It aims

at modeling grouped data jointly, where each group (segment features of an FHR recording) is

associated with a mixture model, and all the mixing components are shared across the groups

(different FHR recordings share features). We assume that each dish type ϕk defines a mixing

component that is used for generating actual dishes (features). We denote the generating dis-

tribution of the features by F(ϕk). In summary, each observed feature xj,i (the features of seg-

ment i of recording j) is generated by

xj;i � Fð�zj;iÞ; ð5Þ

where ϕzj,i is the parameter of the feature distribution, and zj,i is the index that defines the

parameter. By setting the F’s to be Gaussian distributions, we obtain a Gaussian mixture

model with HDP as the prior.

Chinese restaurant franchise with finite capacity. Now we consider a modified version

of the CRF that was proposed in [18]. Assume that each restaurant has a limited capacity of

accommodating customers, and without loss of generality, we assume that it is N for all the res-

taurants. Before the number of customers reaches that limit, the process is the same as in the

CRF metaphor. After a restaurant is “full,” a new customer can come in and be seated only

after the “oldest” customer leaves the restaurant. Then, the ith customer in the jth restaurant,

where i> N, chooses a dish by

yj;ijyj;1; � � � ; yj;i� 1; a;G0 �
X
m�j;�

t¼1

n�j;t;�
N � 1þ a

dcj;t
þ

a

N � 1þ a
G0; ð6Þ

where the � notation represents the changes after the oldest customer (the (i −N)th of restau-

rant j) leaves. Similarly, we update the table counts after the table is chosen. In addition, the

probability that table t in restaurant j serves a particular dish type is

cj;tjc1;1;c1;2; . . . ;c2;1; . . . ;cj;t� 1; g;H �
XK�

k¼1

m�
�;k

m�
�;�
þ g

d�k þ
g

m�
�;�
þ g

H: ð7Þ

After the dish is selected, the dish counts are updated accordingly.

We call this new process “Chinese restaurant franchise with finite capacity” (CRFC). The

CRFC is designed to model grouped time-varying data, and capture the underlying dynamics.

Simulation results on how the CRFC mixture model finds the cluster assignments of data over

time can be found in [17].

Inference

We describe a Markov chain Monte Carlo (MCMC) sampling scheme for estimating the

parameters of the HDP and CRFC mixture models. This is a Gibbs sampling scheme based on

the CRF [13]. To simplify the inference, the base distribution H is assumed to be conjugate to

the data distribution F. For the non-conjugate case, the sampling approach can be adapted

from techniques developed for non-conjugate DP mixtures [19]. In addition, here we assume

known values for the concentration parameters α and γ. When they are unknown, we describe

a sampling scheme for them in a later section. In the sequel, the notation x−ij signifies x = (xj0i0:
all j0i0 except j, i), i.e., x−j,i = x\xj,i. Similarly, t−i,j = t\tj,i and k−j,t = k\kj,t. To make the sampling

more efficient, instead of directly dealing with the xj,is and zj,ts, we sample their indicator vari-

ables tj,i and kj,t. We first describe the sampling of t and then the sampling of k.

Sampling t. The prior probability of tj,i taking an occupied table is proportional to n� j;ij;t;�

according to Eq (3), where, as before, the notation −j,i means the corresponding variable is
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removed from a set or a count. And the prior probability of tj,i taking a new value is propor-

tional to α. More specifically, tj,i is sampled from

pðtj;i ¼ tjt � j;i; kÞ /

( n� j;ij;t;� f
� xj;i
kj;t
ðxj;iÞ; if t is previously used

apðxj;ijt� j;i; tj;i ¼ tnew; kÞ; if t is new
; ð8Þ

where f � xj;ikj;t
ðxj;iÞ represents the likelihood of sample xj,i belonging to an existing mixture com-

ponent kj,t given all the other data, and is given by

f � xj;ikj;t
ðxj;iÞ ¼

Z

f ðxj;ij�kj;t Þ
Y

z
j0 ;i0¼kj;t

j0 ;i0 6¼j;i f ðxj0;i0 j�kj;tÞhð�kj;t Þd�kj;t
Z Y

zj0 ;i0¼kj;t
j0;i0 6¼j;i

f ðxj0;i0 j�kj;t Þhð�kj;t Þd�kj;t :
ð9Þ

If a new table is chosen, i.e., tj,i = tnew, we need to draw a dish kj,tnew for tnew, and the probability

is

pðkj;tnew ¼ kjt; k
� j;tnew
Þ /

(m�;kf
� xj;i
k ðxj;iÞ if k is previously used

gf � xj;iknew ðxj;iÞ if k ¼ knew;
ð10Þ

where

f � xj;iknew ðxj;iÞ ¼
R
f ðxj;ij�Þhð�Þd� ð11Þ

is the prior density of xj,i. Therefore, the likelihood of a customer choosing a new table is

pðxj;ijt� j;i; tj;i ¼ tnew; kÞ ¼
XK

k¼1

m�;k
m�;� þ g

f � xj;ik ðxj;iÞ þ
g

m�;� þ g
f � xj;iknew ðxj;iÞ: ð12Þ

During sampling, some njt. may become zero, i.e., the corresponding table tmay become

unoccupied. Then we need to update the corresponding dish countm�,k, which may result in

deleting some mixture component ifm�,k = 0.

Sampling k. The likelihood of setting kj,t = k is given by f � xj;tk ðxj;tÞ, where xj,t represents all

the xj,is such that tj,i = t, and f � xj;tk ðxj;tÞ is the conditional density of xj,t given all the data related

to component k without xj,t. For the conditional probability of kj,t, we can write

pðkj;t ¼ kjt; k
� j;t
Þ /

(m� j;t�;k f
� xj;t
k ðxj;tÞ; if k is previously used

gf � xj;tknew ðxj;tÞ; if k ¼ knew
: ð13Þ

The inference of CRFC mixture models can easily be obtained by changing the prior proba-

bilities of the indicator variables tj,i and kj,t.

Features for classification

Here we present the complete list of features of FHR traces that we used for classification. As

mentioned before, feature extraction has attracted much attention in the field of FHR analysis.

The features can roughly be divided into three categories: time domain, frequency domain,

and non-linear features. Time-domain features measure the variability of FHR signals in vari-

ous forms, whereas the frequency domain features usually describe the powers in different
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frequency bands. Non-linear features quantify the non-linearity of FHR, e.g., with entropy and

fractal dimension.

In our experiments, we divided the FHR series into non-overlapping segments, with length

ranging from 40 to 120 samples. Then, from each segment we extracted one feature vector.

This vector did not contain nonlinear features. Instead, it had 9 features from the time domain,

and five from the frequency domain. The reason for not including non-linear features is that

their reliable estimation usually requires much longer segments [9]. For example, the approxi-

mate entropy is applicable when the data series are longer than 100 samples [20].

In summary, we used only linear features from the time and frequency domains that are

known from the literature on fetal heart rate processing. In the classification, we used 14 fea-

tures, which are described in the next two subsections. However, the classifier operated in a

feature space with reduced dimension and obtained via principle component analysis (PCA),

as explained in the next section.

Time-domain features

They include the mean and the standard deviation of the segment sji. In addition, we also use

the short-term variability (STV) and long-term variability (LTV), which are defined in [8] as

vSTV ¼
1

K

XK

k¼1

jsðkþ 1Þ � sðkÞj; ð14Þ

vLTV ¼
1

M

XM

m¼1

½max
k2m
ðsðkÞÞ � min

k2m
ðsðkÞÞ�; ð15Þ

where s(k), k = 1, . . ., K represents one segment of FHR series, K is the number of samples in

each segment and M is the number of minutes of the segment. STV and LTV essentially quan-

tify the changes of FHR series in different forms.

On the feature list, we also have the short-term irregularity (STI) and long-term irregularity

(LTI) from [21] and defined by

vSTI ¼ IQRð arctan
sðkþ 1Þ

sðkÞ
Þ; ð16Þ

vLTI ¼ IQRð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðkÞ þ s2ðkþ 1Þ

p
Þ; ð17Þ

where IQR stands for inter-quartile range with k = 1, . . ., K. In essence, STI and LTI describe

the variability of FHR series too.

The other features are the standard descriptors of the Poincaré plot, SD1 and SD2, as well

as the complex correlation measure (CCM) proposed in [22], which are defined by

SD12 ¼ gRRð0Þ � gRRð1Þ ð18Þ

SD22 ¼ gRRð0Þ þ gRRð1Þ � 2RR2
ð19Þ

where γRR(0) and γRR(1) are the autocorrelation functions for lags 0 and 1 of the RR intervals,

and RRbeing the mean of the RR intervals. The RR intervals are another representation of

FHR, which stands for beat-to-beat interval and that can be obtained by

RR ¼
1

FHR=60
: ð20Þ
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CCM, on the other hand, is a function of several lags of the autocorrelation functions of the

RR intervals, or more specifically,

CCMðmÞ ¼
gRRðm � 2Þ � 2gRRðm � 1Þ þ 2gRRðmþ 1Þ � gRRðmþ 2Þ

2CnðN � 2Þ
; ð21Þ

where Cn is a normalizing constant, defined as Cn = π × SD1 × SD2, andm is an integer. In our

experiments, we setm = 1. These features are different types of descriptors of FHR variability.

Frequency-domain features

These features represent powers in four frequency bands: very low frequency (VLF: 0–0.06

Hz), low frequency (LF: 0.06–0.3 Hz), medium frequency (MF: 0.3–1 Hz) and high frequency

(HF: 1–2 Hz). In addition, they also include the ratio of powers of two bands LF/(MF+HF).

The frequency-domain features represent the underlying physiological activity of either the

mother or the fetus. It is worth noting that there is no consensus on how to define the fre-

quency bands. In our experiments, we used the ranges from [23].

The complete list of features is shown in Table 2.

Experimental settings

In this section, we describe in detail our experiments of classifying FHR signals using non-

parametric Bayesian models.

Database

In our work, we used the open-access cardiotocography (CTG) database collected from the

Czech Technical University (CTU) and University Hospital in Brno (UHB) [24]. This database

contains 552 CTG recordings, each comprising an FHR time tracing and a uterine contraction

(UC) signal, both sampled at 4 Hz. All recordings start at a maximum of 90 minutes before

delivery. Fetal outcome data, which include measurements of umbilical artery blood samples

and Apgar scores evaluated at 1 and 5 minutes after delivery, are available for assessment pur-

poses. Additional fetal and delivery information, such as sex, weight, type of delivery, are also

collected. More details on the data collection can be found in [25].

Pre-processing and segmentation

The acquisition of FHR signals suffers from different kinds of artifacts, which are generally

caused by maternal and fetal movements or displacements of the transducer used in the acqui-

sition. There are two types of artifacts, either the measured samples are incorrect or they are

simply missing (the values are equal to 0). Therefore, the FHR signals have to be pre-processed

before they are used for analysis.

In practice, any successive samples with differences greater than 25 bpm are considered as

artifacts. All artifacts, including missing data with duration less than 15 seconds, are interpo-

lated by piecewise cubic Hermite polynomial method. If the duration is longer than 15

Table 2. List of all the features.

Category Feature

Mean, standard deviation

Time STV, STI, LTV, LTI, SD1, SD2, CCM

Frequency VLF, LF, MF, HF, ratio

https://doi.org/10.1371/journal.pone.0185417.t002
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seconds, they are simply discarded. Fig 1 shows an example of an FHR series before and after

pre-processing.

Out of 552 FHR recordings, we selected a balanced dataset with the same number of record-

ings and labeled as healthy and unhealthy. The labels were defined by the following criteria: an

FHR recording is healthy if its associated umbilical cord pH value is greater than a threshold

τ0, and it is labeled as unhealthy if the pH value is less than or equal to τ1. There is no consen-

sus on the exact values of the thresholds, so we experimented with τ0 = 7.2 and both τ1 = 7.05

as in [9] and τ1 = 7.1 as in [10]. The number of recordings N in the selected dataset ended up

with 88 and 122 respectively.

In our experiments, the last M-minute data of the FHR recordings were analyzed. Each

recording was divided into non-overlapping segments of l seconds, where l ranged from 10 to

30 seconds. Thus, the number of segments in each series wasm, wherem =M × 60/l. For each

segment sji, which is the i-th segment in the j-th recording, a feature vector xji of dimension d
was extracted.

Dimensionality reduction

As described in Section 1, in our experiments, each feature vector has 14 dimensions. High

dimensionality is usually difficult to deal with, specifically in terms of issues such as computa-

tional costs and convergence in Gibbs sampling. Hence, before training the models, we

reduced the dimension of the feature space from 14 to q by way of principle component analy-

sis (PCA) [26].

Fig 1. Comparison between a raw FHR signal and the signal obtained after pre-processing.

https://doi.org/10.1371/journal.pone.0185417.g001
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Since PCA is sensitive to the scales of different dimensions of input data and the ranges

of feature values in each dimension can vary largely, we scaled these values into the interval

(−1, 1) before applying PCA. After scaling, we computed the variance ratio of each component.

An example of PCA results of all the data when the number of recordings N = 88 and the seg-

ment length l = 10 is shown in Fig 2. The gray bars are the explained variance ratios of each

principle component, and the blue line represents the cumulative variance ratio.

According to the preliminary analysis of all the data, we concluded that most of the variance

lies in the first 4 principle components. Therefore, we experimented with different choices of

q = 2, 3, and 4. Note that in each iteration of cross-validation, only the training data were used

to obtain the linear transformation matrix, and the testing data were transformed accordingly.

Model priors

The HDP and CRFC mixture model both have two concentration parameters, γ and α, as

described in Section 1. Instead of assigning fixed values to them, we implemented an auxiliary

sampler provided in [13] to infer them. In our experiments, the concentration parameters

were given gamma priors, γ* gamma(1, 1) and α* gamma(10, 1). Therefore, in our experi-

ments, we needed to choose only two variables: the segment length l and the feature dimension

q after PCA.

Classification process

The process of using HDP based models to classify FHR tracings is as follows. The last 30-min-

ute data were used in the classification tasks. During the training stage, two HDP Gaussian

mixture models (HDPGMs), M0 and M1, were constructed from the FHR recordings and

labeled as healthy and unhealthy, respectively. For estimation of the models’ parameters, we

implemented the collapsed Gibbs sampler (proposed in [13]). During the testing stage, given a

new FHR tracing xj, the classification is made by comparing the likelihoods L0 and L1, which

Fig 2. Explained variance ratio as a function of number of principle components.

https://doi.org/10.1371/journal.pone.0185417.g002
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are defined by

L0 ¼ el0 ; L1 ¼ el1 ;

l0 ¼ log f ðxjjM0Þ ¼
Xm

i¼1

log f ðxjijM0Þ;

l1 ¼ log f ðxjjM1Þ ¼
Xm

i¼1

log f ðxjijM1Þ:

ð22Þ

If L0 > L1, the FHR series is classified as healthy and vice versa. Note that here we assume that

the priors of the fetuses were equal.

In using the CRFC Gaussian mixture models, first we set a window length Mwin equal to 30

minutes. Essentially, this is equivalent to the restaurant capacity in the CRF metaphor. We ana-

lyzed the last 45 minutes of FHR recordings. Two models, M0 and M1 were initiated from

the first 30-minute data (i.e., the last 45 to 15 minutes from the original FHR series) from the

respective groups. At each time instance, we moved the window by one segment, and trained

the models by adding new data and removing the oldest data. The likelihoods of being healthy

and unhealthy, L0 and L1, were computed similarly to (22).

We define the probabilities of FHR series corresponding to healthy or unhealthy fetuses,

denoted as p0 and p1, by

p0 ¼
el0=m

el0=m þ el1=m

p1 ¼ 1 � p0

ð23Þ

wherem is the number of segments in each FHR series. We call this method the “naïve

approach”. A modified version of the probabilities is defined as follows.

l0
0
¼ lð1Þ0 � w1 þ � � � þ l

ðmÞ
0 � wm;

l0
1
¼ lð1Þ1 � w1 þ � � � þ l

ðmÞ
1 � wm;

p0
0
¼

el00
el00 þ el01

; p0
1
¼ 1 � p0

0

ð24Þ

where

lðiÞ0 ¼ log f ðxjijM0Þ; lðiÞ1 ¼ log f ðxjijM1Þ ð25Þ

and wi’s are weights defined as

wi ¼ ui=
Xm

i¼1

ui ð26Þ

where ui is the percentage of data that are not interpolated in the i-th segment, which is a mea-

sure of signal quality. We call this method the “weighted approach”.

Performance assessment

We assessed the classification performance of the models with the standard metrics, true posi-

tive rate (TPR) and true negative rate (TNR). We also used the weighted relative accuracy
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(WRA) [27], which is defined by WRA = 4 × cost × (TPR − FPR)/(1 + cost)2, where FPR repre-

sents false positive rate. In this study, we assigned the cost to 1.

To fully utilize the dataset and avoid the bias caused by randomly selecting training/testing

data, we used the 5-fold cross-validation (CV) method for performance assessment. At each

iteration, 80% of the data were used for training and the rest for testing. The outcome metrics

were averaged across all iterations and the mean values were reported.

Results

In this section, we first provide the classification performance of HDPGMs and the compari-

son with that of SVMs, which achieved the best performance in studies [9, 12]. Then we show

the real-time classification of FHR tracings by models based on CRFC.

Performance by HDPGMs

As described in Section 1, we experimented with two different thresholds τ1 that delineate the

non-healthy group of fetuses. By setting τ1 = 7.05, the number of recordings with total length

exceeding 30 minutes N is 88, and for τ1 = 7.1, N equals 122. After segmentation, feature

extraction and PCA, the dataset was transformed to N groups of data, each group containing

m observations of dimension q. We experimented with different choices of segment length l
and dimension q. The results, with the best performance highlighted in bold font, are provided

in Table 3,.

The same datasets were used to test the SVM-based method. The classification process was

as follows: instead of segmentation, the 14 features were extracted from the whole FHR series

of the last 30 minutes. The feature vectors were scaled to the range (−1, 1), and then used as

input to the SVMs classifier. The SVMs classification algorithms had two free parameters: cost

C and γ. We searched for the optimal combination of these parameters in terms of the testing

performance metric, WRA. Five-fold CV method was used to eliminate biases. The results

obtained by SVMs are shown in Table 4.

Table 3. Performance of HDPGMs.

N q l TPR TNR WRA

88 2 10 sec 0.753 0.844 0.597

20 sec 0.708 0.822 0.531

30 sec 0.681 0.844 0.525

3 10 sec 0.706 0.800 0.506

20 sec 0.636 0.844 0.480

30 sec 0.655 0.867 0.522

4 10 sec 0.700 0.733 0.433

20 sec 0.656 0.800 0.456

30 sec 0.642 0.703 0.344

122 2 10 sec 0.637 0.753 0.390

20 sec 0.606 0.769 0.376

30 sec 0.654 0.754 0.408

3 10 sec 0.654 0.704 0.358

20 sec 0.655 0.721 0.376

30 sec 0.554 0.803 0.356

4 10 sec 0.622 0.720 0.342

20 sec 0.604 0.738 0.342

30 sec 0.587 0.719 0.306

https://doi.org/10.1371/journal.pone.0185417.t003
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By comparing the results in Tables 3 and 4, we conclude that in both cases of τ1, the pro-

posed method outperformed the SVM-based method.

Real-time classification

In this experiment, we set the threshold τ1 = 7.05. The number of FHR recordings of total

lengths greater than 45 minutes is 70. We randomly chose 60 recordings for training the

CRFC Gaussian mixture models, and the rest for testing. Due to lack of labels of FHR record-

ings at each time instant, we assumed that the training series stayed in the same group for the

whole duration. At each time instant, we computed the probability of the FHR series being

associated with a healthy fetus. We used both, the naïve and the weighted methods. Fig 3

Table 4. Peformance of SVMs.

N C γ TPR TNR WRA

88 3 0.1 0.650 0.867 0.517

122 1 0.1 0.556 0.836 0.392

https://doi.org/10.1371/journal.pone.0185417.t004

Fig 3. One instance of real-time classification results. The X axis represents time and the Y axis represents probability.

https://doi.org/10.1371/journal.pone.0185417.g003
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shows the changes of probabilities of different FHR recordings being healthy over time. The

corresponding pH values are given in the legends. The left three figures are the probabilities

obtained by the naïve approach and the right are obtained by the weighted approach. The fig-

ures in the different rows correspond to different experimental settings.

From the results, we can observe small differences between the two approaches. The proba-

bilities obtained by different experimental settings are not identical but agree with each other

in terms of the overall trend.

Conclusion

In this paper, we implemented the hierarchical Dirichlet process mixture model and its varia-

tion in classifying fetal heart rate tracings. In our method, we employed 14 features that have

been used in the literature before. We showed that our method outperformed the state-of-the-

art algorithm in terms of weighted relative accuracy when using the same feature set. Further-

more, we demonstrated how our method can be adapted to online learning of data and com-

puting the probability of a fetus being healthy in real-time.

The merits of non-parametric Bayesian models, as shown in our experiments, are being

free from parameter-tuning and model selection. In addition, the experiment results suggested

that our methods were able to accurately model the FHR data. On the other hand, the Chinese

restaurant franchise with finite capacity models are able to process data of a fixed length

sequentially. Therefore, if applied in real-world scenarios, the CRFC model can evaluate the

FHR data with time and provide the physicians with real-time estimates of the fetal status.

However, in our experiments, since the true online fetal health information was unavailable,

we were unable to validate how our method performed.
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