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ABSTRACT
RNA-sequencing has improved the diagnostic yield of individuals with rare diseases.

Current analyses predominantly focus on identifying outliers in single genes that can be
attributed to cis-acting variants within the gene locus. This approach overlooks causal variants
with trans-acting effects on splicing transcriptome-wide, such as variants impacting spliceosome
function. We present a transcriptomics-first method to diagnose individuals with rare diseases by
examining transcriptome-wide patterns of splicing outliers.

Using splicing outlier detection methods (FRASER and FRASER2) we characterized
splicing outliers from whole blood for 390 individuals from the Genomics Research to Elucidate
the Genetics of Rare Diseases (GREGoR) and Undiagnosed Diseases Network (UDN) consortia.
We examined all samples for excess intron retention outliers in minor intron containing genes
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(MIGs). Minor introns, which make up about 0.5% of all introns in the human genome, are
removed by small nuclear RNAs (snRNAs) in the minor spliceosome.

This approach identified five individuals with excess intron retention outliers in MIGs, all
of which were found to harbor rare, biallelic variants in minor spliceosome snRNAs. Four
individuals had rare, compound heterozygous variants in RNU4ATAC, which aided the
reclassification of four variants. Additionally, one individual had rare, highly conserved,
compound heterozygous variants in RNU6ATAC that may disrupt the formation of the catalytic
spliceosome, suggesting a novel gene-disease candidate. These results demonstrate that
examining RNA-sequencing data for transcriptome-wide signatures can increase the diagnostic
yield of individuals with rare diseases, provide variant-to-function interpretation of
spliceopathies, and uncover novel disease gene associations.

MAIN
Rare diseases – those affecting less than 1 in 2,000 people1,2 – are collectively common

and impact approximately 300 million people globally3,4. Despite the high prevalence of rare
diseases as a whole, less than 50 percent of individuals with a rare disease have a definitive
genetic diagnosis5–8. RNA-sequencing (RNA-seq) has proven useful for improving the diagnostic
yield by identifying aberrant gene expression or splicing, which refines the search space of
potentially causal genetic candidates9–16. Such analyses focus primarily on identifying rare
variants resulting in single outlier events (i.e., over or under-expression of total gene expression,
or aberrant splicing of the canonical isoform). Many studies exclude individuals with many
RNA-seq outliers, as technical noise is often thought to be the main driver of this excess17–22.

This cis, gene-centric approach overlooks single causal monogenic mechanisms that
could cause transcriptome-wide outlier splicing patterns, such as pathogenic variants in the
spliceosome. Such patterns may be prevalent as the spliceosome consists of over 300
components23,24 and two separate snRNA machineries25,26: the major spliceosome, which removes
~99.5% of all introns, and the minor spliceosome, which removes the remaining ~800 minor
introns 25,27. Already, many components of the spliceosome have been implicated in human
Mendelian diseases28, as have many disorders of short-tandem repeat expansions, which
sequester vital components of the spliceosome29,30. Prior work has shown that pathogenic variants
that impact the spliceosome’s function can cause aberrant splicing transcriptome-wide29–36. We
hypothesized that some individuals with excess splicing outliers have causal variants that impact
the splicing process transcriptome-wide, such as variants in the spliceosome.

Some spliceopathies are associated with known transcriptome-wide patterns of aberrant
splicing31–33,37–40. For example, pathogenic variants in SF3B1 are associated with intron retention
of large introns (>1kb)33, while pathogenic variants in PPIL1 cause retention of short and high
GC-content introns31 and pathogenic variants in the minor spliceosome snRNA RNU4ATAC lead
to retention of minor introns32.

Given these observations and the increasing availabilityof RNA-seq data in rare disease
cohorts, such as the Undiagnosed Diseases Network (UDN) and Genetics Research to Elucidate
the Genomics of Rare disease (GREGoR), we investigated an approach to diagnose patients with
rare disease by examining patterns in transcriptome-wide splicing outliers. Specifically, we used
FRASER41 and FRASER242 to examine RNA-seq data from 390 individuals for excess intron
retention outliers in minor intron containing genes (MIGs). This approach allowed us to diagnose
four individuals with RNU4atac-opathy, provide variant-to-function resolution in these
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individuals, and uncover a novel, putative gene-disease candidate (RNU6ATAC). These results
validate the ability of transcriptome-wide outlier splicing patterns to be a useful unbiased
diagnostic approach in the analysis of rare disease cohorts.

METHODS

Study cohort

UDN and GREGoR Stanford sites

We performed RNA-sequencing on 422 whole blood samples from the Genomics
Research to Elucidate the Genetics of Rare diseases (GREGoR) and Undiagnosed Diseases
Network (UDN) consortia. After removing samples with missing metadata or insufficient RNA
quality, we filtered our cohort to 390 whole blood samples. We ran the outlier detection methods
FRASER41 and FRASER242 on RNA-seq data from our filtered cohort. The primary systems
affected for the 390 individuals with rare diseases in our filtered cohort were neurologic (n=91)
and musculoskeletal (n=28) (Figure 1). 120 samples were novel and 270 were previously
published in Ungar et al., 202443. Ethical and research approvals were provided by the Stanford
University IRB (protocol 60837), and the National Human Genome Research Institute
Institutional Review Board (IRB) (protocol 15-HG-0130). All participants provided informed
consent.

Genome sequencing
The details of clinical and research genome sequencing for cases A1, B1, C1, C2, and D1

are described in Supplemental Methods. The RNU4ATAC variants in cases A1, C1, and C2
were initially identified by clinical genome sequencing. Clinical genome sequencing for cases
B1 and D1 were initially nondiagnostic. Targeted analysis of minor spliceosome related genes in
the UDN and GREGoR variant call sets at Stanford led to the identification of the RNU4ATAC
and RNU6ATAC variants in cases B1 and D1, respectively. Confirmation of variants and
segregation in parents was performed by Sanger sequencing.

Sample collection and preprocessing
RNA-sequencing was performed on whole blood from 422 samples from 422 affected

individuals and familial controls. The experimental collection and preprocessing protocol for 287
whole blood samples can be found in Ungar et al., 202443. Of the 287 samples described in
Ungar et al., 202443, eight samples were collected and processed in PAXgene tubes at the Utah
UDN site before being shipped to Stanford.

For the remaining 135 whole blood samples, 128 were collected and processed in
Paxgene RNA tubes at Stanford per the manufacturer’s protocol (PreAnalytix Company). The
concentration of isolated total RNA was determined using the QUBIT HS RNA kit
(ThermoFisher) and the Bioanalyzer 2100 (Agilent) Nano RNA chip for RIN quality score.
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Additionally, seven whole blood samples were collected and processed at the Miami UDN site.
There, the samples were collected in Paxgene tubes, and the concentration of isolated total RNA
and RIN were determined using the Agilent 4200 Tape Station and Qubit 3.0 fluorometer. The
RIN was greater than 8 for all 128 samples processed at Stanford per the PreAnalytix Company
protocol and greater than 7 for all samples processed at the Miami UDN site.

RNA-seq library preparation and sequencing
The experimental protocol for 287 whole blood samples (including the 8 samples from

the Utah UDN site) can be found in Ungar et al., 202443. In brief, cDNA libraries were generated
using either the Illumina TrueSeq Stranded mRNA Sample Prep Kit protocol and dual indexed or
the Universal Plus mRNA-seq NuQuant library prep protocol from Tecan following the same
protocol as Amar et al., 202244.

Of the remaining 135 whole blood samples, 128 underwent processing using the
following workflow at Stanford, and the remaining 7 were processed at the Miami UDN site. At
Stanford, 500ng total input RNA was used for library construction using the Tecan Universal
Plus RNA-SEQ with NuQUANT and AnyDeplete Module to remove globin and ribosomal
RNAs. Libraries were dual-indexed and also contained a unique molecular index (UMI). The
libraries were produced in 96 well plates using a Biomek i7 Liquid Handler robot with Tecan
library-specific scripts. Completed cDNA libraries were quantified using the QUBIT HS DNA
kit (ThermoFisher) and library tracings were generated using the Advanced Analytical Fragment
Analyzer for average base pair length and general integrity. Individual cDNA libraries were
normalized to equivalent molar concentration, pooled into batches of 64 samples, and sequenced
at low depth 2x100bp using an Illumina iSeq. Pooled libraries were then rebalanced based on
reads obtained and each pool was loaded onto an Illumina Novaseq S2 Flowcell, and sequenced
as 2x150bp pair-ended reads.

At the Miami UDN site, globin and ribosomal RNAs were removed using the Illumina
Ribo-Zero Plus rRNA Depletion Kit. The cDNA libraries were generated using the Illumina
Stranded Total RNA Prep, Ligation Kit with Ribo-Zero Plus, dual indexed using IDT for
Illumina RNA UD Indexes, and prepped using the Hamilton MicroLab Star liquid handling
instrument. As with the samples at the Stanford site, libraries were dual-indexed and contained a
UMI. Agilent 4200 Tape Station and Qubit 3.0 fluorometer were then used to determine proper
library dilution and balance samples across sequencing runs at the Miami UDN site. Pooled and
balanced libraries were then sequenced on an Illumina NextSeq 550, in which 9 and 10 samples
were included per flow cell. The Illumina NextSeq 500/550 high Output Reagent V2 Kit (300
cycles, 2 x 150 bp) and Illumina NextSeq 550 High Output Flow Cell V2.5 sequencing kits were
used, resulting in all runs generating 150-bp paired-end reads. All reads were filtered according
to Illumina recommendations for RNAseq (CPF> 80% , Q>30%>80% for all samples).
Specifically, over 80% of the clusters on the flow cell met the Cluster Passing Filter threshold
and more than 80% of the total bases sequenced had a Phred quality score of Q30 or higher.

After sequencing, we removed 32 samples from further analysis due to missing
information or insufficient RNA quality. Specifically, we removed 14 samples with a RIN less
than seven, 14 samples with missing RINs, four samples with missing ages, and two samples
with unknown affected statuses from the outlier calling analysis. Our remaining filtered cohort
consisted of 217 samples from 217 affected individuals and 173 samples from 173 unaffected
familial individuals.
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Pipeline

Transcriptome quality control and alignment

The computational pipeline for quality control and alignment of the 270 whole blood
samples (including the 8 samples from the Utah UDN site) is described in Ungar et al., 202443. In
short, we generated FASTQ files by demultiplexing BCL data using bcl2fastq
(https://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-softw
are.html), then reads were aligned to the hg38 human reference genome using STAR (2.8.4a)45

and the GENCODEv3546 primary genome annotations. Adapters were removed and reads were
trimmed using cutadapt (version=2.4)47 (https://github.com/marcelm/cutadapt) and reads with a
mapping quality under 30 were removed.

FASTQ files for the additional 120 whole blood samples, processed at both Stanford
(n=113) and the Miami UDN site (n=7), were also generated by demultiplexing using bcl2fastq.
We aligned the reads with the hg38 human reference genome with STAR (version=2.7.10a)45, as
well as the GENCODEv3946 primary genome annotations. As all 120 files had a read length of
150, an annotation file for STAR/2.7.10a was created for an overhang of 100. The adapters were
removed and reads trimmed using cutadapt (version=2.4)47

(https://github.com/marcelm/cutadapt) with a minimum trim length of 50. All reads with a
mapping quality less than 30 were removed, optical duplicates were filtered from the aligned
bams using Picard (http://broadinstitute.github.io/picard), and a minimum pixel distance of 2500
px was set.

Splicing outlier calling

To assess splicing outliers, we processed all 390 aligned bam files through the first
iteration of FRASER (version=1.14.0), which we will refer to as FRASER41, and the second
iteration of FRASER (version=1.99), which we will refer to as FRASER242. At the
filterExpressionAndVariability step, the minimum read count in at least one sample was set at 20
and the minimum ΔѰ reported was set at 0.0. Junctions were defined as significant if their
adjusted p-value (q) after false discovery rate (FDR) correction was less than 0.05 and their |ΔѰ|
was greater than or equal to 0.3. The pipeline and conda environments for this analysis can be
found at
https://github.com/maurermaggie/Transcriptome_Wide_Splicing_Analysis/tree/main/FRASER_s
nakemake.

Excess outlier detection

Samples were determined to have an excess of outliers across six metrics: all FRASER41

outliers, Ѱ3 outliers, Ѱ5 outliers, 𝛳 outliers, FRASER242’s Jaccard index outliers, and 𝛳 outliers
within minor intron containing genes (MIGs). In each case, the excess outliers were detected by
calculating the mean and standard deviation of the number of significant outlier junctions of their
respective type. Samples with a number of outlier junctions greater than two standard deviations
from the mean were deemed to have an “excess outlier” status.
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We used logistic regression to examine if excess outliers using one metric of FRASER41

(Ѱ3, Ѱ5, 𝛳, and all combined FRASER41 outliers) or FRASER242 (Jaccard index) were
significantly more likely to be excess outliers using a different metric. In order to perform this
analysis, samples were given the value of 1 if they were an excess outlier in a given metric, and 0
if they were not. For each metric, we used the glm function (family = ‘binomal’, link = ‘logit’)
found in R (v4.3.1)48 to perform a logistic regression for excess outlier status of all other metrics;
for example, Ѱ3 excess outlier status ~ Ѱ5 excess outlier status + 𝛳 excess outlier status +
FRASER41 combined excess outlier status + Jaccard index excess outlier status. FDR correction
was applied to all resulting p-values across all tests.

Gene set enrichment
Gene set enrichment was run by comparing the enrichment of the non-outlier genes and outlier
genes detected by FRASER41 and FRASER242. Notably, the enrichment analyses were run
separately on the data provided by FRASER41 and FRASER242. In both analyses, non-outlier
genes were detected by examining the results of the filterExpressionAndVariability step in either
FRASER41 or FRASER242. This step removes junctions with less than 20 reads in one sample
and requires at least one sample have a |∆ψ| of 0. We then subsetted the genes detected at this
step into those found as outliers in any of our 390 samples, deemed outliers, and those not, which
we labeled as non-outliers (or inliers).

We evaluated the enrichment or depletion of outlier genes in multiple gene sets analyzed
in Cormier et al., 202249. We examined haploinsufficiency by looking for enrichment of our
outlier genes in a set of 294 genes determined to be dosage-sensitive in the ClinGen dataset50. In
addition, we examined sets of 1183 and 709 genes shown to follow, respectively, an autosomal
recessive inheritance pattern or autosomal dominant inheritance pattern by Blekhman et al.,
200851 and Berg et al., 201352. As a negative control, we used a set of 371 Olfactory Receptor
genes from Mainland, et al., 201553. Since the majority of olfactory genes are known to contain
single exons and, thus, not predicted to undergo splicing54, we also used CRISPR non-essential
genes from Hart et al., 201755 as a second negative control. The final gene set we used from
Cormier et al., 202249 is a list of 2072 genes collected across several Deciphering Developmental
Disorders studies56–61, which are hosted on Gene2Phenotype56. We also evaluated the enrichment
of outlier genes compared to the complete set of OMIM genes62. The location and sources for all
of the aforementioned gene sets can be found in Table S1.

To examine the correlation between outlier status and enrichment in the above gene sets,
we created contingency tables consisting of the following (clockwise from top left): (1) number
of genes that are splicing outliers and in the gene set of interest, (2) number of genes that are
splicing outliers and not in the gene set of interest, (3) number of genes that are splicing inliers
and not in the gene set of interest, and (4) number of genes that are splicing inliers and in the
geneset of interest. We then used the fisher.test function found in R (v4.3.1)48 to run Fisher’s
exact test on contingency tables for each gene set, followed by FDR correction across all of the
gene set enrichment analyses.

Correlation with technical and biological covariates

We used the lm function found in R (v4.3.1)48 to run a linear regression on the correlation
between the number of significant outlier splice junctions per person and four technical and
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biological covariates: RIN, age, sex, and batch. We applied this analysis to both the total number
of outlier junctions found using FRASER41 and FRASER242.

In addition, we used the glm function (family = ‘binomal’, link = ‘logit’) found in R
(v4.3.1)48 to run a logistic regression to examine the association between excess outlier status and
the same four covariates: RIN, age, sex, and batch. To define outlier status, we assigned samples
the value of 1 if they were excess outliers, defined as a sample with a number of significant
outlier junctions more than two standard deviations from the mean, and the value of 0 if they
were not an excess outlier. For our analysis of the covariates and FRASER41 excess outlier status,
an individual was marked as an excess outlier if they were an excess outlier across any metric of
FRASER41 (Ѱ3, Ѱ5, 𝛳), as well as if they had an excess total number of significant outliers
detected by FRASER41 as a whole (combining the total outliers of all three metrics). Since
FRASER242 outputs only the Jaccard index metric, samples were marked with a 1 if they
contained an excess number of significant Jaccard index outliers.

Analysis of intron retention outliers in minor intron containing genes (MIGs)

We sought to examine if an RNA-seq outlier based technique could identify and diagnose
individuals with rare, pathogenic, biallelic variants in the minor spliceosome snRNAs
RNU4ATAC and RNU12. To accomplish this, we conducted two analyses examining (1) the
number of significant intron retention outliers in MIGs and (2) the number of MIGs impacted by
significant intron retention outliers.

To perform these analyses, we filtered all junctions detected by FRASER41 to only those
that were significant (q < 0.05 and |∆ψ| >= 0.3) and of the type 𝛳 which represents splicing
efficiency outliers, which captures partial or full intron retention. Using the list of all significant
intron retention outliers per person, we next filtered this list to only MIGs, which we defined as
genes found in the Minor Intron Database from Olthof et al., 201926. Specifically we used the
Homo_sapiens_intron.csv, which can be downloaded at
https://midb.pnb.uconn.edu/return_downloads.php?species_var=Homo+sapiens. We then
calculated the number of significant intron retention outliers found in MIGs per individual and
the number of MIGs with significant intron retention per individual.

Gene set comparison of MIGs with intron retention

To examine the correlation between the MIGs with significant intron retention outliers
found between all four RNU4atac-opathy cases (A1-C2), we created contingency tables for each
possible case pair: A1-B1, A1-C1, A1-C2, B1-C1, B1-C2, C1-C2. To create the contingency
tables, we first created a list of all MIGs with significant intron retention outliers found in the
390-person cohort (here, called the ‘all’ list). We also had two lists of the MIGs with significant
intron retention outliers in Sample 1, called ‘sample1’, and MIGs with significant intron
retention outliers in Sample 2, called ‘sample2.’ We then created two ‘negative’ lists consisting
of the genes in the list of ‘all’ list not present in the ‘sample1’ and the genes in the ‘all’ list not
present in the ‘sample2’, which we called ‘not_sample1’ and ‘not_sample2’, respectively.

We used these lists to create a contingency table, which consisted of (going clockwise
from the top left): (1) the number of genes shared between the ‘sample1’ and ‘sample2’, (2) the
number of genes in ‘sample1’ and ‘not_sample2’, (3) the number of genes in ‘not_sample1’ and
‘not_sample2’, and (4), the number of genes in ‘not_sample1’ and ‘sample2’. To examine the
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correlation between the MIGs with significant intron retention outliers between two samples, we
used the fisher.test function found in R (v4.3.1)48 to run a Fisher’s exact test, followed by FDR
correction across all tests.

To examine if the MIGs with significant intron retention outliers found in the sample with
rare, biallelic variants in RNU6ATAC (D1) are shared with the four RNU4atac-opathy cases, we
combined the MIGs with significant intron retention outliers from A1-C2 into one list
(‘RNU4atac-opathy’), leaving two lists: ‘D1’ and ‘RNU4atac-opathy’. We next created a list of
all MIGs with intron retention outliers found in the 390-person cohort (the ‘all’ list) and created
two negative lists: first, called ‘not_D1’, which consisted of all of the genes in the ‘all’ list not
present in ‘D1’, and second, called ‘not_RNU4atac-opathy’, which comprised of all of the genes
in ‘all’ not present in all four of the RNU4atac-opathy cases.

These lists were then used to create a contingency table consisting of (going clockwise
from the top left): (1) the number of genes shared between ‘RNU4atac-opathy’ and ‘D1’, (2) the
number of genes in ‘RNU4atac-opathy’ and ‘not_D1’, (3) the number of genes in
‘not_RNU4atac-opathy’ and ‘not_D1’, and (4) the number of genes in ‘not_RNU4atac-opathy’
and ‘D1’. We then again used the fisher.test function found in R (v4.3.1)48 to run a Fisher’s exact
test.

Sample size comparison

To examine the portability of our results to researchers and clinicians with access to
fewer samples, we created six datasets consisting of 25, 50, 100, 150, 200, 300, and 400 samples.
Each dataset was iterative, meaning the samples in each subset are found in all subsets larger
than themselves; for example, the samples in the dataset of 50 samples are found in the datasets
containing 100, 150, 200, 300, and 400 samples. Each dataset contained no more than one
sample with rare, biallelic variants in minor spliceosome snRNAs (A1 for each dataset). Of note,
25 is the smallest number of samples for which FRASER41 can generate an output model41,42.

We used the lm function found in R (v4.3.1)48 to run linear regressions on the sample size
and, separately, the number of significant intron retention outliers in MIGs and the z-score of the
number of significant intron retention outliers in MIGs.

Variant classification

Variants were classified according to the ACMG/AMP criteria63 and following the
recommendations from Ellingford et al., 202264. Specifically, we applied PM2_Supporting
(PM2_P) to variants that are absent or rare (frequency <1% and no homozygous occurrences) in
gnomAD v4.1.0; PM3 to variants detected in trans with a pathogenic variant; PS3 when
RNA-seq data analyses supported pathogenicity; and PM1 to variants located in mutational
hotspots within RNU4ATAC, specifically at chromosome 2
(GRCh38)g.121,530,882–121,530,898 and g.121,530,996–121,531,003. Based on these criteria,
variants located within the critical regions were classified as pathogenic, while those occurring
outside of the critical regions were classified as likely pathogenic.

The interpretation of novel candidate gene-disease relationships was guided by the
ClinGen framework65. Additional evidence, including more cases and functional studies, is
necessary to establish RNU6ATAC as a disease-associated gene, which is required before any
variant in RNU6ATAC can be classified as pathogenic. Therefore, variants found in RNU6ATAC,
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which is considered a “gene of uncertain significance”, were considered candidates and thus
classified as “variants of uncertain significance” and reported as “variants in a gene of uncertain
significance”.

RESULTS

Splicing outliers detected in blood
We hypothesized that global patterns of transcriptomic outliers could inform molecular

diagnoses of individuals with rare diseases without a priori knowledge of causal variants. In
order to address this hypothesis, we analyzed RNA-sequencing on whole blood from a rare
disease cohort of 217 affected cases and 173 familial control samples (Figure 1). 311 individuals
were from the UDN, 48 individuals were from the GREGoR consortium, and 31 individuals
were enrolled in both consortia (Methods).

To identify splicing outliers, we used two versions of FRASER: FRASER
(version=1.14.0) from Mertes et al, 2021, which we refer to as FRASER41, and FRASER
(version=1.99) from Scheller et al., 2023, which we refer to as FRASER242. The output of
FRASER242 provides a single metric for splicing outliers (Jaccard index)42, whereas FRASER41

provides more granular metrics for types of splicing outliers (𝛳, Ѱ3, and Ѱ5)41, and both outputs
informed our analysis. Ѱ3 and Ѱ5 only consider split reads, which are reads that span an
exon-exon boundary. Ѱ3 quantifies the alternative donor usage from a single acceptor, or the
proportion of reads from an acceptor to a donor of interest compared to the number of reads from
the acceptor to all possible donors. Ѱ5 similarly measures the acceptor usage from a single
donor, or the number of reads from a donor to an acceptor of interest compared to the number of
reads from the donor to all possible acceptors41. 𝛳 and the Jaccard index also utilize unsplit
reads, which are reads that do not span an exon-exon boundary of interest41,42. The 𝛳 metric
quantifies splicing efficiency outliers, or intron retention outliers, and is calculated by dividing
the number of split reads by the number of all reads, split and unsplit, across a donor or acceptor
of interest41. Finally, FRASER242’s Jaccard index quantifies the proportion of split and unsplit
reads supporting the splicing of an intron of interest compared to all reads, split or unsplit,
associated with either splice site on the intron of interest42 (Figure 1A).

FRASER41 quantified 185,484 junctions from 13,137 genes, while FRASER242 identified
236,416 junctions from 17,918 genes across these 390 samples. We filtered the splice junctions
to only those with an adjusted p-value (q) less than 0.05 and a |∆ψ|, which is a normalization
metric, greater than 0.3. We refer to reads passing these filters as significant outlier junctions. On
average, we identified a median of 24.5 (IQR [7 - 84.8]) significant outlier Ѱ3 junctions, 25.0
(IQR [6-81.8]) significant outlier Ѱ5 junctions, 11 (IQR [5.3 - 36]) significant 𝛳 junctions, and 5
(IQR [2-10]) significant outlier Jaccard index junctions per person (Figure 1B).

Splicing outlier analysis identifies aberrant junctions relevant to rare
disease

After detecting outliers, we followed the protocol from Cormier et al., 202249 to identify
the relationship between our splicing outlier genes and genes with high or low tolerance to
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putative loss of function variants. We examined the enrichment of our outlier genes in a set of
294 genes determined to be haploinsufficient in the ClinGen dataset50. Olfactory genes are
known to be tolerant to putative loss of function variants54 so we included known olfactory
receptor genes from Mainland et al., 201553 as a negative control. Since the majority of olfactory
genes are known to contain single exons and, thus, not predicted to undergo splicing54, we also
used CRISPR non-essential genes list from Hart et al., 201755 as a second negative control. To
examine splicing outliers for their enrichment or depletion within genes with curated
disease-causing inheritance patterns, we used genes curated as autosomal dominant and
autosomal recessive by Blekman et al., 200851 and Berg et al., 201352. Finally, we investigated
the enrichment of our outlier genes in blood in multiple rare-disease relevant gene sets including
the complete set of OMIM genes62 and genes found to be related to developmental delay and
intellectual disability by several Deciphering Developmental Disorders studies56–61.

After adjusting the p-value for the FDR, we observed that genes detected as outliers by
FRASER41 in blood were significantly enriched for OMIM genes (Fisher’s exact test,
q=1.47e-40, odds ratio=1.81) and genes implicated in developmental delay and intellectual
disability (Fisher’s exact test, q=8.0e-13, odds ratio=1.57). We also found a significant depletion
of our splicing outlier gene set for CRISPR non-essential genes (q=0, odds ratio=0) and olfactory
receptor genes (Fisher’s exact test, q=0.004, odds ratio=0.11). While significant before
correction, there was no significant enrichment for haploinsufficient genes after FDR correction
(Fisher’s exact test, q=0.06, odds ratio=1.48). There was also no significant association between
splicing outliers and autosomal dominant or recessive genes (Figure 3A).

The enrichment analyses of genes detected as outliers by FRASER242 yielded similar
results. There was a significant enrichment of FRASER242 outlier genes for OMIM disease genes
(Fisher’s exact test, q=0, odds ratio=3.9) and genes implicated in developmental delay and
intellectual disability (Fisher’s exact test, q=7.38e-75, odds ratio=2.71). There was also a similar
depletion of CRISPR non-essential genes (q=0, odds ratio=0) and no significant association
between FRASER242 outlier genes and autosomal dominant or recessive genes. Unlike the
analysis on FRASER41 outlier genes, the FRASER242 outlier genes were enriched for
haploinsufficient genes after FDR correction (Fisher’s exact test, q=2.29e-9, odds ratio=2.66)
and there was no significant association between FRASER242 outlier genes and olfactory
receptor genes (Figure 3B).

Identifying individuals with excess splicing outliers
Our analyses sought to evaluate if excess splicing outlier patterns could be used to

increase the diagnostic yield of individuals with rare diseases. To examine the proportion of
samples with excess outlier splicing across the transcriptome, we counted the number of
significant (q < 0.05 and |∆ψ| >= 0.3) outlier splice junctions per individual, Methods). We
identified individuals as having an excess number of splicing outliers, thus given the status of
“excess outliers”, if they had a number of significant outlier junctions greater than or equal to
two standard deviations from the mean. Using this method, we found individuals with excess
outlier status across all three metrics of FRASER41 (Ѱ3, Ѱ5, and 𝛳) and FRASER242’s Jaccard
index. We found 24 excess Ѱ3 outliers, 24 excess Ѱ5 outliers, 26 excess 𝛳 outliers, 24 excess
FRASER41 junction outliers, and 10 excess Jaccard index outliers, (Figure 4A-D). Overall, 40, or
10.3%, of our cohort were found to be excess outliers across at least one metric of FRASER41 or
FRASER242. Individuals who were excess outliers using one metric, such as Ѱ3, were not more
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likely to be excess outliers using a different metric, such as Ѱ5, 𝛳, or the Jaccard index (Figure
S1).

Correlation between excess outliers and covariates
Rare disease research examining transcriptome outliers has typically excluded samples

with excess outliers under the assumption they are driven by technical artifacts17–22. We
hypothesized that the excess of outliers in at least some samples is driven by biological
processes, such as variants impacting the function of the spliceosome.

To evaluate the impact of technical and biological covariates on the number of all total
outlier splice junctions per person as calculated by FRASER41 (Ѱ3, Ѱ5, and 𝛳 combined) and
FRASER242, we examined the correlation between the number of all outlier splice junctions and
RNA integrity number (RIN), sex, batch, and age. The variance in the number of all outlier
splice junctions per individual detected by FRASER41 was contributed to by RIN (6.0%), sex
(63.0%), batch (18.5%), and age (3.5%). Batch was the only term with a significant relationship
to the number of significant outlier junctions detected by FRASER41 per person (linear regression
and FDR correction, q = 1.8e-08, Figure S2A). Using FRASER242, we found that the variance in
the number of all outlier splice junctions detected per individual was contributed to by RIN
(8.7%), sex (3.3%), batch (0.1%), and age (0.1%). There were no significant relationships
between the covariates and the number of all outlier splice junctions detected by FRASER242

(Figure S2A).
We next examined the impact of the aforementioned technical and biological covariates

on whether an individual was an excess outlier for outlier splice junctions, as determined by
FRASER41 and FRASER242. Here, individuals were deemed to be a FRASER splice junction
excess outlier if they were an Ѱ5 excess outlier, Ѱ3 excess outlier, or 𝛳 excess outlier, as well as
if they were an excess outlier when outliers of all three FRASER41 metrics (Ѱ3, Ѱ5, and 𝛳) were
summed together. For the FRASER41 statistics, the covariates contributed to a small portion of
the observed variance in excess outlier status. RIN contributed 30.5%; sex, 4.3%; batch, 4.6%;
and age, 0.8%. There was a significant relationship between batch and FRASER41 outlier status
(logistic regression and FDR correction, q=0.003, Figure S2B). We also analyzed the
relationship between Jaccard index outlier status and the four aforementioned covariates. We
found that RIN contributes to the variance in Jaccard index excess outlier status 21.6%; sex,
0.9%; batch, 1.6%; and age 0.7%. There were no significant relationships between the covariates
and excess outlier status as detected by FRASER242 (Figure S2B). These results indicate that
technical and biological covariates, such as batch, can have significant influences on the
quantification of excess outliers and need to be considered when quantifying excess outlier
events.

Cases with excess significant intron retention outliers in MIGs identified
as having RNU4atac-opathy

Minor introns make up about 0.5% of all introns in the human genome66,67. They diverge
from major introns by their splicing motifs and the snRNAs in their spliceosomal machinery68,69.
Pathogenic variants in two components of the minor spliceosome, RNU4ATAC and RNU12,
cause autosomal recessive Mendelian diseases and have been associated with increased minor
intron retention events and aberrant splicing events around minor introns32,37. Based on these
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observations, we examined our cohort’s RNA-seq data for significant 𝛳 outliers (i.e.intron
retention outliers) occurring in minor intron containing genes (MIGs) as defined by the Minor
Intron Database from Olthof et al., 201926. Specifically, we examined the number of significant
(q<0.05, |∆ψ| = 0.3) intron retention outliers in MIGs, as well as the number of MIGs with
significant intron retention outliers , per person. The mean number of significant intron retention
outliers in MIGs was 5.8, while the median was 0 (IQR [0-2]) per individual (Figure 5A).

Using this method, we identified 5 individuals with an excess of significant intron
retention outliers in MIGs (samples A1, B1, C1-2, and D1, Tables 1-2). These individuals had a
considerable excess of MIGs with significant intron retention outliers (z-scores of 9.2, 8.3, 10.8,
7.2, and 7.3 respectively, Figure 5A). This corresponds to 180, 175, 197, 197, and 153 out of
770 possible MIGs impacted, respectively26. Notably, A1-D1 did not have an excess of MIGs
impacted by outliers in FRASER41’s other metrics – Ѱ3 or Ѱ5 – and the pattern of excess
aberrant splicing in these samples is limited to significant intron retention outliers in MIGs
(Figure 5B).

Upon further investigation, all five of these cases were found to have rare, compound
heterozygous variants in minor spliceosome snRNAs. Four of these cases (samples A1, B1,
C1-2) were found to harbor rare, biallelic variants in RNU4ATAC (Table 1). The mean number of
MIGs with significant intron retention outliers in the cases with rare, biallelic variants in
RNU4ATAC (175.8 (IQR [169 - 184.3])) was over 75 times higher than the mean number of
MIGs with significant intron retention outliers in the rest of the whole blood cohort (2.3 (IQR [0
- 2])) (Figure 5B). All four cases (A1-C2) shared MIGs with significant intron retention outliers
with one another (Figure S3, Table S2).

RNU4ATAC is transcribed into U4atac, which consists of six subregions, five of which
are essential for the excision of minor introns. Crucial elements include stem I and stem II, which
are important for base pairing with U6atac, RNU6ATAC’s transcribed counterpart. These regions
are separated by a 5’ stem loop, which acts as a binding platform for proteins required for
tri-snRNP formation and is also of high importance to minor splicing. Finally, the 3’ stem loop
precedes a binding platform for Sm proteins, which are necessary for snRNA assembly and
transport inside the nucleus. Some nucleotides in the 3’ stem loop are of variable importance to
splicing and there is a fully dispensable region from position 92 to 10570–74.

One RNU4ATAC variant in A1 (NR_023343.3:n.13C>T) is in the stem II, and thus
impacts a nucleotide of high importance to splicing, while the other is in the Sm protein binding
region (NR_023343.3:n.116A>G) at a nucleotide that has been labeled of variable importance to
minor intron excision. The variants seen in B1 are in the stem II (NR_023343.3:n.13C>T) and
Sm protein-binding region (NR_023343.3:n.121T>G) and both nucleotides are of high
importance to minor spliceosome function. Finally, one of the variants seen in both C1 and C2,
who are siblings, is in the Sm protein-binding region (NR_023343.3:n.118T>C), and thus at a
location of high importance to minor intron splicing. The other is in the 5’ stem loop
(NR_023343.3:n.47T>G), but outside of the critical region and thus impacts a nucleotide of
variable importance to minor intron splicing70–74 (Figure 5C).

Finally, the phenotypes of the four aforementioned cases fit the expected clinical profile
of individuals with an RNU4atac-opathy, defined here as someone with biallelic, rare,
pathogenic, or likely pathogenic variants in RNU4ATAC. Biallelic pathogenic variants in
RNU4ATAC are associated with a spectrum of autosomal recessive conditions referred to
collectively as RNU4atac-opathy and were historically described as three conditions:
microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1; OMIM:210710)75, Roifman
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syndrome (RS; OMIM:616651)76, and Lowry-Wood Syndrome (LWS; OMIM:226960)77.
Clinical features observed in cases A1-C2 include growth restriction, microcephaly, skeletal
dysplasia, and intellectual disability75–77 (Table 2, Table S3). Less common clinical features of
RNU4atac-opathy were also noted, including immunodeficiency, as well as cardiac,
ophthalmologic, and endocrine abnormalities. Our clinical and genetic findings recapitulate the
known variability of phenotypes and genotypes associated with dysfunction of RNU4ATAC.

Transcriptome-first approach identifies RNU6ATAC as a candidate
disease gene

The remaining case (sample D1) with an excess of significant intron retention outliers in
MIGs (z-score of 7.3, Figure 5A) had 153 MIGs impacted by significant intron retention
outliers. This was over 80 times the number of significant intron retention outliers in MIGs
observed in individuals without rare, biallelic variants in the minor spliceosome in the rest of the
cohort (1.9 (IQR [0 - 2])) (Figure 5B). Furthermore, D1 shared the vast majority of its genes
with intron retention outliers (141 MIGs, 92.2%) with all four RNU4atac-opathy samples
(Fisher’s exact test, p=2.72e-13) (Figure 6A). Only 12 MIGs with significant intron retention
outliers were unique to this individual, within the range of unique outlier junctions for the
RNU4atac-opathies (range 5-27, Figure S3).

No candidate variants in RNU4ATAC and RNU12, which are genes known to be involved
with minor intron retention, were identified in D1. Given the extensive transcriptomic overlap
between the RNU4atac-opathy cases (A1, B1, C1-2), and the remaining case with an excess of
significant intron retention outliers in MIGs (D1), we expanded our analysis strategy and
performed a targeted analysis of D1’s genome sequencing data to investigate rare variants (allele
frequency <0.01, and no homozygous occurrence in gnomAD) in snRNAs of the minor
spliceosome. This analysis identified rare, compound heterozygous variants in RNU6ATAC
(NR_023344.1:n.36T>G and n.28C>T), a snRNA in the minor spliceosome78,79 (Table 1).

Both RNU6ATAC variants identified in D1 are rare and present in the population at a
frequency that is consistent with an autosomal recessive mode of inheritance. The n.36T>G
variant is not reported in the gnomAD v4.1.080,81 database and only one individual was found to
have a heterozygous variant differing from the reference at that location (n.36T>A, allele
frequency of 6.6e-6). The n.28C>T variant is present at a very low allele frequency of 7.9e-5 (12
out of 152,036 alleles) with no homozygous occurrences observed. Notably, the n.28C>T variant
is the only variant differing from the reference at position 28 of the RNU6ATAC gene in
gnomAD. Additionally, both variants are in a 39 base pair region in RNU6ATAC that is highly
conserved82,83, and both are themselves highly conserved (PhyloP: 6.99 and 7.6984, Figure 6B).

The phenotype of case D1 includes intrauterine and postnatal growth restriction,
microcephaly, epilepsy, intellectual disability, and ataxia. These clinical features resemble those
observed in other conditions caused by pathogenic biallelic variants in minor spliceosome
snRNAs75–77 and accordingly overlap with those seen in cases A1, B1, and C1-2 (Table 2, Table
S3).

The transcribed counterpart of RNU6ATAC, U6atac, extensively base-pairs with U4atac70,
the transcribed counterpart of RNU4ATAC, to form the critical tri-snRNP along with U585. It is
thought that disruptions to the formation of this tri-snRNP contribute to the disease phenotypes
seen in some individuals with RNU4atac-opathy76. The n.28C>T variant in D1 impacts a
nucleotide that binds to U4atac’s stem I, which is known to be important to splicing72,73,76,86. The
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n.36C>T variant in D1 disrupts a tandem U formation in the RNU6ATAC transcript, which could
destabilize the RNU6ATAC molecular structure87 or impact binding to nucleotides in
RNU4ATAC’s stem II, which is another area of high importance to splicing72,73,76,86 (Figure 6C).

As U4atac and U6atac must successfully base-pair to form the critical tri-snRNP72,73,76,86,
it is plausible that disruption of U6atac binding to U4atac could also cause Mendelian disease.
These transcriptomic, genomic, and phenotypic findings suggest that our transcriptome-first
approach followed by targeted genomic analysis of spliceosomal snRNAs identified a novel
gene-disease candidate in RNU6ATAC. Importantly, the distinct transcriptomic signature may
provide functional evidence supporting the pathogenicity of these variants. However, additional
cases are needed to establish a formal gene-disease association. RNU6ATAC has been submitted
through the GeneMatcher node of the Matchmaker Exchange, but no matches have been
identified to date.

Effect of sample size on results
Mertes et al., 2021 and Scheller et al., 2023 both indicate that the average number of

outliers detected per sample increases along with sample size, but eventually plateau at sample
sizes of 300 or more41,42. To examine the portability of our results to researchers and clinicians
with access to fewer samples, we created six datasets consisting of 25, 50, 100, 150, 200, 300,
and 400 samples, each of which contained no more than one sample with rare, biallelic variants
in minor spliceosome snRNAs (A1).

Upon running each subset, we found that the number of significant intron retention
outliers in MIGs in sample A1 increased significantly as the sample size increased (linear
regression, p =0.047). Over two times the amount of significant intron retention outliers in MIGs
were found in sample A1 using a sample size of 400 compared to 25 samples (168 vs 345).
Additionally, the z-score associated with the number of significant intron retention outliers in
MIGs in sample A1 increased significantly from 4.80 to 19.40 at sample sizes of 25 to 400,
respectively (linear regression, p=7.3e-05, Figure S4).

Use of Jaccard index for identifying minor spliceopathies
We sought to investigate whether FRASER242 could identify the individuals with rare,

biallelic variants in the minor spliceosome, known as minor spliceopathies. We found that all
five cases with minor spliceopathies (A1-D1) had an excess of Jaccard index outliers in MIGs.
Specifically, A1-D1 had z-scores of 4.9, 3.6, 3.5, 2.1, and 3.2 for the number of Jaccard index
outliers in MIGs, respectively. Notably, using a z-score cut-off of 2 for the number of significant
splicing outliers also identified two additional individuals, with z-scores of 2.1 and 2.1, as having
an excess of Jaccard index outliers in MIGs (Figure S5). For these individuals, we did not
identify rare, biallelic variants in any of the snRNAs in the minor spliceosome.

We next analyzed the number of MIGs with Jaccard index outliers and found that cases
A1-D1 had Z-scores of 5.2, 3.8, 3.6, 2.2, and 3.5, corresponding to 196, 148, 139, 91, and 137
MIGs impacted, respectively. Using this metric, no additional individuals with an excess of
MIGs with Jaccard index outliers were identified (Figure 5B). FRASER242 analysis is thus also
able to identify samples with the minor spliceosome transcriptional signature, but with less
specificity.
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DISCUSSION
Transcriptomics is emerging as a complementary approach for rare disease

diagnostics9–16. Current approaches using transcriptomics for rare disease diagnostics use a
gene-centric approach, where the focus is on identifying variants resulting in cis outlier events,
such as gene expression level or aberrant splicing9–16. The foundation of this approach has been
numerous population studies that show enrichments for rare variants near transcriptome outlier
events17–22. The majority of these studies exclude individuals with many transcriptome outliers
and do not consider genes not previously attributed to human disease, as such outliers are
assumed to be due to technical noise. While we found that splicing outliers were more likely to
be in constrained disease-associated genes, these assumptions fail to acknowledge that global
outlier events might instead be true biological signals of rare variants impacting key regulatory
processes. Previous studies have implicated specific patterns of splicing dysregulation in the
presence of pathogenic variants that disrupt splicing31–33,37–40. For example, distinct and cell-type
specific patterns of aberrant splicing have been associated with repeat expansions in DMPK88,
while pathogenic variants in RBFOX1 are associated with aberrant splicing of exons ≤ 51
nucleotides in size39,40. In our cohort, we were able to identify individuals with excess splicing
outliers and hypothesized that patterns of excess transcriptome-wide splicing outliers could aid in
the discovery of causal variants in known spliceopathy-associated genes, as well as new
gene-disease relationships.

One such pattern described by Olthof et al., 2021, showed that biallelic, pathogenic
variants in minor spliceosome snRNAs RNU4ATAC and RNU12 are associated with elevated
intron retention in and around minor introns32. Given this information, we examined our cohort
for individuals with excess intron retention in minor intron containing genes (MIGs). Using this
approach, we identified five cases (samples A1, B1, C1-2, D1) with excess significant intron
retention outliers impacting MIGs, all of which were identified as having biallelic variants in
snRNAs critical to the minor spliceosome. Four of these individuals (samples A1, B1, C1-2)
were found to have rare, biallelic variants in RNU4ATAC. All four samples had symptoms
consistent with RNU4atac-opathy and did not harbor any additional rare variants of clinical
interest, including in other minor spliceosome snRNAs. RNU4atac-opathy has a low diagnostic
rate as the phenotype varies significantly depending on the specific variants involved75–77 and
RNU4ATAC is located in the intron of the CLASP1 gene, and therefore not routinely analyzed on
clinical exome sequencing89. Based on our phenotypic, genetic, and transcriptomic findings, we
are suggesting upgrading the classification of 4 RNU4ATAC variants and that this method could
be used to provide supportive evidence for interpretation of variants of uncertain significance in
RNU4ATAC.

We identified one additional case (sample D1) with an excess of significant intron
retention outliers in MIGs with many phenotype features seen in individuals with pathogenic
variants in the minor spliceosome, such as short stature, microcephaly, hypotonia, and
intellectual disability75–77. Upon examination of their genome sequencing data, we found they
harbored rare, compound heterozygous variants in RNU6ATAC, an snRNA in the minor
spliceosome that hybridizes with RNU4ATAC66,78. Both variants are highly conserved84, at
genomic positions with limited variation in the human population80,81, and could potentially
disrupt the binding of RNU6ATAC to regions of high importance to splicing in
RNU4ATAC72,73,76,86. The binding of RNU4ATAC to RNU6ATAC is crucial for the formation of the
tri-snRNP90 and disruption of this binding has been associated with RNU4atac-opathy91. We
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hypothesize that the disruption of the binding of RNU4ATAC to RNU6ATAC in both
RNU4atac-opathy cases and D1 could explain their shared transcriptomic and clinical features.
However, the impact of the variants in D1 on the function of the minor spliceosome needs to be
studied further to address this question. Overall, these genetic, transcriptomic, and phenotypic
findings strongly suggest RNU6ATAC as a novel gene-disease candidate. While our
transcriptomic-first approach can identify individuals with pathogenic variants in the minor
spliceosome, we need additional samples and to perform functional validation to establish
patterns specific to pathogenic variants within each snRNA.

In concordance with results from Scheller et al., 2023, we found that as sample size
increased, the number of significant intron retention outliers detected in an RNU4atac-opathy
case (A1) also increased. However, we show that batch-effects confound the number of splicing
outlier junctions per individual, so combining cohorts might not always be a practical solution.
We suggest best practices going forward should include the development of a batch-correction
approach prior to outlier calling for splicing. Our blood cohort came from a heterogeneous
processing background across three sequencing centers and four protocols. It is notable that
despite these significant differences, the biological signature seen in cases with rare biallelic
variants in RNU4ATAC or RNU6ATAC – excess significant intron retention outliers in MIGs – is
robust to batch effects. We therefore expect this signature to be even stronger in samples that are
uniformly processed.

Here we present an unbiased, transcriptomic-first approach for rare disease diagnosis and
gene-disease relationship discovery in spliceopathies. While excess outlier patterns are
influenced by technical or other covariates, disease-relevant excess outlier patterns are evident in
rare disease cohorts. We highlight that investigating these biologically coherent patterns, such as
intron retention outliers in MIGs, can increase the diagnostic yield for individuals with rare
diseases. We further show that this approach can both inform variant curation and uncover new
gene-disease relationships. As there are characteristic transcriptome-wide patterns of splicing
dysregulation31–33,37–40 for some of the over 300 protein and RNA components involved in
splicing23,24, we expect there may be other meaningful transcriptomic signatures. This is
supported by recent discoveries of the roles of major spliceosome snRNAs, RNU4-292 and
RNU2-2p93, in neurodevelopmental diseases and reinforces the possibility that additional
disease-causing variants that disrupt splicing remain to be uncovered. Combined, dissection of
transcriptome-wide patterns of aberrant splicing represents a novel diagnostic approach for gene
discovery and variant-to-functional interpretation of spliceopathies in rare disease patients.

DATA AND CODE AVAILABILITY
Our analyses and pipeline are fully available at

https://github.com/maurermaggie/Transcriptome_Wide_Splicing_Analysis/tree/main. All
RNA-seq data for samples enrolled in GREGoR are available in AnVIL through dbGap
(phs003047.v1.p1). Most of the RNA-seq data for samples enrolled in the UDN is currently
available through dbGap (phs001232.v6.p2). The remaining data will be uploaded to dbGaP as a
part of the next UDN data freeze. Data is also available before the next freeze by a request to the
author with evidence of dbGaP approval for UDN data.
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TABLES

Table 1. Genetic information on samples A1-D1

Family-
Case ID Gene

Genomic
coordinates
(GRCh38)

HGVS ACMG
Classification

ACMG
Criteria Zygosity Inheritance

Pattern

A1 RNU4ATAC
(NR_023343.1)

2-121530892
-C-T n.13C>T Pathogenic PS3; PM1;

PM2_P; PM3 Compound
Heterozygous

Autosomal
recessive2-121530995

-A-G n.116A>G Pathogenic PS3; PM1;
PM2_P; PM3

B1 RNU4ATAC
(NR_023343.1)

2:121530892-
C-T n.13C>T Pathogenic PS3; PM1;

PM2_P; PM3 Compound
Heterozygous

Autosomal
recessive2-121531000

-T-G n.121T>G Pathogenic PS3; PM1;
PM2_P; PM3

C1 RNU4ATAC
(NR_023343.1)

2-121530926
-T-G n.47T>G Likely

Pathogenic
PS3, PM2_P;

PM3 Compound
Heterozygous

Autosomal
recessive2-121530997

-T-C n.118T>C Pathogenic PS3; PM1;
PM2_P

C2 RNU4ATAC
(NR_023343.1)

2-121530926
-T-G n.47T>G Likely

Pathogenic
PS3, PM2_P;

PM3 Compound
Heterozygous

Autosomal
recessive2-121530997

-T-C n.118T>C Pathogenic PS3; PM1;
PM2_P

D1 RNU6ATAC
(NR_023344.1)

9-134164529-
A-C n.36T>G VUS

Variant in a
Gene of

Uncertain
Significance Compound

Heterozygous
Autosomal
recessive

9-134164537
-G-A n.28C>T VUS

Variant in a
Gene of

Uncertain
Significance

Table 1. Genetic information for samples A1-D1.
Information on the genetic variants found in RNU4ATAC in samples A1-C2, as well as the
variants found in RNU6ATAC in sample D1. The gene names are italicized according to HGNC
standards.
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Table 2. Phenotypic information on samples A1-D1
System Affected Clinical Feature A1 B1 C1 C2 D1

Growth
Short stature + + + + +

Microcephaly + + + + +

Neurological

Generalized hypotonia + + - - +

Neurodevelopmental delay - + - - +

Intellectual disability + + - - +

Seizures - - - - +

Ataxia - + - - +

Ventriculomegaly + - - - +

Peripheral neuropathy - + + - -

Musculoskeletal

Scoliosis + - - - -

Coxa valga - + - - -

Syndactyly + - - - +

Joint hypermobility - + - - -

Immunological Immunodeficiency - + + - -

Endocrine and
Metabolic

Growth hormone deficiency + - + - -

Hypothyroidism - + + + -

Adrenal insufficiency - - + + -

Diabetes mellitus - - + - -

Ophthalmological

Retinal Anomalies + + - + -

Nystagmus - - - - +

Oculomotor apraxia - - - - +

Exotropia + - - - -

Cardiovascular
Arrhythmia + - - - -

Congestive heart failure - - - + -

Table 2. Phenotypic information for samples A1-D1.
Information on the systems affected and clinical features seen in A1-D1. In the indicated
individual, a + sign indicates the presence of a clinical feature, while a - sign indicates the
absence of a clinical feature.
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Figure 1. Affected status and primary systems affected for individuals in our GREGoR and UDN cohort
Two pie charts depicting information on our rare disease cohort. The pie chart on the left of the page depicts the affected 
status composition of our 390-person rare disease cohort from the Undiagnosed Disease Network (UDN) and Genomics to 
Elucidate the Genetics of Rare Disease (GREGoR) consortia. Lines radiating from the affected (orange) section of the left pie 
chart indicate that the pie chart on the right contains information on the primary systems affected for all 217 individuals with 
rare disease in our cohort. The percent and number of individuals affected (n) per system in our cohort are labeled. 
“Cardiology” includes both cardiology and vascular systems, while “Immunology” includes immunology, infectious diseases, 
and allergies. “Musculoskeletal” also includes orthopedic complaints. “Other” indicates that no system was selected for the 
individual at the time of enrollment. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 3, 2025. ; https://doi.org/10.1101/2025.01.02.24318941doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.02.24318941
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Evaluation of the number of outlier
junctions detected per person  
(A) Depiction of FRASER and FRASER2 metrics. ψ5 
and ψ3 use split reads, which span an exon-exon 
boundary, while θ and the Jaccard index (J) 
use both split and unsplit reads, the latter of which 
span only one exon boundary. ψ5 quantifies
alternative acceptor usage from a single donor,
while ψ3 quantifies alternative donor usage from
a single acceptor. θ quantifies the splicing 
efficiency, which captures intron retention outliers
by comparing the number of split reads to all 
reads, split and unsplit. J quantifies the proportion 
of all reads, split and unsplit that support the 
spicing of an intron of interest compared to all 
reads, split and unsplit, associated with both the 
donor and acceptor of the intron of interest. 
(B) Box plot displaying the number of outlier splice
junctions detected per person for each metric. 
Junctions were labeled as outliers if their adjusted
p-value was less than 0.05 and their absolute value
of |Δψ|, a normalization metric, was greater
than 0.3.  The Y-axis is the number of outlier
junctions found per person, while the X-axis
represents the different types of metrics examined 
by FRASER (ψ3, ψ5, θ) and FRASER2 (J). Combined 
FRASER refers to the combined number of outlier 
junctions from FRASER’s three metrics- ψ5, ψ3, and 
θ. The bottom of the box represents the first 
quartile, while the middle line represents the 
median and the top of the box represents the third 
quartile. All dots represent outliers.     
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Figure 3. Enrichment analysis on genes detected to be splicing outliers via FRASER1 and FRASER2
(A) Results of enrichment analysis on genes detected to be significant splicing outliers via FRASER. All categories not 
crossing the dotted vertical line were found to be significant before False Discovery Rate (FDR) correction. All categories 
shown as significant stayed significant after FDR correction except for the haploinsufficient gene set, whose p-value after 
correction was 0.06. (B) Results of enrichment analysis on genes detected to have significant Jaccard index outlier junctions 
(as detected by FRASER2).  All categories whose lines do not cross the dotted vertical line were found to be significant 
before FDR correction, and all categories shown as significant in this figure remained significant after FDR correction.

FRASER Outliers FRASER2 Outliers
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Figure 4. Individuals with excess significant outlier junctions detected using FRASER 
and FRASER2 metrics 
Plots showing the number of significant outlier junctions detected per individual for all three 
FRASER metrics  (ψ3, ψ5, and θ) and the FRASER2 Jaccard index (J). Junctions were labeled as 
significant outliers if their adjusted p-value was less than 0.05 and their |Δψ|, a normaliza-
tion metric, was greater than 0.3. For all four plots, each dot represents an individual and the 
position on the Y-axis of the dot represents the number of significant outlier junctions of the 
specified type for that individual. Individuals are ordered on the X-axis by the number of 
significant outlier junctions of the specified metric. The number of significant outliers shown 
per individual are, as labeled: (A) ψ3, (B) ψ5, (C) θ, and (D) J. 
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Figure 5. Outliers with excess intron retention events (θ) in minor intron containing genes (MIGs) identified in 
individuals with rare, biallelic variants in RNU4ATAC
(A) Plot showing the number of significant intron retention (θ) events in minor intron containing genes (MIGs). Each dot 
represents an individual and the Y-axis position represents the number of significant intron retention (θ) events in MIGs 
detected in that individual. The X-axis is ordered by the number of significant intron retention events (θ) in MIGs. Individuals 
with rare, biallelic variants in RNU4ATAC or RNU6ATAC are labeled as “RNU4atac-opathy” and “RNU6atac-opathy”, respectively.
(B) Boxplots showing the number of MIGs with significant outliers of type (from top left clockwise) ψ3,  ψ5, Jaccard index (J), 
and θ (intron retention). In each boxplot, the right box labeled “RNU4atac-opathies” represents the individuals with rare, 
biallelic variants in RNU4ATAC, while the left box represents the remaining samples. Where D1 is an outlier, it is marked as an 
orange circle. Note that the y-axis ends at around 15 for the ψ3 and ψ5 boxplots and around 200 for the θ and J boxplots.  
(C) Secondary structure of U4ATAC, which is encoded by RNU4ATAC. Areas of high importance to splicing are labeled in pink; 
limited importance to splicing, brown; and variable importance to splicing, gray. The rare variants in individuals A1, B1, C1, 
and C2 are labeled by the blue, red, and yellow arrows.   
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Figure 6. Outlier with excess intron retention events in minor intron containing genes (MIGs) found to harbor rare, 
conserved biallelic variants in RNU6ATAC
(A) Venn diagram of the genes shared between all four RNU4atac-opathy cases (A1-C2) and the case with rare, biallelic 
variants in RNU6ATAC (D1). All genes unique to the RNU4atac-opathy cases (A1-C2) are shown in yellow, while all genes unique 
to D1 (RNU6ATAC case) are shown in blue. All shared genes are shown in green. 
(B) Examination of conservation of RNU6ATAC (DNA). Conservation levels for each nucleotide were obtained using PhyloP to 
compare the nucleotides across 100 vertebrates. The brown line above the sequence indicates that all of the nucleotides in 
this region are highly conserved. The animals shown represent the following organisms: human, rhesus, mouse, dog, 
elephant, chicken, X. tropicalis, and zebrafish. The two RNU6ATAC variants seen in individual D1 are marked by arrows. 
(C) Secondary structure of the binding of U4ATAC and U6ATAC (RNAs) required for the formation of the catalytic splice site. 
The two variants in D1 are marked by the dashed and solid arrows. The relative importance of each nucleotide in RNU4ATAC 
to splicing is indicated in the colored legend. 
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