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Pore elimination mechanisms during 3D printing
of metals
S. Mohammad H. Hojjatzadeh 1,2, Niranjan D. Parab 3, Wentao Yan 4, Qilin Guo 1,2,

Lianghua Xiong 1,2, Cang Zhao 3, Minglei Qu 1,2, Luis I. Escano1, Xianghui Xiao 3, Kamel Fezzaa 3,

Wes Everhart 5, Tao Sun 3 & Lianyi Chen 1,2

Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with

complex geometries without the design constraints of traditional manufacturing routes.

However, the parts printed by LPBF normally contain many more pores than those made by

conventional methods, which severely deteriorates their properties. Here, by combining in-

situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics

modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the

LPBF process. We find that the high thermocapillary force, induced by the high temperature

gradient in the laser interaction region, can rapidly eliminate pores from the melt pool during

the LPBF process. The thermocapillary force driven pore elimination mechanism revealed

here may guide the development of 3D printing approaches to achieve pore-free 3D printing

of metals.
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Laser powder bed fusion (LPBF) is a 3D printing technology
(also known as additive manufacturing) that can print metal
parts with complex geometries directly from digital models

without the design constraints of traditional manufacturing
routes, which has the potential to revolutionize biomedical,
aerospace, and defense industries1–3. However, the parts printed
by the LPBF normally contain many more pores than those made
by conventional methods4, which severely hinders their applica-
tions, because pore is one of the most detrimental defects that
cause failure of parts5. Many mechanisms can cause pores to form
in the melt pool during the printing process (e.g., pore transfer
from feedstock powder6, instability of depression zone during
printing process7, vaporization of volatile elements8, gas pre-
cipitation9). Those pores in the melt pool cannot be effectively
eliminated by buoyant force9, a commonly used mechanism that
eliminates pores from liquid10, because the high drag force, that is
induced by the strong melt flow in the LPBF process, traps the
pores within the melt pool11. Thus, pores have been ubiquitously
observed in as-printed parts4. It is very challenging to completely
eliminate pores in the printed parts by post processing. For
example, the hot isostatic pressing (HIP) cannot close the surface
pores5; and the gas pores closed by HIP can reopen and grow
during subsequent heat treatment12.

Therefore, it is critical to uncover the dynamics and mechanisms
of pore evolution and elimination in the melt pool during the LPBF
process and identify mechanisms for eliminating pores during the
printing process, in order to obtain as-printed parts with very low
or zero porosity. However, because of the small sizes and high
velocity of the pores, as well as the opaque nature of metals, it has
been very challenging to probe the motion of these micro-pores in-
situ and in real time. Earlier works, involving the use of X-ray
imaging to visualize pore motion in a laser melt pool, achieved
some success11,13,14, but the resolutions afforded by a lab source, or
a mid-energy synchrotron facility, are not sufficient to capture some
of the faster motions of those micro-pores.

Here, we reveal the highly dynamic and complex motions of
micro-pores in the melt pool during LPBF process by using the
high-speed hard X-ray imaging technique, with high resolutions
(100 ps temporal resolution and ~2 µm spatial resolution). With
complementary multi-physics modeling, we find that the pore
moving behavior is governed by the competition of the tem-
perature gradient induced thermocapillary force and the melt
flow induced drag force. We identify that the high thermo-
capillary force induced by the high temperature gradient in the
laser interaction region can overcome the drag force induced by
melt flow to rapidly eliminate pores from the melt pool during

LPBF process. The thermocapillary force driven pore elimination
mechanism revealed here could be used to design 3D printing
approaches to achieve pore-free 3D printing of metals.

Results
In-situ characterization of pore dynamics during LPBF. The in-
situ high-speed X-ray imaging experiment to capture the
dynamics of pore motion and elimination during LPBF is sche-
matically shown in Fig. 1a. The in-situ X-ray imaging experiment
setup consists of a powder bed system (a 100 µm layer of powder
on a substrate sandwiched between two glassy carbon plates), a
selective laser melting system (to scan the powder bed and create
a melt pool), and a high-speed X-ray imaging system (to capture
the dynamics of the LPBF process)15–17. In order to probe pore
motion in every location in the melt pool, AlSi10Mg plate sam-
ples, with uniformly dispersed pores (diameters of 10–60 µm),
were built by the LPBF as the substrates, as shown in Fig. 1b.
Single-pulse (100 ps pulse width) X-ray imaging was conducted
with a recording rate of 135,776 frames per second (see “Meth-
ods” section for details). A representative single-pulse X-ray
image is depicted in Fig. 1c, and a representative X-ray movie is
presented in Supplementary Movie 1. Absorption and phase
contrast in the X-ray image, generated by different features,
permit an easy identification of the micro-pores, melt pool
boundary, and vapor depression zone, as indicated in Fig. 1c.
Meanwhile, the high spatial and temporal resolutions afforded by
the 3rd generation high-energy synchrotron facility and the state-
of-the-art beamline instruments have enabled the quantification
of the pore moving trajectories at different locations in the melt
pool (Supplementary Movie 1). Experiments on AlSi10Mg bare
substrates (i.e., without powders on top) were also conducted to
investigate and determine the pore dynamics relevant to the non-
powder type 3D printing processes, (e.g., laser foil printing)18.
One example is shown in Supplementary Movie 2. We conducted
in-situ experiments under various processing conditions (i.e.,
various laser powers, scan speeds, and layer thicknesses), and
observed similar pore motion behaviors. Here, we will focus on
the results obtained under laser power of 360W, laser scan speed
of 1 m s−1, and layer thickness of 100 µm to demonstrate the
dynamics and mechanisms of pore motion and elimination
during the LPBF process.

Dynamics of pore motions within melt pool. The movements of
individual pores in the melt pool were carefully traced, and it was
found that the pores in different regions of the melt pool
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Fig. 1 In-situ characterization of pore dynamics during LPBF process. a Schematic illustration of the in-situ high-speed X-ray imaging experiment.
b Representative cuboid (300 µm× 200 µm× 200 µm) reconstructed from X-ray computed tomography data showing the size and distribution of pores
inside an additively manufactured AlSi10Mg plate. c Representative single-pulse X-ray image revealing micro-pores as well as the melt pool and depression
zone beneath the surface of the powder bed (laser power of 360W, scan speed of 1 m s−1 and laser beam diameter (D4σ) of 100 μm). The boundaries
of the melt pool and the depression zone are indicated by a white dashed line, and the position of the laser is indicated by a red arrow. The scale bar in
c is 50 μm
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exhibited different moving patterns (Fig. 2a–d and Supplemen-
tary Movie 1). In the region near the laser beam, the pores moved
toward depression zone and escaped from the melt pool, hereafter
referred to as the laser interaction domain (Fig. 2d). In the region
at a certain distance away from the laser interaction domain, the
pores circulate within the melt pool, hereafter referred to as the
circulation domain (Fig. 2a). Between these two regions, the pores
move in irregular patterns, i.e., sometimes moving toward the
surface of the melt pool and escaping (Fig. 2c), while sometimes
circulating in the melt pool (Fig. 2b), hereafter referred to as the
transition domain. Similar pore moving behaviors were observed
during the laser melting of AlSi10Mg bare substrates (Fig. 2e–h
and Supplementary Movie 2), as well as under other processing
conditions (another example is shown in Supplementary Fig. 1).

Driving forces for pore motion and elimination. We have
initially tried to explain the pore moving dynamics observed using
the mechanisms reported in the literature: pore motion driven by
buoyant force and melt flow induced drag force9,11. The buoyant
force was calculated directly based on the actual pore size mea-
sured from the X-ray images. The estimation of melt flow induced
drag force, on the other hand, needs the flow velocity as input,
which is challenging to measure experimentally1. Here, a particle
tracing experiment was designed and carried out to characterize
the melt flow velocity within the melt pool during LPBF using
high-speed x-ray imaging. Specifically, tungsten microparticles (1
wt.%, diameter ≤ 10 μm) were embedded in AlSi10Mg powders as
tracing markers, and the melt flow behavior was quantified based
on the velocity of tungsten microparticles in different domains, as
shown in Fig. 3a–c. In the circulation domain, the melt circulates
with an average velocity of 0.6 ± 0.2m s−1 (mean ± standard
deviation (s.d)) (Fig. 3a). In the laser interaction domain, the melt
flows downward, along the front wall of the vapor depression zone

with an average velocity of 1.9 ± 0.6m s−1 (Fig. 3c). In the tran-
sition domain, the melt flow pattern is more complex due to the
interplay of circulation and backward flow, and exhibits an
average velocity of 1.45 ± 0.5m s−1 (Fig. 3b).

Based on the measured melt flow velocity, the drag force was
calculated. The results indicate that the drag force is orders of
magnitude higher than the buoyant force for the pore size range
studied here (Fig. 4a, b). Thus, it is expected that pores in the melt
pool will move with the melt flow, and have very limited
opportunity to float up and escape. This can satisfactorily explain
pore moving dynamics in the circulation domain. However, in
the laser interaction domain, the pores move approximately
perpendicular to the melt flow direction and manage to
rapidly escape out from the melt pool, with a velocity of up to
over 2 m s−1, even though the melt flow velocity is the highest in
this domain among all locations in the melt pool. This is in
contrary to pore motion behavior predicted based on buoyant
force and melt flow induced drag force.

After carefully analyzing the pore moving direction and the
temperature gradient, and inspired by the thermocapillary force
driven liquid droplet movement in immiscible alloys19,20, we
hypothesize that the thermocapillary force induced by the high
temperature gradient in the laser interaction domain is
the driving force for the unexpected pore elimination. For
the material we studied, as well as most metals and alloys, the
temperature coefficient of surface tension is negative. The
thermocapillary force drives the melt around the pore flows
from hot region to cold region. As a result, the pore moves from
cold region to hot region. In order to calculate the thermo-
capillary force, the temperature gradient in the melt pool was
simulated by a multi-physics model (see Supplementary Fig. 2,
Supplementary Tables 1, 2 and Supplementary Movie 3)21–23. In
the laser interaction domain, the temperature gradient exhibits an
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Fig. 2 Dynamic pore motions within melt pool. a–d X-ray images showing pore dynamics during the LPBF process. The thickness of powder layer is 100 μm.
e–h X-ray images showing pore dynamics during laser melting of a bare substrate. Dotted arrows indicate the future trajectories of the pores, while solid
arrows mark the history of pore trajectories. Pores follow circular patterns at the circulation domain (a, e), while pores in the laser interaction domain move
toward depression zone and escape from the melt pool (d, h). In the transition domain (b, c, f and g), pores exhibit irregular moving behavior, sometimes
moving toward the melt pool surface and escaping (c, g), and sometimes circulating in the melt pool (b, f). The laser beam diameter (D4σ) is 100 μm, the
laser power is 360W, and the scan speed is 1 m s−1. All scale bars are 50 μm
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average value of 6.5 × 107 Km−1 with a direction approximately
normal to the melt pool surface (indicated by small black arrows
in Fig. 3d). Such high temperature gradient results in a
thermocapillary force that is at least three times higher than the
melt flow induced drag force (see Fig. 4b for details) in the laser
interaction domain. Therefore, the pores in the laser interaction
domain move along the temperature gradient and escape from
the melt pool. Detailed analysis reveals that the temperature
gradient increases from the melting front to the vapor depression
front wall, as indicated by a white arrow in Fig. 3d. This implies
that the acceleration of a pore will increase when it moves
toward the depression zone. In the experiment, this predicted
acceleration increase was indeed observed, which further
confirms the thermocapillary force driven pore elimination
mechanism proposed here (Fig. 5).

To study the effect of thermocapillary force on pore dynamics in
different locations of the entire melt pool, we developed a force map
based on the ratio of thermocapillary force to drag force (Ft/Fd) for
a 10 μm-dimeter pore, using the local temperature gradient and the
average velocity of the melt flow (1.1 ± 0.5 m s−1). The buoyant
force is neglected because it is orders of magnitude smaller than the
thermocapillary force and the drag force for the pore size range
studied here. As shown in Fig. 3e, the Ft/Fd ratio varies significantly
at different locations in the melt pool due to significant variations in
the temperature gradient. Ft/Fd ranges from the highest value of ~47
in the laser interaction domain to ~0.004 near the tail of the melt
pool. Thus, the thermocapillary force is the dominating force in the
laser interaction domain, which drives the pores to move in the
direction of the temperature gradient, while the drag force controls
pore motion in the circulation domain. In the transition domain, Ft

and Fd are very close, which results in the irregular and ambivalent
pore moving behavior.

Mechanisms of pore dynamics and elimination. The dynamics
and mechanisms of pore motion and elimination in the melt pool
during the LPBF process is schematically summarized in Fig. 6.
The pore moving behavior is governed by competition of the
temperature gradient induced thermocapillary force and the melt
flow induced drag force. The buoyant force will play a more
important role when the size of the pore becomes larger. How-
ever, our estimation shows that, for the buoyant force to become
dominant under normally used LPBF condition, the sizes of the
pores need to reach millimeters, even larger than the size of a
typical melt pool in the LPBF process (Fig. 4c, d). Thus, the main
driving force for pore elimination during the LPBF process is the
thermocapillary force, instead of the commonly thought buoyant
force.

Eliminating pores using thermocapillary force. The thermo-
capillary force driven pore elimination can serve as an effective
approach to eliminating pores during the LPBF process. Here,
two examples are presented as a proof of concept. First, we show
that the pores in the feedstock powders can be eliminated by
thermocapillary force under proper laser processing conditions to
achieve a pore-free track, as shown in Fig. 7a–d and Supple-
mentary Movie 4. Second, we demonstrate that the pores in the
previously built layer will be eliminated by thermocapillary force
by laser rescanning with proper laser scan parameters, as shown
in Fig. 7e–h and Supplementary Movie 5. We have performed
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experiments on both AlSi10Mg and Ti6Al4V alloys. We achieved
pore elimination by thermocapillary force in both alloys, which
indicates that the thermocapillary force driven pore elimination
mechanism is not limited to a specific alloy system.

The proper laser processing parameters are determined based
on the following two general guidelines. First, the temperature
gradient in the laser interaction domain is high enough to
overcome the melt flow induced drag force. The temperature
gradient around the laser interaction domain can be estimated by
the difference between the boiling temperature (Tb) and melting
temperature (Tm) of the material over the thickness (t, as
indicated in Fig. 7b) of the liquid layer around the depression

zone, (Tb−Tm)/t. For a given material, a smaller t indicates a
higher temperature gradient. Second, the area of the high
temperature gradient region should be reasonably large to have
a good opportunity to encounter pores. This means a larger laser
interaction domain, which can be estimated by the width (w) over
depth (d) ratio of the depression zone, w/d, as indicated in Fig. 7b.
However, the depression zone depth, d, cannot be too small.
When d is too small, the melt pool depth is too shallow, which
may cause lack of fusion. The proper laser processing parameters
to eliminate the pores for the examples shown in Fig. 7 are
obtained based on the above two general guidelines using in-situ
x-ray imaging.
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In summary, we find a mechanism for effectively eliminating
pores in 3D printing of metals by synergistically combining
sophisticated in-situ experiments and multi-physics modeling.
We expect that the thermocapillary force driven pore elimination
mechanism revealed here could open avenues for developing
approaches to achieve pore-free 3D printing to unleash the full
potential of 3D printing technologies. The thermocapillary force
driven pore elimination mechanism also has implications for a
broad range of research and engineering fields where pore
evolution is important and a temperature gradient exists, such
as laser polishing24, laser cladding25, welding26, melt spinning27,
reactions in nuclear reactors28, and chemical reactors29.

Methods
Materials and sample preparation. AlSi10Mg rectangular bars (40 mm long × 8
mm wide × 8 mm thick), containing uniformly distributed pores with diameters
ranging from 10 to 60 μm (Fig. 1b) for pore dynamics study, were fabricated with a
powder bed fusion additive manufacturing machine, Renishaw AM250 (Renishaw,
UK). The substrate used in Fig. 7 for pore elimination study is commercial
Ti6Al4V sheet. The substrates for X-ray imaging experiments (40 mm long × 3mm
wide × 0.5–1.1 mm thick) were cut using wire electrical discharge machining
(EDM) and then polished down to 0.3–1 mm thick using silicon carbide sandpaper.
The AlSi10Mg powders (15–45 μm, LPW Technology, Ltd, UK) and Ti6Al4V
powders (53–106 μm, PRAXAIR, USA) were spread on the substrates to form the
powder bed for in-situ high-speed x-ray imaging experiments.

High-speed X-ray imaging. High-speed high-resolution hard X-ray imaging was
performed at beamline 32-ID-B of the Advanced Photon Source at Argonne
National Laboratory to monitor the pore dynamics inside a melt pool in real time.
The schematic of the synchrotron x-ray experiment is shown in Fig. 1a. The
samples studied in the experiments were miniature powder beds. A typical sample
is composed of a piece of substrate sandwiched between two glassy carbon plates,
and a 100 μm-thick layer of powder. A continuous-wave (CW) ytterbium fiber
laser (IPG YLR-500-AC, IPG Photonics, Oxford, USA, wavelength of 1070 nm,
maximum output power of 520W) and a galvo scanner (IntelliSCANde 30,
SCANLAB GmbH., Germany) were integrated to perform single track laser
melting on both powder bed and bare substrate under various laser powers (from
100–520W) and scan speeds (0.2–1.5 m s−1).

The X-ray beam used in the experiments was an undulator-generated pseudo
pink beam with the 1st harmonic energy at 24 keV. The X-ray beam penetrated
through metal samples. The transmitted beam was captured by a detection system
downstream where the X-ray signal was converted into a visible light image using a
single crystalline scintillator (Lu3Al5O12:Ce, 100 µm thickness), and then recorded
by a high-speed camera (Photron FastCam SA-Z, Japan) with a 10× objective lens.
The nominal spatial resolution is 2 μm/pixel. In these experiments, the images were
recorded with a frame rate of 135.776 kHz. The images were processed using
ImageJ30. All experiments were conducted in a custom-built experimental chamber
filled with argon gas (1 atm pressure).

X-ray micro computed tomography (µ-CT). X-ray μ-CT was used to characterize
the pore size and distribution in the AlSi10Mg substrate three-dimensionally
(Fig. 1b). The experiments were conducted at beamline 2-BM-A of the Advanced
Photon Source at Argonne National Laboratory. A pink X-ray beam, with the
energy centered at 25 keV penetrated through the sample and was converted to a
visible light signal using a single crystalline scintillator (Lu3Al5O12:Ce, 20 µm
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thickness). Then, the visible light signal was captured using a CMOS camera (pco.
edge camera, PCO AG, Kelheim, Germany) with a 10× objective lens. The effective
pixel resolution is 650 nm. 1500 projection images were recorded over the 180°
rotation of the sample, with an exposure time of 0.1 s for each image. The rotation
speed of the stage was maintained at 1° per second. The through-the-thickness
slices were reconstructed from the projections using an in-house software
(Tomopy31). These slices were then stitched together using image processing
software (Avizolite 9.4, FEI visualization Sciences Group) for the isosurface
rendering.

Characterization of melt flow within melt pool. The melt flow within the melt
pool during the LPBF process was characterized using tracing particles. Tungsten
microparticles (diameters of ≤10 μm) were embedded in AlSi10Mg powders by ball
milling (planetary ball mill, PQ-N04, Across International, LLC.). The velocities of
the tungsten microparticles at different locations in the melt pool during the LPBF
process were measured using high-speed X-ray imaging (see Supplementary Note 1
on Melt flow analysis with micro-tracing particle). Then, the melt flow velocities in
the three domains were estimated. Due to the large variation of melt flow velocities
within the circulation domain, two sub-regions in the circulation domain were
identified and calculated separately: the melt pool close to the circulation-transition
domain boundary and the melt pool tail. Twenty particles’ velocities were mea-
sured to calculate the average velocity in each melt flow region.

The average melt flow velocities at the laser interaction domain and
the transition domain are 1.9 ± 0.6 m s−1 (mean ± standard deviation (s.d.)) and
1.45 ± 0.5 m s−1, respectively. Within the circulation domain, the velocity of the
melt flow average varies from 0.75 ± 0.2 m s−1, at the region near the circulation-
transition domain boundary, to 0.4 ± 0.1 m s−1, at the melt pool tail. For
simplicity, the melt flow velocity within the circulation domain was averaged as
0.6 ± 0.2 m s−1, and this value was used to calculate the drag force on the pores in
the circulation domain (Fig. 4a, c). To estimate the drag force for developing the
force map in Fig. 3e, the average melt flow velocity of the entire melt pool was
used (1.1 ± 0.5 m s−1, average of 1.9 ± 0.6 m s−1, 1.45 ± 0.5 m s−1, 0.75 ± 0.2 m s−1,
and 0.4 ± 0.1 m s−1).

Multi-physics modeling. The temperature in the melt pool was simulated by
multi-physics modeling with the laser parameters used in the experiments. The
model was calibrated by experimental data (length and depth of melt pool and
depth of depression zone). The initial powder bed packing configuration is gen-
erated using the Discrete Element Method, where the input powder size dis-
tribution follows the experimental measurements and the simulated packing
density agrees with experimental measurement. The powder bed geometry is then
implemented into a thermal-fluid flow model to simulate the multi-physics process
of heat transfer, phase transformation, and molten fluid flow. The fully coupled
governing equations, including continuity, momentum, and energy conservation
equations, are computed using the Finite Volume Method, while the free surfaces
are tracked using the Volume of Fluid method. Flow is assumed to be incom-
pressible, laminar, and Newtonian; laser energy absorption, thermal conduction,
surface radiation and convection, and latent heats of melting and vaporization are
incorporated for energy conservation. Major driving forces of the molten pool flow
are implemented, including recoil pressure, surface tension, Marangoni effect,
viscosity, buoyancy, and gravity. The thermophysical properties of AlSi10Mg used
for simulation are given in Supplementary Tables 1 and 2. Further details about
these models can be found in the reference21–23.

Force calculation. The buoyant force (Fb), melt flow induced drag force (Fd),
temperature gradient induced thermocapillary force (Ft) were calculated using the
equations reported in the literature. The equation for calculating each force is
discussed below (bold characters denote vector quantities):

The buoyant force (Fb) is calculated by equation32:

Fb ¼
4
3
π r3p ρf g ð1Þ

where rp is the pore radius, ρf is the melt density and g is the gravitational
acceleration (g= 9.8 m s−2).

The drag force (Fd) is induced by melt flow, which consists of a form drag and
friction drag. When Reynold number is higher than unity, the drag force is
calculated by the following equation33:

Fd ¼ � 1
2
CD ρf r

2
p Up � Uf

� �
Up � Uf

���
��� ð2Þ

where rp is the pore radius, ρf is melt density, Up is the pore velocity vector, Uf is
the melt flow velocity vector, and CD is the drag coefficient (dimensionless) which
depends on the melt flow regime and molten metal properties and is approximated
by Schiller and Naumann equation:

CD ¼ 24
Re

1þ 0:15Re0:687
� � ð3Þ

where Re is Reynold number and is given by:

Re ¼
2 rp ρf Up � Uf

���
���

μ
ð4Þ

where rp is pore radius, Up is the pore velocity vector, Uf is the melt flow velocity
vector, ρf and μ are melt density and melt dynamic viscosity, respectively. We
calculated the drag force exerted on the pore with zero velocity (|Up|= 0) to
construct the force map.

Thermocapillary force (Ft) is induced by the temperature gradient around the
pore. Thermocapillary force is calculated by the following equation34:

Ft ¼ 4 π r2p
∂T
∂r

∂σ

∂T
ð5Þ

where ∂T
∂r and

∂σ
∂T are the temperature gradient at the location of the pore and the

temperature coefficient of surface tension, respectively. Due to lack of data on the
temperature coefficient of surface tension of AlSi10Mg alloy, the temperature
coefficient of surface tension of Al88Si12 alloy ∂σ

∂T ¼ �0:31 ´ 10�4Nm�1K�1
� �

was
used35. The local temperature gradient values, obtained from the simulation results,
were used to calculate the local thermocapillary force for developing the force map
in Fig. 3e. The average temperature gradient of 6.5 × 107 Km−1 at the laser
interaction domain and 1 × 106 K m−1 at the circulation domain were used to plot
the force-pore diameter graph (Fig. 4).

Data availability
The data supporting the findings of this work is available in the main text or
supplementary materials. Raw data are available from the corresponding authors on
reasonable request.
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