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Abstract: Chronic stress and cardiovascular disease risk were explored in a predominately
middle-aged adult population exposed to elevated lead levels in this cross-sectional study using data
from the National Health and Nutrition Examination Survey (NHANES) from the period 2007-2010.
Elevated lead exposure was defined using the epidemiological threshold of a blood lead level (BLL) >

5 µg/dL as defined by the U.S. Centers for Disease Control and Prevention (CDC). Allostatic load (AL),
a measure of chronic stress, was operationalized using 10 clinical markers. The geometric mean values
for clinical cardiovascular disease risk markers of interest (a) Gamma glutamyl-transferase (GGT)
(a marker of oxidative stress), and (b) non-HDL cholesterol (non-HDL-c) (a marker of cardiovascular
disease risk) were explored among lead-exposed and less lead-exposed individuals with differential
chronic stress (AL) levels. Associations between AL and GGT/non-HDL-C were analyzed using linear
regression models. The likelihood of increased clinical markers in lead-exposed individuals with high
compared to low AL was explored using binary logistic regression models. In analyzing lead-exposed
as compared to less lead-exposed populations, the geometric mean of the variables of interest showed
significant elevations among lead-exposed individuals as compared to less lead-exposed individuals.
Simple linear regression revealed that AL was positively associated with the variables of interest
among the lead-exposed. In binary logistic regression among the lead-exposed, those with high AL,
as compared to those with low AL, had significantly higher odds of having elevated non-HDL-C. This
study submits that those exposed to lead with increasing AL may experience adverse cardiovascular
health outcomes.
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1. Introduction

Lead exposure arises from many sources in different environments [1,2]. It begins as early
as pregnancy [3], affects almost every physiological system within the human body [4–9], and
harms those exposed throughout their life course [10,11]. Factors such as socio-economic and
environmental stress [12], when combined with lead exposure over a prolonged period, may initiate or
promote disease [13]. Allostatic load (AL), a critical marker of chronic physiological stress, represents
dysregulation across many physiological systems brought forth in response to persistent environmental
burdens and reflects the cumulative biological burden exacted by this demand on the body [14–17].
AL represents the hypothalamic–pituitary–adrenal axis in an over-activated state and involves the
dysregulation of multiple physiological systems [18]. This is because the body’s response to stress
causes the neuroendocrine system to be activated, and mediators such as cortisol, epinephrine, and
norepinephrine are released, bringing forth a cascade of effects on systems such as the cardiovascular,
metabolic and immune systems. Recurrent, lengthy, or insufficient stress responses induce systemic
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dysregulation in multiple systems and can ultimately lead to diseases [19]. AL ultimately represents
a process from stress to diseases and provides a means for understanding the damaging effects of
recurrent or chronic stress on adverse health outcomes.

In the U.S. population, cardiovascular diseases are responsible for the highest percentage of
mortality [20]. Markers of cardiovascular health, such as blood pressure (SBP and DBP), are commonly
used to evaluate the state of the cardiovascular system. Numerous epidemiological studies have linked
lead exposure with hypertension [21,22], and with increases in blood lead level (BLL) increasing blood
pressure [8,23–25].

Non-HDL cholesterol (non-HDL-C), when compared to LDL cholesterol, serves as a superior
marker for cardiovascular disease risk [26] with elevated levels indicating worse outcomes [27,28].
Gamma-glutamyl transferase (GGT), which is present in several cell types, can be used as a marker
of oxidative stress [29,30]—a state in which pro-oxidants overwhelm antioxidants and free reactive
oxygen species (ROS)—and induce damage to physiological systems [31].

Epidemiological studies have demonstrated that acute and chronic stress predicts the incidence
of cardiovascular dysfunction. Indeed, individuals who experience work-related stress have an
increased risk of cardiovascular health issues, since chronic stress at the workplace and in private
life is associated with various cardiovascular diseases [32]. Alterations in autonomic along with
hemostatic and inflammatory processes are critical mechanisms by which physiological stress triggers
cardiovascular dysfunction [32]. The potential mechanism by which stress and lead alter cardiovascular
dysfunction is found in Figure 1 below.
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Figure 1. Mechanisms of stress-induced cardiovascular dysfunction among the lead-exposed.

According to the Centers for Disease Control and Prevention (CDC), all exposure to lead can
induce pathology, with exposure levels greater than the 5 µg/dL threshold considered to be elevated
for children and adults [33]. The health outcomes and physiological associations of lead exposure,
and the risk for many significant conditions, are altered by multiple physiological systems such as the
cardiovascular, inflammatory and metabolic systems. This indicates that AL indices that use multiple
systems provide the best picture of the physiological burden that lead exposure has on the human
body. The relationship between chronic stress, and markers of cardiovascular disease (non-HDL-C and
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GGT) are examined in this study among individuals with elevated lead levels in order to determine
the role that stress plays on these markers.

2. Materials and Methods

2.1. Hypothesis

The hypothesis of this study is that, among those exposed to elevated lead levels, chronic
physiological stress, as measured by AL, increases oxidative stress, and heart disease risk. The
objectives of this study were therefore to examine the effects of AL on non-HDL-C and GGT in
lead-exposed individuals, as defined by the CDC threshold of (BLL) > 5 µg/dL.

2.2. Research Design

Variables were chosen based on their availability in the National Health and Nutrition Examination
Survey (NHANES) dataset. The relationship between chronic stress (AL), heart disease risk
(non-HDL-C) and oxidative stress (GGT) was explored using NHANES 2007-2010. NHANES data are
a stratified, multistage probability sample of civilian non-institutionalized individuals in all of the fifty
U.S. states, including the District of Columbia. The technical details of the survey, including sampling
design, data collection protocols, and data availability, are freely available on their website.

2.2.1. Operationalising Allostatic Load

Informed by prior studies [34], AL was operationalized by developing a cumulative index
of physiologic dysfunction of the cardiovascular (SBP, DBP, triglycerides, HDL cholesterol, total
cholesterol), inflammatory (CRP), and the metabolic systems (BMI, hemoglobin A1C, albumin,
creatinine clearance). AL biomarkers were divided into quartiles based on their distribution within the
database. High-risk for each biomarker was considered to be the top 25% in the distribution for all
markers apart from albumin, creatinine clearance, and HDL cholesterol, for which the bottom 25%
of the distribution was considered to show the highest risk, as determined by the literature [8,35–40].
Each individual in the study was assigned a value of 1 if they were in the high-risk category or a 0 if
in the low-risk category for all markers to calculate a total AL value out of 10. The data were then
analyzed examining the relationship between AL and the clinical markers of interest.

2.2.2. Data collection in NHANES

During the in-home interview, a standardized questionnaire was used to collect demographic
information including age, race–ethnicity, and sex. During participants’ visit to the mobile examination
center (MEC), height and weight were measured and body mass index was calculated. A blood
specimen was drawn from the participant’s antecubital vein by a trained phlebotomist according to
a standardized protocol. Whole blood samples served as the medium to analyze lead in NHANES
2007-2010 via inductively coupled plasma mass spectrometry (ICP-MS). An aliquot of urine was
shipped to the University of Minnesota for urinary creatinine and albumin analysis. Creatinine was
measured using a Jaffe rate reaction with a Beckman Synchron CX3 clinical analyzer (Beckman Coulter,
Fullerton, CA, USA). Urine albumin was measured using a solid-phase fluorescent immunoassay,
and fluorescence was determined with a Sequoia–Turner Digital fluorometer (Sequoia–Turner Corp.,
Mountain View, CA, USA). A1C was measured using a Tosoh A1C 2.2 Plus Glycohemoglobin Analyzer
or a Tosoh G7 Automated HPLC Analyzer (Tosoh Medics, Inc, San Francisco, CA, USA). CRP was
measured using latex-enhanced nephelometry on a Behring Nephelometer Analyzer System (Behring
Diagnostics, Inc, San Jose, CA, USA) with NA Latex CRP Kit (Behring Diagnostics, Inc, San Jose, CA,
USA). Fasting total serum cholesterol, along with triglycerides, were measured enzymatically on a
Roche/Hitachi Modular P Chemistry Analyzer (Roche Diagnostics Corp, Indianapolis, IN, USA). HDL
cholesterol was measured using a modification of the traditional multistep precipitation reaction.
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Biochemistry biomarkers were measured using a Beckman Synchron LX20 and Beckman Coulter
UniCel® DxC800 (Beckman Coulter, Fullerton, CA, USA). Stata SE/16.0 (StataCorp, College Station,
TX, USA) performed the data analysis, as this allowed for the adjustment needed to account for the
complex design.

2.3. Data Analysis

The data in this cross-sectional study were analyzed for lead-exposed individuals (those with
BLLs above and below 5 µg/dL) for the effects of stress on cardiovascular-related markers (non-HDL-C
and GGT).

The geometric mean values of the markers were firstly examined in those exposed above the
CDC-defined 5 µg/dL exposure level (known in this study as the lead-exposed) and those below
the 5 µg/dL exposure level (known in this study as the less lead-exposed) to determine the baseline
differences in the population.

Simple linear regression was performed to examine the associations between AL and the markers
of interest (non-HDL-C and GGT) among lead-exposed individuals and less lead-exposed individuals
above and below the BLL-5 µg/dL threshold. In addition, these linear regression models were examined
at the BLL-3 µg/dL threshold level in order to have a larger sample size for the exposed population and
have more robust regression models. The 3 µg/dL threshold has been demonstrated to cause worse
health outcomes in several studies [41–43]. The data were adjusted for age, gender, BMI, ethnicity,
alcohol consumption, and smoking based on the literature [44–48].

The odds of elevated chronic stress, as defined by an AL binary at 4 for high versus low levels,
was explored in the lead-exposed individuals via age-adjusted binary logistic regression models, as
having an AL above this level has been consistently shown in the literature to be a high risk [49–51].
Each exposure–outcome combination was examined in individual models.

In this study, when exploring cardiovascular makers among lead-exposed individuals, AL was the
dependent variable, with the clinical markers of interest (non-HDL-C- and GGT) being the independent
variables. Stata SE 16.0 was factored in the complex design to ensure the analysis reflected the proper
weights and was guided by the tutorial [52] provided by the NHANES. The Shapiro–Wilk test revealed
that all of the variables lacked a normal distribution, so they were natural log-transformed. P-values
less than or equal to 0.05 were considered significant.

3. Results

3.1. Study Variables Among Lead-Exposed and Less Lead-Exposed Participant

The geometric mean values of lead-exposed (≥5 µg/dL) vs. less lead-exposed (≤5 µg/dL)
individuals were analyzed for all critical variables in this study. The values for lead-exposed
individuals were generally more elevated as compared to less lead-exposed individuals. The results
can be found in Table 1 below.

Table 1. The geometric mean values of lead-exposed vs. less lead-exposed of all critical variables in
this study.

Variable Lead-Exposed
(BLL ≥ 5 µg/dL)

Less Lead-Exposed
(BLL < 5 µg/dL) p-Value

N 255 9526

Mean Age (95% CI) 49.04 (46.95–51.15) 38.27 (37.70–39.05) <0.001

Allostatic Load by Ethnicity (95% CI)
Non-Hispanic Black 2.94 (2.66–3.23) 2.24 (2.14–2.34) <0.001
Non-Hispanic White 2.67 (2.42–2.92) 2.43 (2.35–2.52) 0.046
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Table 1. Cont.

Variable Lead-Exposed
(BLL ≥ 5 µg/dL)

Less Lead-Exposed
(BLL < 5 µg/dL) p-Value

Allostatic Load by Gender (95% CI)
Male 2.68 (2.42–2.93) 2.39 (2.33–2.46) 0.032

Female 2.31 (1.64–2.98) 2.35 (2.27–2.44) 0.885

Non-HDL-C (95% CI) 152.12 (143.36–160.88) 139.31
(138.08–140.54) 0.006

GGT (95% CI) 39.34 (31.22–47.46) 26.12 (25.24–27.01) <0.001

Smoking every day percent (95% CI) 52.09 (45.79–58.33) 38.88 (35.89–41.96) 0.001

Alcohol percent (95% CI) 84.96 (77.90–90.05) 75.81 (73.57–77.93) 0.007

3.2. Geometric Mean GGT and Non-HDL-C in Lead-Exposed Individuals with High/Low Allostatic Load

The geometric mean of the clincal variables of interest among lead-exposed (BLL > 5 µg/dL) and
less lead-exposed indivials (BLL < 5 µg/dL) with high AL (greater than 4) and low AL (less than 4)
were explored. The results can be found in Table 2 below.

Table 2. The geometric mean values of lead-exposed vs. less lead-exposed among those with high and
low AL for clinical variables of interest.

Variable Lead-Exposed
(BLL ≥ 5 µg/dL)

Less Lead-Exposed
(BLL < 5 µg/dL)

Non-HDL-C (95% CI) (High AL) 167.48 (155.53–179.43) 163.71 (161.78–164.64)

Non-HDL-C (95% CI) (Low AL) 144. 77 (135.34–154.20) 131.82 (130.63–133.02)

GGT (95% CI) (High AL) 49.51 (30.73–68.30) 33.33 (31.36–35.31)

GGT (95% CI) (Low AL) 34.77 (27.12–42.43) 23.92 (23.02–24.84)

3.3. Likelihood of Elevated Clinical Markers at AL Binary at 4 in Individuals Exposed to Lead

Age-adjusted binary logistic regression models were used to predict the odds of elevated clinical
markers. The binary dependent variable was AL (high/low) at the level of 4. This was done among
those exposed to lead and was analyzed in 246 individuals. A positive significant association was
found between lead-exposed individuals and non-HDL-C. The results were that that those with an
elevated allostatic load were more likely to have a higher cardiovascular disease risk, as represented
by non-HDL-c (OR 1.01; 95% CI 0.99–1.03; p = 0.001). GGT showed a similar trend but was not
statistically significant.

3.4. Association of AL with Markers of Interest in Lead-Exposed Individuals

The relationship between AL and the markers among lead-exposed (LE) at the 5 µg/dL level and
less lead-exposed (LLE) individuals was explored using linear regression. Among those exposed to
lead, there was a more positive but non-significant association between AL and the markers of interest.
The results are found in Table 3.
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Table 3. Simple linear regression—relationship of AL with cardiovascular-markers in lead-exposed
(LE) individuals and less lead-exposed (LLE) individuals at the 5 µg/dL threshold.

Variables lnAL Adjusted (95% CI) + p-Value

GGT (LE) 0.30 (−0.12, 0.72) 0.148

nonHDL-C (LE) 0.79 (−0.13–1.70) 0.088

GGT (LLE) 0.10 (0.03, 0.17) 0.009

nonHDL-C (LLE) 0.60 (0.50–0.71) <0.001

+ adjusted for age, BMI, gender, alcohol consumption, smoking, in addition to taking prescription medicines for
hypertension. LE = Lead-Exposed, LLE = Less Lead-Exposed.

A similar analysis was performed, with lead-exposed being those with BLL above 3 µg/dL for
lead-exposed, as the sample size was smaller in the 5 µg/dL group. Increasing the sample size of the
exposed resulted in non-HDL-C becoming statistically significant with a similar magnitude. The results
are shown in Table 4.

Table 4. Simple linear regression—relationship of AL with cardiovascular-markers in lead-exposed
(LE) and less lead-exposed (LLE) individuals at the 3 µg/dL threshold.

Variables lnAL Adjusted (95% CI) + p-Value

GGT (LE) 0.13 (0.01, 0.25) 0.036

nonHDL-C (LE) 0.73 (0.48–0.97) <0.001

GGT (LLE) 0.10 (0.02, 0.18) 0.013

nonHDL-C (LLE) 0.596 (0.48–0.71) <0.001

+ adjusted for age, BMI, gender, alcohol consumption, smoking, in addition to taking prescription medicines for
hypertension. LE = Lead-Exposed, LLE = Less Lead-Exposed.

4. Discussion

Allostatic load is a multiple-system biomarker of the biological burden brought forth by the
ongoing disruption of the body’s response to chronic stress [53]. This study sought to examine the
associations between AL and clinical cardiovascular makers in lead-exposed individuals and less
lead-exposed individuals. It discovered that, in lead-exposed individuals, AL was more elevated
in Blacks as compared to Whites, and in males as compared to females. This bolsters the work of
Geronimus and colleagues, which found that Blacks exhibited a higher allostatic load than Whites [49].
This study finding is also in agreement with the weathering hypothesis [54], which suggests that the
health of Blacks prematurely worsens owing to racial disparities [14,55]. This study’s finding of higher
stress levels when combined with lead hints that the most at-risk populations may bear the worst
outcome of cumulative exposure. Previous studies have noted associations between general distress
and blood lead levels (BLLs) [56] and bone lead levels with phobic anxiety [57], which further suggests
that these things tend to occur together in many environments.

This study is one of the first of its kind to look at AL among lead-exposed individuals, examining
markers of cardiovascular disease risk (non-HDL-C) and oxidative stress (GGT). It discovered positive
associations between AL cardiovascular disease risk among lead-exposed individuals, demonstrating
that lead-exposed individuals exposed to increasing stress are significantly more likely to have elevated
adverse cardiovascular outcomes. In regression models in this study, the coefficient was more positive
in the lead exposed group than the less-lead exposed group, potentially indicating that the added effect
of lead worsens outcomes. In addition, the geometric mean levels of the markers of interest were more
elevated among lead-exposed individuals and those with a higher allostatic load. The above-mentioned
findings bolster an earlier study by Peters et al., which found a significant relationship between bone
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lead levels, a measure of long term exposure, and stress among those with hypertension in a study in
Boston, U.S.A [13].

The association of AL with markers of cardiovascular disease-risk in lead-exposed individuals is
likely due to the release of hormones such as epinephrine, dehydroepiandrosterone sulfate, and cortisol,
which play a role in cardiovascular disease-risk as measured by variables such as non-HDL-C [58].

Though oxidative stress was elevated in the lead-exposed individuals, it was not found to be
a significant player in AL among those exposed at the 5 µg/dL level; the AL model suggests that
recurrent alterations in homeostasis are connected to oxidative stress and inflammatory responses.
The trends of this study did demonstrate that associations were positive but not significant, which
may suggest that a larger sample size or different markers for oxidative stress may better capture this.
This is bolstered by the results at the 3 µg/dL level, which had a larger sample size and demonstrated
significantly worse outcomes.

This study critically adjusted for factors such as smoking and alcohol consumption. Cigarettes
may contain traces of lead, and some alcohol, depending on how it was brewed, may contain lead. In
addition, stress may cause individuals to engage in behaviors which increase the consumption of both.

Ultimately, behaviors such as physical exercise, in addition to the availability of social support to
increase resilient behaviors, can help to manage AL. Lower stress can be best achieved by lowering
AL and increasing resilience, as the long-term consequence of chronic, unrelieved, multi-year stress
is ultimately death as it produces pathological changes and exacerbates life-style diseases such as
adult-onset diabetes and atherosclerosis.

The limitations of this study include the fact that the study is cross-sectional, and therefore does
not allow for any deduction of causality or even temporal relationships. The study also did not
include institutionalized persons, such as individuals in nursing homes or those in prisons. This
means that the dataset inherently has some selection bias. Future works should seek to collect samples
among urban and peri-urban minorities and hard-to-reach populations who are exposed to higher
stress and lead levels to determine the unique challenges of such exposure among these critical and
vulnerable populations.

5. Conclusions

Cardiovascular diseases are multifactorial, with physical and social environments playing a
significant role in their pathogenesis. Among the individuals differentially exposed to lead, AL adversely
affects cardiovascular outcomes in those with stress. Public health practitioners must work to mitigate
both physical and social exposures to lead and promote resilient behaviors to limit the cumulative
effects of lead and stress on human health.
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