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Abstract: An accurate calculation of the flexural capacity of flexural members is vital for the safe and
economical design of FRP reinforced structures. The existing empirical models are not accurately
calculating the flexural capacity of beams and columns. This study investigated the estimation of
the flexural capacity of beams using non-linear capabilities of two Artificial Intelligence (AI) models,
namely Artificial neural network (ANN) and Random Forest (RF) Regression. The models were
trained using optimized hyperparameters obtained from the trial-and-error method. The coefficient
of correlation (R), Mean Absolute Error, and Root Mean Square Error (RMSE) were observed as
0.99, 5.67 kN-m, and 7.37 kN-m, for ANN, while 0.97, 7.63 kN-m, and 8.02 kN-m for RF regression
model, respectively. Both models showed close agreement between experimental and predicted
results; however, the ANN model showed superior accuracy and flexural strength performance.
The parametric and sensitivity analysis of the ANN models showed that an increase in bottom
reinforcement, width and depth of the beam, and increase in compressive strength increased the
bending moment capacity of the beam, which shows the predictions by the model are corroborated
with the literature. The sensitivity analysis showed that variation in bottom flexural reinforcement
is the most influential parameter in yielding flexural capacity, followed by the overall depth and
width of the beam. The change in elastic modulus and ultimate strength of FRP manifested the least
importance in contributing flexural capacity.

Keywords: flexural strength; beams; FRP; artificial intelligence; ANN; random forest

1. Introduction

Concrete is the principal construction material for the building industry used in the
construction of buildings and infrastructure because of its excellent construction properties
considering an additional advantage of adding rebars in reinforced concrete structures.
Although rebars improve the properties of concrete without modifying the cementitious
properties of the matrix [1]. But susceptibility to corrosion of the rebars embedded in
concrete has been recognized as one of the major durability problems associated with
reinforced concrete (RC) structures. Corrosion infiltrates chloride ions into the concrete mix,
which decomposes the protective layer formed on the steel surface [2–4]. The corrosion
may not only induce an expansion pressure but may also result in cracking, crack widening,
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and spalling of concrete clear cover, which not only reduces the service life of RC structures
but also causes a reduction in the cross-section of the rebars and weakens the load-carrying
capacity of RC structures. The statistical evaluation indicates that a significant percentage
of infrastructure failure globally has occurred due to corrosion of mild steel reinforcement
embedded in concrete [5–8]. Also, marine infrastructure, including offshores, seaports, and
subsea structures, is very important for the overall development of a country. To control
the continuous deflation of natural resources and avoid transportation of natural resources
to construct marine structures, sea sand and seawater may be a suitable replacement t [9].
However, its use may be hindered due to its high alkalinity and chloride content which
may cause corrosion of steel reinforcement [10].

To avoid the critical problem of the high corrosion rate of mild steel, fiber-reinforced
polymers (FRPs) are proposed as a potential alternative material due to their superior
corrosion resistance and competent mechanical properties. Fiber-reinforced concrete also
can resist corrosion and allow the direct utilization of sea sand and seawater as efficient and
economical construction materials for marine structures [9,11–17]. FRP materials exhibit
several properties, such as lightweight, and high tensile strength, making them suitable
for structural reinforcement [18]. Different types of FRP, such as Carbon FRPs, Aramid
FRPs, Glass FRPs, and Basalt FRPs, are available as common replacements for conventional
steel reinforcement. FRPs have been subjected to experimental investigation for decades
for their durability assessment. FRPs are reported to have the highest retention of tensile
strength subjected to the highly alkaline solution [19–25]. Several factors shall be considered,
including the performance advantage, materials cost, and application field, before using
FRP. For instance, CFRP has better mechanical properties, and fatigue/creep/corrosion
resistance. However, its high material price and low elongation at break are the main
disadvantages. In contrast, GFRP and BFRP have a higher elongation at break and lower
price, but their mechanical, corrosive, and creep properties are relatively poor, especially
exposed to an alkaline environment [26–28]. Moreover, CFRP is highly recommended
for higher flexure strength of RC beams, improved confinement, and lower deflection
compared to GFRP and BFRP [17,29]. The performance of GFRP beams improves with
the addition of steel bars. Crack width and mid-span deflection decreased by increasing
the reinforcement ratio, whereas the load-carrying capacity was increased [30,31]. GFRP
and CFRP showed superior effects on the load-carrying capacity, stiffness, and energy
absorption of RC structural elements compared with conventional steel reinforcement [32].

The previous researchers recommended the use of a variety of AI models for solving
engineering problems [33–41]. Modern engineering values numerical [42–44] and artificial
intelligence (AI) models for solving complex and nonlinear problems. Earlier studies
have employed AI models for estimating the flexural strength of FRP reinforced beams.
Murad et al. [45] developed the GEP model and evaluated a high value of R equalling
0.977 compared to the one obtained from the ACI model (R= 0.974). It is noteworthy to
mention that Murad et al. [45] based the accuracy of the model based on the value of R
only. In the recent study conducted by Amin et al. [46], it was evaluated that the accuracy
of the GEP model developed by Murad et al. [45] was smaller compared to the ACI models
in terms of error indices. The ensemble tree-based models developed for the same problem
also showed the superiority of ACI equations compared to the gradient boosting tree
and decision tree models [46]. However, it was suggested that new AI models that can
accurately predict flexural strength should be investigated.

Naderpour et al. [47] proposed an AI model for predicting shear resistance of FRP-
reinforced concrete beams using an Artificial Neural Network (ANN). The accuracy of
the proposed ANN model was more than ACI 440.1R-06, ISIS-M03-07, BISE, JSCE, and
CNR DT 203. Lee et al. [48] developed an ANN model that resulted in improved statistical
parameters with better accuracy than the other existing models. Random Forest (RF)
was evaluated more robust model in comparison to ANN, GEP, and decision tree (DT)
model [49] while investigating the compressive strength of high strength concrete. Similarly,
Khan et al. [50] also evaluated the superiority of RF in comparison to the GEP model in
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estimating the compressive strength of geopolymer concrete. Therefore, ANN and Random
Forest (RF) models, which are modern Artificial intelligence (AI) techniques, are explored
in this research work to develop a simple and more accurate model that can predict the
flexural capacity of concrete beams reinforced with FRP bars. The ANN model developed
in this study showed higher accuracy in comparison to the previously developed AI models,
therefore leading to study optimization of the ANN model in the future work.

2. ACI Approach towards Calculating Flexural Capacity

Numerous analytical and numerical models are available in the literature for the
prediction of the flexure behavior of FRP reinforced beams [51]. ACI-440-17 [52] and the
CSA S806-12 [53] have also developed guidelines for designing FRP reinforced beams. The
formulation shown in Equations (1)–(5) presents the ACI model for calculating the flexural
capacity of FRP reinforced beams, where, cb is the distance from extreme compression fiber
to the neutral axis of the member at balanced strain condition (mm) and c is the distance
from extreme compression fiber to the neutral axis of the member (mm). ρb is a balanced
reinforcement ratio. ff is tensile stress of FRP rebar at failure, E f is the elastic modulus of
longitudinal FRP bars, is ultimate concrete strain = 0.003, f f u is the ultimate tensile strength
of FRP rabars. ρ f is the FRP reinforcement ratio, A f is the area of longitudinal flexural
reinforcement (mm2), b is the width of the beam (mm), and d is the depth of the beam (mm).
β1 is the compressive stress block parameter, and f ′c is the concrete compressive strength.

Mn = A f f f u

(
d− β1cb

2

)
(1)

cb =

(
εcu

εcu + ε f ut

)
d when ρ f < ρb (2)

f f =

√√√√√(
E f εcu

)2

4
+

0.85β1 f ′c
ρ f

E f εcu − 0.5E f εcu ≤ f f u when ρ f > ρb (3)

β1 =


17 ≤ f ′c ≤ 28 β1 = 0.85
28 < f ′c < 55 β1 = 0.85− 0.05( f ′c−28)

7
f ′c ≥ 55 β1 = 0.65

(4)

ρ f =
A f

bd
(5)

3. Experimental Database

Table 1 lists the experiments that were used to construct the experimental database,
collected from a wide range of literature, also reported by Murad, Y., A. Tarawneh, F. Arar,
A. Al-Zu’bi, A. Al-Ghwairi, A. Al-Jaafreh and M. Tarawneh [45] and Amin et al. [46]. As
depicted from Equation (6), flexural strength, i.e., the moment, is governed by six input
factors: beam depth (D), beam width (W), concrete compression strength (fc′), area of
bottom flexural reinforcement (As), Elastic modulus of the FRP rebar (EM), and the ultimate
tensile strength of rebar upon failure (Tf). The data collected in terms of attributes is
corroborated with the ACI formulations for flexural strength capacity [54].

M = f
(

W, D, f ′c , As, EM, Tf

)
(6)
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Table 1. Summary of input and output characteristics utilized in the model formulation using ANN
and RF regression.

Output
Variable,

i.e.,
Moment
(kN-m)

Samples
(No.)

Input Variables

Depth (mm) Width (mm)

Concrete
Compres-

sive
Strength

(MPa)

Bottom Re-
inforcement

(mm2)
Elastic Modulus (MPa)

Ultimate
Strength

(MPa)
References

42–81 6 305 152 29–45 355–1013 45,500–50,600 552–896 [55]
6–34 9 152–250 150–152 25–36 71–429 45,000–44,800 760–1000 [56]

81–198 9 300–550 200 43–52 573 42,000–49,000 641–689 [57]
80–182 3 300–550 43 573 600 45,000 600 [58]
39–41 4 240 200 35–36 508 43,370 885 [59]
34–57 4 210–300 200 31–41 507–1134 35,630–43,370 700–886 [60]
71–90 12 300 200 39–41 254–1013 40,000–122,000 617–1988 [61]
20–30 8 180 130 46–97 238–475 38,000 773 [62]
6–17 14 200–300 150 28–50 57–113 38,000 650 [63]

11–17 12 152–203 191–381 28 80–320 41,400 830 [64]
58–85 8 300 200 45–52 349–1046 37,600 773 [65]
49–66 6 300 180 35 253–507 40,000 695 [66]
52–54 2 300 200 24–27 88–226 200,000 1061–2000 [67]
39–85 5 270–294 200 42–54 299–1356 38,000–49,000 552–773 [68]
47–51 3 229 178 48 219–1077 41,000–124,000 552–896 [69]
14–16 2 152 152 49–52 63–99 140,000 1900 [70]
80–238 5 380 280 34–43 339–1964 38,000–40,200 582–603 [71]
81–189 12 400 200 29–73 261–1162 48,700–69,300 762–1639 [57]
49–54 3 254–256 230 40 226–603 50,000 1000 [72]

Such that M refers to the total flexural capacity. ACI formulas demonstrate the im-
portance of various input factors in contributing to the bending capacity. In addition,
Figure 1 and Table 2 illustrate the distribution histogram and the descriptive statistics for
the variables utilized here, respectively. From the histograms (Figure 1) it can be seen that
the most of the samples (exceeding approximately 80%) tested in a variety of experimental
works exhibit width between 130–205 mm, depth ranging from 152 to 302 mm, fc’ having
values between 24–54 MPa, As of 57–657 mm2, EM of 35,630–51,260 MPa, whereas Tf ranges
from 552 to 1152 MPa. The standard deviation values in Table 2 show that the models are
constructed using a wider range of variable values.

Table 2. Descriptive statistics of input and output variables used in the current study.

S.No. Width
(mm)

Overall
Depth (mm)

Concrete
Compressive

Strength (MPa)

Bottom
Reinforcement

(mm2)

Elastic
Modulus of
FRP (MPa)

Ultimate
Strength

(MPa)

Moment
(kN.m)

Minimum 130 152 24 57 35,630 552 21.8
Maximum 381 550 97 1964 200,000 2069 187.62

Mean 204.16 287.24 46.02 568.84 63452.00 988.78 65.75
SD 37.89 57.14 11.70 302.82 30585.99 229.96 29.22

Kurtosis 9.4853 9.3561 8.9865 9.2757 8.2132 9.5282 3.9498
Skewness 2.9951 2.7783 2.9684 3.0520 2.9973 3.0197 1.9073
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Figure 1. Histograms of the input and output parameters used in the current study; (a) Width, (b)
Overall depth, (c) Concrete strength, (d) Bottom reinforcement, (e) Elastic modulus, (f) Ultimate
strength, and (g) Moment.

4. Machine Learning Approaches
4.1. Artificial Neural Network (ANN)

As a bioneural network model, an artificial neural network (ANN) comes with im-
mense sophistication to handle many complexities within any data. As an ML technique,
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ANN aims to mimic the knowledge accumulation and interpretation process that tran-
spires in the human brain [73]. ANN has been extensively employed to solve nonlinear
regression analysis issues [74]. The backpropagation neural network, a common ANN
training approach, is often utilized in regression analysis and practical applications. In a
backpropagation neural network, there are three layers: the input layer, the output layer,
and a hidden (intermediate) layer linked to both input and output layers. A gradient
descent algorithm, such as Widrow–Hoff arithmetic, is commonly used in backpropagation
networks. Weights are modified or shifted along with the negative value of the running
function’s gradient in this network. The word “backpropagation” is used to describe how
nonlinear multilayer neural networks do progressive computing [75]. Despite the excellent
predictive performance of the backpropagation approach, its drawback is its slow conver-
gence speed [76]. The problem has been addressed using many optimization algorithms
using simple gradient descent algorithms. Among the tested algorithms, the conjugate
gradient algorithm has proven to be better than most algorithms in improving the learning
time, leading to a quick convergence rate of the neural network.

The search direction for all conjugate gradient algorithms is periodically reset to the
gradient’s negative [77]. The usual reset point happens when the number of repetitions
equals the number of network parameters, mainly weights, and bias. In addition, to reset
procedures, other methods have been used to enhance training efficiency. Concerning those
approaches, it was argued by [78] relying on Beale’s version [79] that there will always be a
restart in the technique process if there is a slight orthogonality change between the current
and previous gradient. The following inequality demonstrates this:∣∣∣gT

k−1gk

∣∣∣ ≥ 0.2‖gk‖2 (7)

where gk is the kth iteration’s gradient. The search direction is reset to the negative of the
gradient if this condition in Equation (7) is met.

The number of neurons in the hidden layer is crucial in designing the network. Fewer
neurons often lead to incomplete signal recognition or underfitting in complex datasets [80].
When the neurons are more than needed for the network, the lattice time increases, leading
to overfitting because the network receives too much information or the training sub-
dataset does not need enough specific information to train the network. Factors like the
number of network’s input and output layers, target data noise, number of sample set cases,
error function complexity, the network’s architecture, and the network’s training algorithm
affect the number of hidden layers. As there is no method to quickly determine the optimal
number of neurons in the hidden layers without prior training of the network [81], the
trial-and-error approach is still widely adopted.

4.2. Random Forest Regression (RFR)

Random forest trees (RFT) employ the concept of ensemble learning, contain several
decision classification trees, gather the findings by randomly picking characteristics from
each decision tree, and then utilize the majority voting or averages approach to conclude.
On a general note, statistical evaluation indices like correlation coefficient and error metrics
(MAE, MSE, RMSE, etc.) attained by the current RF model are equivalent to those produced
by other ML models like ANFIS and GEP. However, the simplicity with which RF may be
used to represent categorical variables makes it a popular technique for prediction. The
benefit of using a decision tree is that it can quickly model enormous datasets [82]. It can
also handle both numeric and category data. According to the tree’s leaf, the base of the
decision tree reflects a collection of ordered circumstances [83,84]. At the start, samples
required for bootstrapping are obtained at random by replacing the existing datasets for
training. RF then receives the values of various empirical characteristics, i.e., the (x) input
vector. Following that, RF constructs a set of K regression trees and averages the findings.
The RF equation for prediction presented in Equation (8) is arrived at after
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ˆfY f
K
(x) =

1
K

k

∑
k=1

T(x) (8)

As a result of the bagging process, trees become more diverse as they grow from
multiple training data subsets selected to avoid tree correlation. The Out-of-Bag (OOB)
samples were not selected for the training of the kth tree during the bagging process.
Performance evaluation can be carried out by the kth tree on these OOB elements. RF
can obtain a precise generalization error estimate without using an external subset of text
data [85].

The model’s capacity to generalize [75,86] can be used to assess the predictive power of
the proposed model. The better the generalization ability and the lower the generalization
error, the better the results from the proposed model. Numerous tree predictors are
randomly selected and trained for data X and prediction set Y. hence, the mean square error
(generalization) of one tree predictor V(X) is E∗ = EXY(Y−V(X))2.

As the number of trees continues to increase until it gets to infinity, then the general-
ization error, GE∗ thus becomes,

EX,Y(Y− aviV(X, θi))
2 → EX,Y(Y− EθV(X, θ))2 = GE∗(forest) (9)

where avi is the average value, θi is the value of a random variable, Eθ is the expected
function, and GE∗(forest) represents the generalization error of the RF proposed model.

GE∗(tree) = EθEX,Y(Y− H(X, θ))2 (10)

where GE∗ represents the average generalization error of the RF. Assuming that for any
E(Y) = EX H(X, θ), then;

GE∗(forest) ≤ yGE∗(tree) (11)

where y is the weighted correlation between Y− H(x, θ) and Y− H(x, θ′)

5. Results and Discussion
5.1. Linear Correlation Matrix

The data used in this study were examined for linear Pearson’s correlation in order to
assess the correlation between the variables. It can be observed that the flexural capacity
of beams has a significant positive association with As and D equaling 0.70 and 0.85,
respectively. The fundamental ACI equation for beam flexural strength shows a similar
trend in the flexural capacity with rise in As and D. The width of the beam (W) and fc’ have
a moderately positive relationship with M. Small linear correlations are depicted by the
remaining properties EM and Tf, indicating the presence of non-linear correlations between
the inputs and the target variable. The detailed coefficient matrix provided can be seen
in Table 3.

Table 3. Correlation matrix among variables used in the development of models.

Attribute As D EM fc’ Tf M W

As 1.00
D 0.44 1.00

EM −0.17 0.01 1.00
fc’ 0.09 0.03 −0.02 1.00
Tf −0.23 −0.17 0.76 0.06 1.00
M 0.70 0.85 0.04 0.16 −0.06 1.00
W 0.09 0.19 −0.04 −0.31 −0.04 0.22 1.00
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5.2. Prediction Performance of the Developed Models

The results predicted by the proposed models (ANN and RFR) are cross-plotted
against the experimental data, as shown in Figure 2a,c. The estimated results from the
two proposed models are strongly correlated with the experimental data, with the slope of
the regression lines for the training data being 0.98 and 0.94 for ANN and RFR, respectively.
As shown in Figure 2a,c, the validation datasets also reveal a strong correlation in terms
of the regression line slope compared with the slope of the ideal fit (1:1). The validation
dataset yields a regression line slope of 0.93 and 0.80 for the ANN and RFR models. The
effectiveness and efficiency of the ML models are revealed by the closeness of their data
points to the regression line (1:1). In addition, error analysis plots for the training and
validation datasets Figure 2b,d have been plotted to show the range of residual errors while
prediction of moment (kN.m) in contrast to the actual experimental dataset. For the ANN
model, the error values range from −15 to 22 kN.m for the training data and from −32
to 23 kN.m for validation data, as depicted in Figure 2b. In contrast, for the RFR model,
the error values range from −51 to 41 kN.m for the training data and −20 to 54 kN.m for
validation data as shown in Figure 2d. The statistical evaluation of the generated models is
illustrated in Figure 2e using four main performance indices, i.e., RSE, RMSE, MAE, and
correlation coefficient. This is performed to evaluate the robustness, efficacy, as well as
the relative examination of the formulated ANN and RFR models in order to predict the
flexural strength of FRP, reinforced concrete beams. For robust performance and strongly
linked models, the distribution of sample points has to be closer to the standard line,
having a slope larger than 0.8, minimum error indices (MAE and RMSE), and R greater
than 0.8 [87–92]. The values of Rtraining dataset of ANN and RFR models are 0.99 and 0.97,
respectively. Similarly, the Rvalidation dataset equals 0.98 each for both the models thus
suggesting that both models are strongly correlated in case of both the datasets. Since the
values of both the training and validation stages are almost the same, therefore, there are
no problems with overfitting in the ANN and the RFR models. It is important to note that a
greater R-value is not necessarily the only tool to evaluate the AI model’s reliability [90].
As a result, we have deployed several error indices such as RSE, RMSE, and MAE in the
current study. The optimization procedure primarily focuses on minimizing MAE while
training the model with greater correlation metrics. The values of MAE are recorded to be
5.67 MPa and 7.63 MPa during the training stage of ANN and RFR models, respectively.
The validation dataset witnessed 7.37 and 8.72 MPa for ANN and RFR models. The RSE
and RMSE equals (0.06 and 8.02) and (0.03 and 7.37) in the training stage; (0.10 and 10.01)
and (0.05 and 9.14) in the validation phase, respectively, for ANN and RFR models.

Figure 3 shows the tracing of experimental results by the prediction models for ANN
and RFR models. It can be observed that the ANN model traces the experimental results
more closely compared to the RFR model. The ANN model outperforms the RFR model
owing to a higher R-value for both training and validation datasets and other statistical
measures. Thus, the ANN model proves to be more robust in performance in contrast to the
RFR model. As a result, in addition to having a greater correlation and lower error statistics,
the proposed models may be utilized to predict the flexural strength of FRP reinforced
beams, allowing designers as well as practitioners to prevent extensive testing and thus
save money and effort.

5.3. Sensitivity and Parametric Analysis

Due to the high accuracy of the ANN model compared to the RF regression model,
ANN was used to see the effect of contributing parameters in yielding flexural capacity.
In order to validate the developed model, it is necessary to investigate the importance of
each variable and compare its results with the existing literature. A simulated data set
was therefore created, with one input variable being altered equally between its extremes
while the other input variables remained fixed at their mean values (Table 4). To determine
the parametric effect of a variable, the variation in the target variable was plotted versus
the variable input. In the same way, the simulated dataset was used to perform the
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sensitivity analysis. The relative proportion of each contributing variable was calculated
by normalizing the difference in the values of the target variable with regard to every
input variable.

Table 4. Simulated data set used for Parametric and Sensitivity Analysis.

Variable Input Parameters No. of Datapoints Constant Input Parameters
Parameter Range

Width (W, mm) 130–381 20 D = 274.40; fc’ = 42.85; As = 482.85;
EM = 53,060, Tf = 927.59

Overall depth (D, mm) 152–550 20 W = 194.25; fc’ = 42.85; As = 482.85;
EM = 53,060, Tf = 927.59

Conc. Compressive strength (fc’,Mpa) 24–97 20 D = 274.40; W = 194.25; As = 482.85;
EM = 53,060, Tf = 927.59

Bottom Reinforcemnet (As, ssqr.mm) 57–1964 20 D = 274.40; W = 194.25; fc’ = 42.85;
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Figure 3. Tracing of experimental results by the prediction models (a) ANN and (b) RFR.

Figure 4 depicts the results of the sensitivity analysis. It can be observed that the
results obtained in the sensitivity analysis are corroborated with the Pearson’s correlation
obtained in Table 3. The variation in bottom flexural reinforcement is the most influential
parameter, followed by the depth of beam among the attributes considered in this study.
The width of the beam and compressive strength of concrete is the next important attributes
in yielding flexural capacity of FRP reinforced beams. The ultimate tensile strength of
FRP and elastic modulus are the least important parameters, which is evident from the
Pearson correlation as well. Suppose we see the formulations of ACI regarding flexural
capacity based on the principles of mechanics, shown in Equation (1), As is directly related
to the nominal capacity. The effective depth is another important term, followed by the
compression block depth, which depends on the width of the beam. Thus, the results of the
developed model are corroborated with the literature; therefore, the prediction model is
considered reliable for estimating the flexural capacity of beams for unseen data.

Figure 5 illustrates the parametric analysis based on the ANN model. It can be
noted that an increase in bottom reinforcement from 0 to 2000 mm2 increases the flexural
capacity from 20 kN.m to 190 kN.m (170 kN.m change). The change in beam depth from
152–550 mm increased the capacity of bending from 20 to 150 kN.m (130 kN.m change).
The width of the beam from 130–381 mm increased the flexural capacity by 70 kN.m. The
variation in bending capacity due to elastic modulus of FRP rebar and concrete compressive
strength depicted a two-degree polynomial variation. The results obtained corroborate the
sensitivity and Pearson’s correlation; thus, the developed ANN model can be relied upon
for future predictions. Actually, the parametric study is conducted in order to validate
the trained model. The purpose was to see that the trend achieved from the trained ANN
model and literature are the same. Moreover, increasing parameters like width and depth
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of beam, and flexural reinforcement generally increases the flexural capacity; however,
optimum values depend upon many other factors like availability of clear space, aesthetics,
and economy.
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Figure 5. Parametric Analysis of ANN model.

5.4. Comparison of ANN Model with ACI Formulations

The statistical results obtained previously by Amin et al. [46] and Murad et al. [45]
revealed that the training data of the GEP and ACI model for the same dataset depicted
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a value of R, MAE, and RMSE equaling (0.977, 15.23, and 19.57), and (0.974, 4, 11.91),
respectively. The Gradient Boosting Tree (GBT) model yielded R, MAE, and RMSE as 0.974,
10.7, and 17.2, respectively. It can be noticed that the GEP and GBT predicted reliably in
terms of R only; however, R shall not be solely used for the evaluation of AI models. It can
be noticed that error evaluation reflects the results from ACI formations as more robust
compared to the GEP and GBT models. If we compare the results of the current ANN
model, R (0.99), for the training set surpassed all other models; however, error evaluation
depicts MAE and RMSE equal to 5.67 and 7.37, which shows that RMSE for ANN is smaller
compared to the ACI formulations whereas, MAE for the ACI is smaller. The accuracy
of the ANN model is more comparable to the ACI model rather than GEP, GBT, and RF
regression models. This compassion suggests that hybrid ANN models optimized by a
variety of Algorithms are capable of further minimizing this prediction error [38].

6. Conclusions

The existing ACI formulations for the flexural capacity of FRP reinforced beams, based
on the principles of mechanics, are based on several assumptions that cause a difference in
experimental and calculated values. Due to the availability of robust AI models, an attempt
has been made in this study to estimate the flexural capacity of beams using ANN and RF
regression models. Following conclusions can be drawn from this study.

• The accuracy of the existing ACI guidelines was measured using R, MAE, and RMSE
with the experimental data, which yielded values equaling 0.974, 4, and 11.91, re-
spectively. This shows that more robust models are required that can predict flexural
capacity more accurately.

• The linear Pearson’s correlation obtained for the experimental data showed that
bottom flexural reinforcement and depth of the beam are strong positive correlated
with the bending capacity of the beam. The results from the parametric and sensitivity
analysis also reflected similar interpretations of these variables. According to the
ACI guidelines, bottom flexural reinforcement and depth are critical parameters in
enhancing flexural capacity. Thus, the results of Pearson’s correlation, sensitivity ad
parametric study, and the literature are highly matching with each other, making the
developed models more reliable for future use.

• An ANN model yielded R, MAE, and RMSE of 0.99, 5.67, and 7.37, respectively
whereas the RF regression model manifested 0.97, 7.63, and 8.02, respectively, for
the training data. The ANN model surpassed the accuracy in comparison to the RF
models as well as previously developed GEP and GBT models in the literature.

• The accuracy analysis of the ANN model is comparable to the ACI formulations, and
it is expected that ANN hybrid models optimized by various algorithms may increase
the performance of the ANN model. Therefore, future study is needed on the basis of
hybrid ANN models to increase the prediction accuracy to a more robust level.
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81. Šipoš, T.K.; Miličević, I.; Siddique, R. Model for mix design of brick aggregate concrete based on neural network modelling.
Constr. Build. Mater. 2017, 148, 757–769. [CrossRef]

82. Deng, B. Machine learning on density and elastic property of oxide glasses driven by large dataset. J. Non-Cryst. Solids 2020, 529,
119768. [CrossRef]

https://www.csagroup.org/store/product/S806-12/
http://doi.org/10.1016/j.compstruct.2019.110930
http://doi.org/10.1061/(ASCE)CC.1943-5614.0000216
http://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(7)
http://doi.org/10.1016/j.conbuildmat.2005.06.023
http://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(18)
http://doi.org/10.1016/S1359-8368(99)00049-9
http://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(752)
http://doi.org/10.1016/j.engstruct.2010.08.028
http://doi.org/10.1016/j.conbuildmat.2015.08.063
http://doi.org/10.1109/MASSP.1987.1165576
http://doi.org/10.1155/2021/5540853
http://doi.org/10.1016/S0925-2312(02)00569-6
https://ci.nii.ac.jp/naid/10008947012/
http://nopr.niscair.res.in/handle/123456789/29456
http://doi.org/10.1016/j.conbuildmat.2017.05.111
http://doi.org/10.1016/j.jnoncrysol.2019.119768


Polymers 2022, 14, 2270 16 of 16

83. Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression t Rees (Monterey, California: Wadsworth); Taylor &
Francis Group: Newyork, USA, 1984.

84. Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Olmo, M.C.; Ribeiro, L. Predictive modeling of groundwater nitrate
pollution using random forest and multisource variables related to intrinsic and specific vulnerability: A case study in an
agricultural setting (southern spain). Sci. Total Environ. 2014, 476, 189–206. [CrossRef]

85. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
86. Li, H.; Lin, J.; Lei, X.; Wei, T. Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm.

Mater. Today Commun. 2022, 30, 103117. [CrossRef]
87. Khan, M.A.; Zafar, A.; Akbar, A.; Javed, M.; Mosavi, A. Application of gene expression programming (gep) for the prediction of

compressive strength of geopolymer concrete. Materials 2021, 14, 1106. [CrossRef]
88. Azim, I.; Yang, J.; Iqbal, M.F.; Javed, M.F.; Nazar, S.; Wang, F.; Liu, Q.-F. Semi-Analytical Model for Compressive Arch Action Capacity

of rc Frame Structures; Presented at Structures; Elsevier: Amsterdam, The Netherlands, 2020; Volume 27, pp. 1231–1245.
89. Onyelowe, K.C.; Iqbal, M.; Jalal, F.E.; Onyia, M.E.; Onuoha, I.C. Application of 3-algorithm ann programming to predict the

strength performance of hydrated-lime activated rice husk ash treated soil. Multiscale Multidiscip. Modeling Exp. Des. 2021, 4,
259–274. [CrossRef]

90. Jalal, F.E.; Xu, Y.; Iqbal, M.; Jamhiri, B.; Javed, M.F. Predicting the Compaction Characteristics of Expansive Soils Using Two
Genetic Programming-Based Algorithms. Transp. Geotech. 2021, 30, 100608. Available online: https://www.sciencedirect.com/
science/article/pii/S2214391221000982 (accessed on 3 May 2022). [CrossRef]

91. Kaloop, M.R.; Samui, P.; Iqbal, M.; Hu, J.W. Soft computing approaches towards tensile strength estimation of GFRP rebars
subjected to alkaline-concrete environment. Case Stud. Constr. Mater. 2022, 16, p.e00955. [CrossRef]

92. qbal, M.; Onyelowe, K.C.; Jalal, F.E. Smart computing models of california bearing ratio, unconfined compressive strength, and
resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest
regression techniques. Multiscale Multidiscip. Modeling Exp. Des. 2021, 4, 207–225.

http://doi.org/10.1016/j.scitotenv.2014.01.001
http://doi.org/10.1007/BF00058655
http://doi.org/10.1016/j.mtcomm.2021.103117
http://doi.org/10.3390/ma14051106
http://doi.org/10.1007/s41939-021-00093-7
https://www.sciencedirect.com/science/article/pii/S2214391221000982
https://www.sciencedirect.com/science/article/pii/S2214391221000982
http://doi.org/10.1016/j.trgeo.2021.100608
http://doi.org/10.1016/j.cscm.2022.e00955

	Introduction 
	ACI Approach towards Calculating Flexural Capacity 
	Experimental Database 
	Machine Learning Approaches 
	Artificial Neural Network (ANN) 
	Random Forest Regression (RFR) 

	Results and Discussion 
	Linear Correlation Matrix 
	Prediction Performance of the Developed Models 
	Sensitivity and Parametric Analysis 
	Comparison of ANN Model with ACI Formulations 

	Conclusions 
	References

