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Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage
renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function,
current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that
target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD.
Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated
after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven
official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth
factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective
tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can
exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands,
CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway
activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli,
including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and
other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved
in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney
damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this
process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing
to therapeutic strategies for CKD development and progression.

1. Introduction

Chronic kidney disease (CKD) is a devastating progressive
disease that affects 5–7% of the world’s population. CKD
has become a public health priority due to the increasing
incidence of type 2 diabetes mellitus, hypertension, obesity,
and aging [1]. CKD is characterized by diverse insults that
trigger persistent inflammation, development of fibrosis,
and loss of renal function ultimately leading to end-stage

renal disease. Nowadays, the therapeutic protocols applied
for the treatment against CKD have limited effectiveness
underscoring the importance of the development of new
molecular diagnostic approaches and therapeutic targets to
either prevent or delay the progression of renal diseases.

Many preclinical studies have shown that the epidermal
growth factor receptor (EGFR) can be a potential therapeutic
target for renal diseases, as we will review here. Activation of
the EGFR signaling pathway is linked to the regulation of
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several cellular responses, including cell proliferation,
inflammatory processes, and extracellular matrix regulatio-
n—all of them being involved in the onset and progression
of renal damage. Nowadays, there are seven official EGFR
ligands, including the following: EGF (canonical ligand),
transforming growth factor-α (TGFA), heparin-binding
EGF-like growth factor (HBEGF), amphiregulin (AREG),
betacellulin (BTC), epiregulin (EPR), and epigen (EPGN)
[2–7]. Recently, the connective tissue growth factor (CTGF/
CCN2) has been described as a novel EGFR ligand [7].
Among all EGFR ligands, CTGF has been considered as a
therapeutic target and a potential biomarker of human renal
diseases [8–15]. The aim of this review is to summarize the
contribution of EGFR pathway activation in experimental
kidney damage, with special attention to the regulation of
the inflammatory response and the role of some EGFR
ligands in this process.

1.1. The EGFR Activation Pathways. The binding of neuro-
transmitters, hormones, or growth factors (ligands) to their
membrane receptors produces biochemical changes inside
the cell, which lead to a specific response to the initial stim-
ulus. There are different groups of membrane receptors, all
defined by their signal transduction mechanisms; these
include ionotropic receptors, G protein-coupled receptors
(GPCRs), and receptors with tyrosine kinase (RTK) activity.
The EGFR (also known as HER1; ERBB1) is a transmem-
brane glycoprotein of 1186 aa (180KDa) that belongs to
the ERBB family of tyrosine kinase receptors, which is com-
posed of members such as HER2/neu (ERBB2), HER3
(ERBB3), and HER4 (ERBB4). EGFR comprises a cysteine-
rich extracellular domain (responsible for ligand binding),
a transmembrane domain, and an intracellular domain with
tyrosine kinase regions (activation domain) [16]. In most
cases, EGFR is activated either directly or indirectly, by
EGFR transactivation.

The first step of direct EGFR activation begins with the
binding of specific ligands to the receptor. The seven official
EGFR ligands have been extensively studied and share a com-
mon structure involved in EGF binding [17, 18], but infor-
mation about the novel described ligands, such as CTGF, is
scarce. EGFR ligands activate this pathway in different ways:
(1) direct activation by soluble ligands, (2) the juxtacrine
mode, when the ligand is anchored to the cell membrane,
(3) autocrine signaling, in which EGFR activation occurs in
the same cell, (4) the paracrine form if acting on a neighbour-
ing cell [19], and (5) the extracrine form, which combines
features of autocrine, paracrine, and juxtacrine signaling as
well as possibly endocrine signaling, since EGFR and AREG
can be detected in human plasma exosomes [20] (Figure 1).

All EGFR ligands can be found as soluble proteins, but
some of them are also present as biologically active precur-
sors anchored to the plasma membrane, including HBEGF,
TGFA, AR, and BTC. The release of EGFR ligands from
the cellular membrane is an important point in the EGFR
transactivation process [21–25]. Interestingly, EGFR trans-
activation can be prompted by physiological and nonphysio-
logical stimuli. The physiological stimuli capable of bringing
about this effect include chemokines, adhesion molecules,

and growth factors that require previous interaction with
its specific receptors (GPCRs or not). EGFR transactivation
by nonphysiological processes such as hyperosmolarity, oxi-
dative stress, mechanical stress, ultraviolet light, and γ radi-
ation is mediated by the inactivation of certain phosphatases
that antagonize the intrinsic kinase activity of the receptor,
thus allowing EGFR autophosphorylation [26].

The affinity of EGFR for its ligands depends on the tissue
and pathological condition. Most of the studies have been
done comparing the seven official EGFR ligands [17, 18].
These ligands display different ligand-biding affinities at
around 3 orders of magnitude [17, 18]. Moreover, depending
on the specific ligand that binds to EGFR, different cellular
responses can be activated. Structural studies have described
how EGFR activation occurs but ligand-related activation is
less understood [18]. After EGFR ligand interaction, the
receptor undergoes a conformational change leading to the
formation of homo- or heterodimers. Then, the intracellular
domain is activated in its tyrosine residues by phosphoryla-
tion, promoting the autophosphorylation of these same
residues in their homologue. Phosphorylated residues in turn
serve as a binding site for certain molecules that have
domains of SRC homology; this interaction leads to different
signaling cascades [27]. Earlier studies described that the dif-
ferent intracellular signaling triggered after EGFR activation
depends on the phosphorylation of certain residues in the
intracellular domain of the receptor. In SAA cells (NIH3T3
fibroblasts that overexpress human EGFR) stimulated with
EGF, treatment with a phosphopeptide that blocks the auto-
phosphorylation site Tyr1068 of EGFR induced a significant
inhibition of EGFR/Grb2 interaction and RAS/MAP kinase
activation [28]. EGFR activation translates signals to the
nucleus, modulating the activity of transcription factors
such as c-JUN, c-FOS, c-MYC, and NFKB and regulating
gene transcription [16]. In bronchial epithelium, EGFR acti-
vation is linked to phosphorylation of the tyrosine residue
(Tyr1173) associated with the activation of JNK, AP1, p38
MAPK, and NFKB pathways [29]. On the other hand,
SRC kinase protein can act as cotransducer of EGFR signals
and SRC-dependent EGFR activation mediated by EGFR
phosphorylation of Tyr 845 and Tyr 1101 [30, 31].

EGFR transactivation (indirect activation) is triggered
when different molecules bind to their specific receptors. A
variety of these molecules have been identified and can be
broadly categorized into the following groups: G protein-
coupled receptors (e.g., Ang II and ET-1), cytokines (e.g.,
TNFA, TWEAK, and other TNF receptor family proteins),
growth factors (e.g., TGFB and other proteins, including
TPA and LPA), integrins, ion channels, and other physical
stimuli [32–38]. Many of these molecules that transactivate
EGFR are very relevant in renal damage, including Ang II,
TGFB, and TNF receptor family proteins, showing the
importance of EGFR transactivation in renal pathology.
After the specific binding of these molecules to their own
receptors, several second messengers, including intracellular
Ca2+, reactive oxygen species (ROS), and protein kinases,
such as PKC, can be released [39–41]. These intracellular sig-
nals trigger a signaling cascade, leading to the activation of
metalloproteases/disintegrins from the family of ADAMs.

2 Mediators of Inflammation



In general, the EGFR ligands involved in EGFR transactiva-
tion are inactive transmembrane precursors located in the
cellular membrane which need to undergo proteolytic pro-
cessing and be released as soluble ligands into the extracellu-
lar medium in order to bind to EGFR [42], being the most
studied EGF, TGFA, and HBEGF. This proteolytic process-
ing is carried out by ADAMs. Therefore, EGFR transactiva-
tion via ADAMs leads to the release of EGFR from the
cellular membrane and subsequent binding to EGFR and
pathway activation. Alternatively, in some cases, EGFR
transactivation can occur independently of MMPs/ADAMs
and is mediated by intracellular protein kinases, as in the
case of Src kinase [43–46] (Figure 2).

1.2. ADAMs: Key Proteins in EGFR Transactivation. ADAMs
are a family of 23 glycoproteins expressed as transmembrane
surface proteins consisting of an extracellular metalloprotein-
ase domain followed by a disintegrin-like domain, a cysteine-
rich domain, a transmembrane domain, andfinally a cytoplas-
mic tail. Their proteolytic activity is mediated by the zinc-
dependentmetalloproteinase domain, with the other domains
contributing to substrate recognition and regulation. These
domains give them its characteristics of adhesion molecules
and proteases [47]. The first ADAMs described were involved
in reproductive functions, mainly spermatogenesis and the
attachment of sperm to the ovule (ADAM1 and ADAM2).
However, only 12 of the human ADAMs (ADAM8, 9, 10, 12,
15, 17, 19, 20, 21, 28, 30, and 33) contain a functional catalytic
consensus sequence (HEXGEHXXGXXH). The physiological
function of the proteinase-inactive ADAMs (ADAM2, 7, 11,
18, 22, 23, 29, and 32) remains largely unknown, although

some members of this group play important roles in devel-
opment and function as adhesion molecules rather than
proteinases [48, 49]. Numerous transmembrane proteins
have been identified as targets of ADAM-mediated proteol-
ysis [50]. Some of these substrates can be cleaved by differ-
ent ADAMs, while others appear to be specific to an
individual ADAM.

Recently, the roles of different ADAMs such as ADAM9,
10, 12, 15, 17, and 19 in the release and/or activation of cell
surface proteins have been described. Among those proteins
cleaved by ADAMs are several EGFR ligands, such as EGF,
TGFA, and HBEGF [47, 51]. Depending on the tissue, differ-
ent ADAMs may be involved in the release of the EGFR
ligands. For example, kidney angiotensin II- (Ang II-)
induced transactivation of EGFR is mediated by ADAM17
and by the release of TGFA [52], while in the heart, ADAM12
regulates this process through the release of HBEGF [53].

These glycoproteins are synthesized in the Golgi appara-
tus; under the action of the furin protease, they undergo a
conformational change that induces activation. In their
active form, they are transported to the plasma membrane
where they exert their sheddase activity on the inactive pre-
cursors of the EGFR ligands. Functional upregulation of
ADAM activity is generally observed in association with
cytosolic Ca2+ elevation, purinergic receptor agonists, or
membrane-perturbating agents. In some cases, such as
ADAM17, sheddase activity is amplified by other signaling
pathways, including activation of protein kinase C (PKC)
and receptor tyrosine kinases. Furthermore, certain physico-
chemical properties of the lipid bilayer also govern the action
of ADAM proteases [54].

Ce
ll 

2
Ce

ll 
1

(A) Autocrine
signaling

(B) Juxtacrine
signaling (C) Extracrine

signaling

Cell 3

(D) Paracrine
signaling

Intracellular medium

Intracellular medium

In
tr

ac
el

lu
la

r m
ed

iu
m

EGFR

EGFR ligand

ADAMs

EGFR
proligand

Figure 1: Types of signaling via epidermal growth factor receptor (EGFR) ligands: (A) the autocrine form if EGFR activation occurs in the
same cell; (B) the juxtacrine form, when the ligand is anchored to the cell membrane; (C) the extracrine form, which combines features of
autocrine, paracrine, and juxtacrine signaling as well as possibly endocrine signaling; and (D) the paracrine form if acting in a
neighbouring cell. Adapted from Singh et al. 2016.
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Once these precursors are proteolytically processed, they
are released into the extracellular environment and can inter-
act with EGFR and activate this signaling pathway [42].
Therefore, modulation of ADAM activity is of paramount
importance to EGFR activation. Indeed, several strategies
for ADAM inhibition are being considered as pharmacolog-
ical targets. Thus, therapeutic strategies have focused on the
inhibition, induction, and activation of ADAM expression as
well as the use of small molecules blocking the active site and
events blocking the domain for substrate recognition [55].

1.3. EGFR in Pathological Processes. Malfunctioning of
EGFR, or its related pathways, has been shown to be rele-
vant to the pathogenesis of several malignancies, playing a
role in the development of ovarian, breast, and colorectal
cancers as well as non-small cell lung and head and neck
carcinomas [56]. Moreover, a strong correlation between

EGFR expression and prognosis has been found in ovarian,
head and neck, bladder, and esophageal cancers [57]. Thus,
anti-EGFR therapy could have a place in the treatment of
some of these tumors; in fact, the use of erlotinib or cetux-
imab may be employed as second-line therapy after failure
of mono- or polychemotherapy in squamous cell lung carci-
noma [58]. Recent studies suggest that EGFR activation can
be involved in inflammatory diseases. Overexpression of
EGFR may be related to a number of skin disorders, such
as psoriasis or atopic dermatitis [59]. Apart from these
spontaneously occurring diseases, it has been described that
inhibition of EGFR by either monoclonal antibodies or
small-molecule EGFR tyrosine kinase inhibitors brings
about a monomorphic acneiform reaction, which, interest-
ingly, is directly correlated with overall survival [60]. EGFR
blockade is being explored as a new treatment for the dis-
ease [61], and future studies on inflammation are needed.
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Figure 2: Different EGFR signaling systems in the inflammatory process: (A) direct ligand-receptor activation: the first step for the direct
activation of EGFR begins with the binding of the ligand to the receptor. In general, EGFR ligands are located as inactive transmembrane
precursors, which, in order to bind to their receptor, need to undergo proteolytic processing and be released as soluble ligands into the
extracellular medium. This proteolytic processing is carried out by metalloproteases/disintegrins of the ADAM family. (B) Indirect ligand-
receptor activation/transactivation: this process is triggered by the binding of molecules such as Ang II, thrombin, and ET1 to their
specific receptor. After this binding, the release of second messengers is induced, such as intracellular Ca2+, ROS, and certain protein
kinases such as PKC, which induces activation of metalloproteases/disintegrins of the family of ADAMs. After EGFR ligand interaction,
the receptor undergoes a conformational change inducing the formation of homo- or heterodimers. Then, the intracellular domain is
activated in its tyrosine residues by phosphorylation, promoting the autophosphorylation of these same residues in their homologue.
Phosphorylated residues in turn serve as a binding site for certain intracellular kinases that are capable of activating EGFR independently
to MMPs, as in the case of the SRC kinase.
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1.4. EGFR in the Kidney in Normal and Pathological
Conditions. EGFR is expressed in the kidney, specifically
localized in the glomerulus and the tubulointerstitial com-
partment [62]. This receptor plays a key role in renal electro-
lyte homeostasis [42]. However, its role in renal pathology is
somewhat contradictory since both beneficial and deleterious
actions have been found. Interestingly, upregulation of the
EGFR pathway (including several of its ligands, as TGFA,
HBEGF, and CTGF) has been described in human and
experimental chronic renal pathologies, including glomeru-
lonephritis, diabetic nephropathy, transplant rejection, and
polycystic kidney disease [63–65], as well as in experimental
models of acute kidney injury (AKI), such as ischemia/
reperfusion or folic acid administration [66–68]. Intensive
research in many experimental studies has shown that EGFR
blockade exerts beneficial effects in progressive kidney dis-
ease, mainly ameliorating fibrosis [69, 70]. However, EGFR
inhibition in AKI models exerts opposite results, presenting
deleterious effects. Studies in models of ischemic injury using
waved-2 mice (an EGFRmutation that induces a reduction in
receptor tyrosine kinase activity) and wild-type mice treated
with the EGFR kinase inhibitor erlotinib showed significantly
decreased renal function in the depleted/treatedmice [71, 72].
On the contrary, activation of the EGFR pathway can
accelerate renal recovery in the early AKI phase by means
of a mechanism that involves induction of renal tubular cell
regeneration and protection of these cells from apoptosis,
as demonstrated by the in vivo administration of several
ligands (EGF, HBEGF) in experimental acute ischemic injury
[69, 73–78]. These data were confirmed in vitro in cultured
proximal tubular epithelial cells, in which activation of EGFR
by the ligands EGF [76], HBEGF [46], and EPR [78, 79]
induced cell proliferation and migration, supporting their
protective role in renal repair after AKI. Thus far, there are
no studies of CTGF modulation in experimental AKI.

Interestingly, the consequences of EGF signaling activa-
tion depend on species. In models of hydronephrosis, EGF
administration causes cell death in mice, while it induces
cell survival in rats [80]. Moreover, in a rat model of
cisplatin-induced nephrotoxicity, the EGFR inhibitor erloti-
nib induced renoprotective properties by modulation of apo-
ptosis and proliferation of tubular cells [81].

1.5. Official and Novel Described EGFR Ligands and Signaling
in Renal Physiopathology. Most EGFR ligands have a similar
globular structure, with a common fold defined by six con-
served cysteine residues that form three disulphide bonds,
termed EGF motifs, through which they interact with EGFR
[82–86]. In contrast, CTGF does not possess an EGF motif
and interacts with EGFR through its C-terminal domain
[7] and future studies are needed to compare its structural
binding to EGFR with other ligands. Several EGFR ligands
contain amino-terminal heparin-binding domains (HBEGF
domains), including HBEGF, AR, and CTGF [87, 88].
Contradictory results have been also reported in diabetic
nephropathy. For instance, high glucose induces transactiva-
tion of EGFR and profibrotic responses in mesangial cells by
increasing HBEGF release [89, 90]. However, Dey et al. [91]
reported a beneficial effect of ADAM-mediated EGFR

transactivation by bradykinin, leading to a decrease of podo-
cyte permeability. EGFR ligands have generally been classi-
fied based on their interaction with EGFR and can be
categorized into two classes: high affinity or low affinity.
The high-affinity ligands are EGF, TGFA, HBEGF, and
BTC, which bind to EGFR and have a dissociation constant
(Kd) of between 1 and 100nM, while the low-affinity ligands,
AR, EPR, and EPGN, have a Kd greater than 100nM [17].
CTGF has a Kd of 126 nM, which places it within the group
of ligands of lower affinity [7].

1.6. EGF (Canonical Ligand). EGF is the canonical EGFR
ligand and the one with the highest EGFR affinity described
to date. EGF was identified from submaxillary gland extracts
during nerve growth factor studies [92]. The kidney is the key
source for EGF production, and several studies have identi-
fied elevated urine EGF levels as an independent risk factor
for CKD progression [93–97].

EGF is produced in the kidney as a membrane-anchored
prepro-EGF located in the apical membrane of epithelial cells
[93, 98, 99]. Earlier studies conducted in rats showed positive
EGF immunostaining, mostly in the proximal tubules, as well
as increased EGFmRNA levels in the thick ascending limb of
Henle’s loop and distal convoluted tubules [100, 101]. EGF
regulates physiological processes in the kidney. Several stud-
ies have shown the important role of EGF on sodium and
magnesium transport through the regulation of epithelial
ion channels such as epithelial sodium channel (ENaC) or
Na+/K+/2Cl− cotransporter (NKCC1), among others [102–
105]. Many studies have described the importance of EGF
in polycystic kidney diseases [106–108] as well as the role
of EGF in cell proliferation, including in tubular epithelial
cells [109, 110]. Exogenous EGF administration has been
found to reduce tissue injury caused by ischemia/reperfusion
injury (IRI) showing beneficial antiapoptotic and antioxidant
effects [111–113]. However, in vitro studies described proox-
idative effects. In mammalian cells, EGF enhances the pro-
duction of intracellular reactive oxygen species by dual
oxidase 1 [114] and these oxidative species, which are
induced by EGF, modulate ADAMs (positive regulator of
EGFR signaling) or protein tyrosine phosphatases (negative
regulator of EGFR signaling) [115–118]. AKI is a multifacto-
rial pathology characterized by renal tubular damage, inflam-
mation, and, frequently, a transient decrease in renal
function. After the initial injury, there is a recovery phase,
associated with proximal tubular cell proliferation and
migration (as part of a regeneration process). But if this
regenerative process fails to resolve, it may lead to fibrosis
and loss of renal function [42, 119, 120]. Several experimental
studies have shown the involvement of EGF in renal regener-
ation after IRI damage [121–123], but studies on EGF signal-
ing in renal inflammation are scarce.

1.7. Transforming Growth Factor-α (TGFA). TGFA is one of
the most widely studied EGFR ligands. TGFA is expressed in
normal adult human kidney [121], and TGFA protein is
detected in the urine of healthy human subjects [122]. Several
experimental models of renal damage have described upreg-
ulation of TGFA. In an experimental model of renal mass
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reduction, elevated TGFA protein levels were markedly
increased after nephron reduction and prior to the develop-
ment of renal lesions [123]. Experimental studies have dem-
onstrated the involvement of TGFA in renal fibrosis, as in
the model of Ang II-induced renal damage [52]. Moreover,
elevated mRNA expression levels of TGFA were found in
inflammation-induced renal damage triggered by systemic
administration of TWEAK. In addition, treatment with a
pharmacological inhibitor of ADAM17 (WTACE2) dimin-
ished renal inflammation associated with downregulation
of TGFA and inhibition of EGFR pathway activation [38].
In in vitro studies in cultured tubular epithelial cells, stimu-
lation with recombinant TGFA upregulated proinflamma-
tory gene expression [38]. In these cells, upregulation of
proinflammatory cytokines and chemokines induced by
stimulation with aldosterone and TWEAK was blocked by
a TGFA-neutralizing antibody [124]. Additionally, in Xeno-
pus 2F3 cells, chronic treatment with TGFA over 24 hours
inhibits the epithelial sodium channel ENaC by decreasing
the number of channels in the membrane through the mod-
ulation of MAPK1/2 pathways but acute treatment with
TGFA for 1 hour activates ENaC via PI-3 kinase [125]. In
models of middle cerebral artery occlusion in mice and rats,
TGFA treatment significantly reduced infarct size, suggest-
ing that TGFA can induce angiogenesis, neurogenesis, and
neuroprotection after stroke [126, 127].

Several studies have investigated the effect of TGFA loss
on different pathological conditions. Research using a model
of acute intestinal mucositis in TGFA knockout mice
described that the lack of TGFA in intestinal epithelial cells
resulted in higher apoptosis and lower proliferation [128].
In a model of bleomycin-induced lung injury, TGFA-null
mice exhibited diminished pulmonary inflammation and
fibrosis compared to wild-type mice [129]. Another study
about peripheral nerve injury showed that TGFA knockout
mice have no effect in regeneration process, probably due
to compensatory expression mechanisms of other EGFR
ligands [130]. These studies demonstrated that EGF-related
growth factors could present specific and unique functions
in certain tissues and cells.

1.8. Heparin-Binding Epidermal Growth Factor (HBEGF).
HB-EGF is a 22 kDa protein originally identified in
macrophage-like U-937 cells [131]. HBEGF is synthesized
as a transmembrane precursor protein (pro-HBEGF) that
can be cleaved by metalloproteinases such as ADAM17 to
release a mature soluble HB-EGF (sHBEGF), a different form
that is more functionally active in vivo than the precursor
protein [82, 132]. The soluble form of HBEGF is capable of
linking to heparan sulfate proteoglycans present in the cell
surface, favouring local expression and accumulation of
growth factors [133]. HBEGF participates in several physio-
logical and pathological events, including wound healing
[134], atherosclerosis [135], and tumor progression [136].

Some studies have analysed the role of HBEGF in renal
pathology. Studies carried out on HBEGF-deficient mice
showed the involvement of this ligand in podocyte damage
in progressive glomerulonephritis. The loss of HBEGF was
associated with lower renal inflammatory infiltration and

decreased albuminuria levels prior to the appearance of renal
cell proliferation [137]. Several studies using mice with
specificHBEGF deletion in endothelium demonstrated atten-
uated renal damage in streptozotocin- (STZ-) induced dia-
betic renal injury [138] and in response to Ang II infusion
[139]. In these conditional knockout mice, the inflammation
in the perivascular area or renal interstitium (tested by F4/80-
and CD3-positive stained cells) and the renal fibrosis caused
by Ang II were significantly reduced compared to those in
control mice [139]. Pharmacological blockade of ADAM17
by WTACE2 in a model of renal injury induced by TWEAK
administration reduced HBEGF renal mRNA expression
levels associated with lower inflammatory cell infiltration
[38]. In vitro studies have clearly demonstrated that HBEGF
regulates cell proliferation, including in glomerular epithelial
cells [69, 140], and also regulates proinflammatory gene
expression, as observed in cultured tubular epithelial cells
[38]. In inner medullary collecting duct cells, the sustained
exposure to sHBEGF induces the transition from an epithe-
lial to a mesenchymal phenotype by upregulating the E-
cadherin transcriptional repressor SNAIL2, thus contribut-
ing to renal fibrosis [141].

1.9. Amphiregulin (AREG). AREG is constitutively expressed
in different cell types during development and homeostasis
[142] and participates in several physiological processes,
including the regulation of pulmonary morphogenesis [143]
and the proliferation of keratinocytes [144]. Although AREG
was originally described as an epithelial cell-derived factor,
multiple studies have shown that it can also be expressed by
activated immune cells in different inflammatory processes.
Emerging evidence shows that AREG plays a critical role in
restoring tissue integrity after infection or inflammation
[145–148] and induces tolerance by promoting the restora-
tion of tissue integrity after damage associated with acute or
chronic inflammation [149, 150]. The immune system plays
an important role in the EGFR signaling pathway, thus con-
tributing to the progression of the inflammatory process. Cells
such as basophils express high amounts of AREG after expo-
sure to IL3 [151] and other types of immune cells such as neu-
trophils, CD8 T cells, and T regulatory lymphocytes [149].
Interestingly, AREG is expressed only in proinflammatory-
type M1 macrophages [152]. Inflammation, ischemia, and
hypoxia induce AREG expression in the brain. Under these
situations, glial cells show upregulation of AREG, which pro-
tects against neuronal cell death. In neuro-2a cells, adminis-
tration of AREG inhibits endoplasmic reticulum stress and
cell death [153].

There are few studies about the role of AREG in kidney
damage. In autosomal dominant polycystic kidney disease,
the use of anti-AREG antibodies and inhibitors of activator
protein-1 (AP1) can reduce cell proliferation in cystic cells
by reducing AREG expression and EGFR activity [154]. In a
model of streptozotocin-induced diabetes, the genetic block-
ade of EGFR or pharmacological inhibition using erlotinib
showed a downregulation of phospho-AKT, CTGF, and
AREG expression compared to that in diabetic mice [155].
However, there are no studies assessing the role of AREG gene
deletion of direct modulation in experimental renal disease.
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1.10. Betacellulin (BTC). BTC was first described in 1993 by
Shing and et al. as a mytogen from pancreatic B cell tumors
[5]. BTC was detected in the normal kidney at low levels;
its location in the nephron remains unclear [156]. BTC could
have different roles depending on the organ where it is
expressed. A murine model of BTC overexpression demon-
strated a reduction in body weight in BTC transgenic ani-
mals, which was accompanied by a reduction in kidney and
pancreas weight, whereas the lungs of these animals were
overgrown and their hearts had the same weight as those in
controls [157]. Regarding inflammation, few studies have
evaluated the role of BTC in this process, and to our knowl-
edge, there is none in the kidney. One study demonstrated
that BTC upregulates COX-2 expression in human granulose
cells [158]. With regard to particular diseases, elevated BTC
levels have been described in rheumatoid arthritis patients
[159] and other authors observed that BTC overexpression
protects against acute pancreatitis by activating stress-
activated protein kinase [160].

1.11. Epiregulin (EPR). EPR was originally purified from con-
ditioned medium of the fibroblast-derived tumor cell line
NIH3T3/T7 [6] and is another example of the less widely
studied EGF ligands. Higher EPR concentrations were found
in patients with inflammatory diseases [161], including
patients suffering from rheumatoid arthritis [159]. In this
pathology, EPR inhibition suppresses the development of
experimental autoimmune arthritis [161]. EPR regulates
several immune-related processes. EPR is involved in
peptidoglycan-mediated proinflammatory cytokine produc-
tion in antigen-presenting cells and in innate immunity
[162]. In a model of wound healing in corneal epithelial cells,
EPR knockout mice presented an increased number of infil-
trating cells in the wound area and this difference was related
to the upregulation of several proinflammatory factors,
including IL6, CXCL1, CXCL2, and CCL2 [163]. In the kid-
ney, EPR promotes proliferation and migration of renal
proximal tubular cells [78]. In 2016, Boyles et al. [164] com-
mented on unpublished data with regard to the potential
beneficial effects of a specific EPR neutralization antibody
in experimental diabetes. However, the direct role of EPR
on kidney inflammation requires further study.

1.12. Epigen (EPGN). EPGN was first identified in 2001 by
Lorna Strachan. It consists of 152 amino acids and a trans-
membrane domain. EPGN is present in many tissues such
as the testes, heart, and liver and is characterized as a low-
affinity ligand [165, 166]. Several studies have shown that
EPGN participates in cell proliferation. EPGN is a mitogen
for HaCaT cells [165]. In epithelial cells, EPGN stimulates
phosphorylation of c-ERBB1 and MAP kinase proteins
[165]. The EPGN transgenic overexpression during embry-
onic development induces sebaceous gland hyperplasia
[167], and the activation of NRF2 causes sebaceous gland
enlargement in an EPGN-dependent manner [168]. EPGN-
null mice exhibit peripheral demyelinating neuropathy that
induces muscular dystrophy [169]. Data on inflammation,
however, is scarce. One study described the involvement of
EPGN in the inflammatory process in the skin via ERK

pathway activation [170]. Other studies reported that
recombinant EPGN is unable to activate ERBB2 in the pres-
ence of other ERBBs. Additionally, soluble EPGN has more
mitogenic activity than EGF, although its binding affinity is
lower [171].

1.13. The Two Unofficial/Novel Ligands

1.13.1. Teratocarcinoma-Derived Growth Factor 1 (TDGF1;
CRIPTO1; CR-1). CRIPTO1 is another molecule that binds
to EGFR but differs to official EGFR ligands because it does
not possess an EGF-like motif. In addition to binding to
EGFR, CRIPTO1 also acts as a coreceptor for the TGFB sub-
family. CRIPTO1 is critically important in early embryogen-
esis, maintenance of stem cells, and the progression of some
types of cancer [172]. There are few studies on the role of
this EGFR ligand in pathophysiological processes. A cancer
study reported that CRIPTO1 was expressed in a certain
type of non-small cell lung cancer that causes intrinsic resis-
tance to specific inhibitors of EGFR tyrosine kinase activity
and participates in EMT [173]. A recent study suggests a
potential role of this EGFR ligand in cardiac repair. In
human cardiac ventricular fibroblasts, CRIPTO1 production
was increased in response to reparative factors, such as
NRG1B, and the blockade of PI3K, ERBB2, and ERBB3 by
pharmacological inhibitors or neutralizing antibodies signif-
icantly reduced CRIPTO1 levels [174]. Currently there are
no studies about the role of CRIPTO1 in inflammatory pro-
cesses or in kidney diseases.

1.13.2. Connective Tissue Growth Factor (CCN2/CTGF): A
Newly Described EGFR Ligand. CTGF (also known as
CCN2) is a cysteine-enriched secretable matricellular protein
with a molecular weight of 38 kDa. CTGF was identified in
the conditioned medium of endothelial cells of the umbilical
cord vein [175]. This protein has a modular structure made
up of a secretory peptide at the N-terminal end followed by
4 functional modules [176]: (1) the insulin-like growth fac-
tor- (IGF-) binding domain, which stimulates the production
of matrix proteins in renal cells [177–179]; (2) the von Will-
ebrand factor type C domain, which is rich in cysteines and
participates in protein oligomerization and synthesis. In
Xenopus cells, CTGF binds directly to TGFB through this
domain and promotes binding to its receptor, leading to the
activation of the Smad response promoter [180]; (3) the
thrombospondin-1 domain, which is involved in the union
of soluble macromolecules or matrix proteins and partici-
pates in the union of CTGF to VEGF [181, 182]; and (4)
the C-terminal domain, a dimerization domain involved in
binding to the cell surface, possesses mitogenic activity for
fibroblasts, and is responsible for the interaction with fibro-
nectin [183]. This domain contains heparin-binding EGF
sites [87, 88] and a region with a cysteine knot motif that
resembles PDGF, TGFB, and NGF [184]. Finally, the N-
terminal domain contains putative binding sites for IGF
and TGFB.

Between module 2 and module 3, there is a hinge region
that can be processed by multiple proteases, including the
MMPs 1, 2, 3, 7, 9, and 13, generating two protein portions
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(one with the N-terminal domain and the other with the C-
terminal domain), both with biological activity. This region
can also be proteolyzed by elastase and plasmin, which can
cleave the individual modules to produce four fragments
[185]. In addition, it has been observed in vitro that MMP2
processes CTGF, thereby generating the C-terminal fragment
of 10–12 kDa. In biological fluids and in the medium of cells
in culture, the presence of CTGF has been described in its dif-
ferent forms: complete molecule CTGF, C-terminal frag-
ment, and the N-terminal fragment [186, 187]. However,
the in vivo biological effects of CTGF and its fragments have
not been investigated in depth.

1.14. Role of CTGF in Pathological Processes: A Key Mediator
in Renal Inflammation. CTGF plays an important role in
multiple cellular processes such as development, differentia-
tion, cell proliferation, extracellular matrix (ECM) remodel-
ling, and angiogenesis [8]. According to the cell type, a
large variety of factors and molecules are involved in the
induction and regulation of CTGF expression, including
GPCR agonists, such as Ang II; growth factors such as TGFB,
BMP, VEGF, IGF, GMCSF, and IL4; high concentrations of
glucose; AGEs; hypoxia; mechanical stress; and oxidative
stress [188–196].

CTGF is a developmental gene that is not expressed in
adult tissues. However, under pathological conditions, CTGF
could be induced in several diseases such as scleroderma, pul-
monary fibrosis, and hepatic fibrosis [178, 196, 197] and in a
multitude of renal diseases, including diabetic nephropathy
[10, 198, 199]. In several independent studies, CTGF has
been proposed as a biomarker for human diabetic nephropa-
thy and other forms of CKD [8, 10–12] and also for cardiac
dysfunction in patients exhibiting myocardial fibrosis and
chronic heart failure [13]. Plasma CTGF levels predict end-
stage renal disease and mortality in diabetic nephropathy
[12]. Moreover, urine CTGF can also be used as predictor/
biomarker of CKD, including diabetic nephropathy [9, 10,
14]. Patients with reduced right ventricular function had
higher plasma CTGF levels than those with normal or mildly
reduced right ventricular function [15].

Initial studies demonstrated the role of CTGF as a medi-
ator of the profibrotic action of TGFB [200] and other factors
involved in renal damage, such as Ang II [201] or endothelin-
1 [202]. Additionally, experimental studies showed that
blockade of endogenous CTGF using different approaches,
including antisense oligonucleotides or gene silencing,
demonstrated beneficial effects in fibrotic-related diseases,
including experimental lung, liver, and vascular damage, as
well as models of chronic renal damage, including diabetic
nephropathy [200, 201, 203–205]. Interestingly, CTGF exerts
opposite effects in other pathologies in much the same way
as other EGFR ligands. CTGF overexpression conferred car-
dioprotection in Ang II-infused mice and in ischemia-
reperfusion injury [206, 207]. However, the role of CTGF
in AKI has not been investigated in depth. A recent study
by our group described the beneficial effects of CTGF gene
deletion, reducing proliferation, the induction of the G2M
phase of cellular cycle, and fibrosis in the kidney using a
model of CTGF injection over 10 days [70]. Near total

inhibition of CTGF below baseline levels reduced tubuloin-
terstitial fibrosis in different models of renal damage, such
as folic acid administration or obstructive nephropathy
[70, 208].

Many reports suggest that CTGF can also be considered a
cytokine involved in the regulation of immune and inflam-
matory responses. CTGF can activate several cells of the
immune system. CTGF is a chemotactic factor for immune
cells, including mononuclear cells [209], and induces cell
adhesion and migration [210]. In human CD4 lymphocytes,
CTGF, in combination with IL16, contributes to Th17 differ-
entiation [211]. Interestingly, monocyte-derived macro-
phages do not produce CTGF on stimulation with TGFB,
lipopolysaccharide, but CTGF is taken up by macrophages
in vitro [209]. In an early study, our group demonstrated that
in vivo administration of the C-terminal CTGF fragment
induced an acute renal inflammatory response, characterized
by infiltration of inflammatory cells in the kidney (lympho-
cytes and macrophages) and activation of the NFKB and sub-
sequent induction of proinflammatory factors such as CCL2,
CCL5, and IL6 [212]. In later studies, we found that CTGF
induces a sustained renal inflammatory response linked to
activation of the Th17 response, characterized by the pres-
ence of interstitial infiltration of Th17 (IL17A+/CD4+) cells
and upregulation of Th17-related factors (STAT3 and
RORγt) [211]. Recent evidence suggests that CTGF can also
regulate inflammation in other pathological conditions.
Studies performed with conditional CTGF knockout mice
have found lower macrophage accumulation and downregu-
lation of proinflammatory factors in peritoneal-induced
damage [213]. In experimental models of alcohol-induced
inflammatory process in the pancreas, overexpression of
CTGF in mice plays a novel role, regulating inflammation
by increasing infiltration of macrophages and neutrophils
and increasing inflammatory mediators such as IL1B or
CCL3 [214]. In another study in a model of skin fibrosis
induced by Ang II, pharmacological blockade with a neutral-
izing antibody against CTGFmitigated the inflammation and
fibrotic process in the dermis and diminished the number of
cells expressing PDGFRB, procollagen, αSMA, pSMAD2,
CD45, and FSP1 [215].

Recent studies have analysed the relationship between
CTGF and other signaling pathways. Several have demon-
strated the crucial role played by integrins, proteoglycans
heparan sulfate, and low-density protein receptors in CTGF
cellular responses [216]. The existence of CTGF binding sites
in the cell membrane was suggested in 1998 in chondrocyte
studies [217]. In 2005, a potential CTGF receptor was
described in mesangial cells, the receptor tyrosine kinase of
nerve growth factor (TRKA), a member of the TRK mem-
brane receptor family (TRKA, TRKB, and TRKC) [218].
Some studies have confirmed that CTGF also activates TRKA
in murine cardiomyocytes and tubuloepithelial cells [7, 219].
In 2013, we described that CTGF can bind to EGFR through
its C-terminal module and via a process modulated by αVβ3
integrin [7]. The CTGF-EGFR interaction activates this sig-
naling pathway linked to the modulation of proinflammatory
factors and the recruitment of lymphocytes and macrophages
in the kidney [7]. At the vascular level, we also observed that
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CTGF-EGFR activation is linked to the oxidative process,
endothelial dysfunction, and vascular inflammation through
the NOX1 and NFKB pathways [220]. These results demon-
strate that the activation of the EGFR pathway by the new
ligand CTGF regulates inflammatory processes (Figure 3)
and identify EGFR as a potential therapeutic target for the
treatment of chronic kidney disease and vascular diseases
closely linked with kidney damage.

In summary, EGFR activation has dual effects in AKI or
CKD, ameliorating renal damage in experimental AKI by
activating the regenerative process that occurs following
acute renal damage through the induction of proliferation
and migration of tubular cells. In contrast, EGFR activation
exerted deleterious effects on CKD by activation of a
fibrotic-related process, as observed in long-term models of
renal damage [42, 70, 119, 120] (Figure 3).

1.15. Role of ERBB Crosstalks in Renal Inflammation. Previ-
ous studies described the possible crosstalk between EGFR
and other receptors. The most obvious EGFR crosstalk is
related to its heterodimerization with other members of the
ERBB family (ERBB2, ERBB3, and ERBB4), whose function
is amplifying and diversifying the signals [221–223].

Depending of the type of dimerization of ERBB1 (with
itself or with other ERBB receptors as ERBB2), the signaling
is very different [224, 225]. Only ERBB1/EGFR, ERBB3, and
ERBB4 are able to bind ligands, an obligatory process for
activation of the tyrosine kinase domain and intracellular sig-
naling [226, 227]. ERBB2 has no known ligands, and it acts as
a signal transducer in the recruitment of other components
of the heteromeric complexes like ERBB1, ERBB3, or ERBB4
[228, 229]. ERBB3 has no kinase activity, and the biological
relevance of the complex formation with other ERBB recep-
tors (ERBB2-ERBB3 and ERBB2-ERBB4) has been analysed
in studies with ERBB2,3,4-null mice [230–233].

As described above, EGFR transactivation can be induced
by several GPCRs, different cytokines, integrins, and diverse
tyrosine kinase receptors (TKRs) [36, 234, 235]. Moreover,
it is possibly a crosstalk induced by ligand-independent
EGFR transactivation, which consists of physical interactions
between EGFR and other receptors such as platelet-derived
growth factor receptor (PDGFR) [236] or IGF1R [237] and
c-MET [238].

Several studies developed in monocytes have described a
crosstalk between EGFR and GPCRs, linked to the regulation
of inflammatory responses. The pharmacological blockade of
EGFRorN-formyl-l-methionyl-l-leucyl-phenylalanine (fMLP)
receptor, with AG1478 or cyclosporine H, respectively,
decreased oxidative stress, CD11b upregulation, and EGFR/
fMLP phosphorylation induced by their respective ligands.
This crosstalk is SRC and ERK dependent [239]. In cervical
cancer, GPCR TF-PAR2 (tissue factor protease-activated
receptor 2) transactivates EGFR and mediates resistance to
cisplatin, decreasing cisplatin-induced apoptosis [240].
Another study in monocytes has described a crosstalk
between EGFR and TRKA in response to the stimulation of
GPCRs [239], which further confirms the interaction
between these two receptors. TRKA is a member of the
TRK membrane receptor family (TRKA, TRKB, and TRKC).

These receptors interact with neurotrophins and form homo/
heterodimers with the low-affinity neurotrophin receptor,
p75NTR [241].

There are few studies about EGFR crosstalks in renal
inflammation. Most of them are related to EGFR transacti-
vation. Lautrette et al. [52] demonstrated a possible cross-
talk between EGFR and Ang II receptors in the kidney. In
this in vivo study, the authors showed that Ang II is capable
of transactivating EGFR and overexpression of a dominant
negative isoform of EGFR prevents the frequency and
severity of renal lesions in Ang II mice as well as interstitial
cell infiltration.

In rat renal fibroblasts, palmitic acid (PA) activated the
EGFR signaling pathway through TLR4/c-Src signaling. Pre-
vious studies described that fatty acids directly activate Toll-
like receptor 4 (TLR4) and this process can induce c-SRC
kinase activation [242]. In NRK-52E cells, the pharmacolog-
ical blockade of EGFR or c-SRC previous to PA stimulation
suppressed EGFR activation and its downstream signaling
pathways ERK and AKT, closely related with renal inflam-
mation and oxidative stress. The genetic silencing of TLR4
through siRNA transfection blocked the PA-induced phos-
phorylation of EGFR, c-SRC, ERK, and AKT [243].

A study carried out in hepatocyte growth factor (HGF)
transgenic mice demonstrated that the HGF/c-MET system
significantly reduced LPS-induced renal and vascular injuries
by the diminution of inflammation and ROS production,
though EGFR ubiquitin degradation [244].

In vitro studies have described an EGFR crosstalk with
aldosterone receptors. In cultured tubular epithelial cells,
aldosterone caused EGFR transactivation, by a process medi-
ated by ADAM17 and release via TGFB, and upregulated
proinflammatory genes, via ERK and STAT1 activation
[124]. In mesangial cells, aldosterone also activates EGFR
linked to ROS production, ERK signaling, and modulation
of cell growth [245].

A study developed in renal cells using gene silencing and
pharmacological inhibitors of EGFR and TRKA demon-
strated a clear crosstalk between EGFR and TRKA in
response to stimulation with CTGF [7]. The analysis of the
phospho-proteomic profiles of TRKA and EGFR shows a
considerable similarity in the signaling originated by these
RTKs [246]. EGFR crosstalk with TNF-related proteins is
also involved in renal inflammation. TWEAK, a TNF mem-
ber, is a cytokine that engages its receptor Fn14 to activate
ADAM17, which releases the mature ligands HBEGF and
TGFA that, in turn, transactivate EGFR. In cultured tubular
epithelial cells, Fn14 gene silencing inhibited TWEAK-
induced EGFR phosphorylation. Conversely, EGFR inhibi-
tion blocked TWEAK-induced responses, including activa-
tion of the ERK kinase pathway and upregulation expression
of proinflammatory factors [38]. Moreover, pharmacological
EGFR blockade inhibited TWEAK-induced renal inflamma-
tion. In vitro studies in renal cells have described that CTGF
is involved in TGFB-induced EGFR transactivation [7]. How-
ever, the functional consequence of this EGFR/TRII crosstalk
has not been investigated.

In conclusion, there are some possible crosstalks between
ERBB1 and other receptors and their different interaction
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will trigger diverse signaling pathways, as well as amplify and
diversify the intracellular signals related to inflammation and
other key processes in kidney diseases. However, more stud-
ies in this topic are needed.

1.16. Therapy Targeting the ERBB1 Receptor in Kidney
Disease. Several experimental studies have suggested that
blocking EGFR could be an important tool to treat kidney
diseases [42], especially by regulating inflammation, cell
proliferation, and fibrosis [7, 38, 69]. Studies conducted in
an autosomal recessive polycystic kidney model showed
that treatment with an EGFR kinase inhibitor decreased
the formation of cysts and improved renal function. In
addition, similar results were observed using WAVED-2
mutant mice (which present a point mutation in EGFR that
reduces their 90% tyrosine kinase activity) [247]. In subse-
quent studies using the same mice model, it was observed
that the beneficial effect of EGFR blockade was increased
when is combined with the inhibition of ADAM17 [248].
Previous studies described that the EGFR blockade in dif-
ferent mice models of renal damage, induced by CCN2
and TWEAK injection, reduced the inflammatory infiltra-
tion of T lymphocytes and macrophages as well as the gene
and protein expression of the proinflammatory mediators
CCL2, CCL5, or IL6 [38]. In vitro studies developed in

tubuloepithelial cells and an experimental model of renal
inflammation in mice induced by TWEAK injection
showed that the pharmacological blockade of ADAM17
with TAPI-2 and WTACE-2, respectively, inhibited the
upregulation of proinflammatory mediators at gene and
protein levels. Studies performed in models of renal mass
reduction (subtotal nephrectomy) and prolonged ischemia
showed that the truncated expression of a dominant nega-
tive of EGFR in proximal tubular cells decreased the
infiltration of mononuclear cells, the accumulation of inter-
stitial collagen, and renal tubular proliferation [249]. In dia-
betic rats, treatment with EGFR kinase inhibitors decreased
the proliferation of tubuloepithelial cells, in addition to
increase glomerular size [77]. In experimental models of
hypertension induced by several factors (Ang II, leptin,mono-
crotaline, or ET1), EGFR blockade by different approaches
including antisense oligonucleotides for EGFR, inhibitors
of the EGFR kinase, and mutated WAVED-2 mice reduced
the characteristic effects of tissue damage observed in these
models [250–253]. Systemic administration of Ang II
induces severe fibrotic lesions in the kidney. However, the
infusion of this peptide in mice that express a dominant
negative form of the renal tubular-specific EGFR, protected
them against the lesions produced by Ang II. In addition,
it has been observed that in knockout mice for TGFA and
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Figure 3: Different signaling pathways related to EGFR activation induced by CTGF/EGFR interaction. CTGF binds to EGFR through its
C-terminal module. This interaction activates the EGFR signaling pathway linked to the modulation of different pathways closely related
with cell growth, oxidative process, inflammation, EMT, and fibrosis in renal damage.
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in mice treated with a specific inhibitor of ADAM17, renal
fibrosis induced by Ang II decreases [52].

The origin of the study of the EGFR signaling pathway
was in tumor pathology [254, 255]. In various types of can-
cer, including tumors of the head, neck, lung, and breast
and colorectal tumors, the ErbB family of receptors
(EGFR/HER1/ERBB1, HER2/neu/ERBB2, HER3/ERBB3,
and HER4/ERBB4) is unregulated, producing an inappropri-
ate cell stimulation [254, 256]. In malignant tumors, it has
been described that HER2 and EGFR/HER1 are overex-
pressed and it has been established that overexpression of
EGFR correlates with a worse clinical prognosis [257]. In
the specific case of lung cancer, EGFR overexpression has
been described in 90% of tumors. Several mechanisms can
trigger an aberrant expression of EGFR, including in particu-
lar the overexpression of the protein, its gene amplification,
appearance of mutations, the overexpression of EGFR
ligands, and finally the loss of the regulatory mechanisms of
these processes [256]. It should be noted that mutations in
this receptor are one of the indicators that correlate best with
the efficacy of EGFR inhibitors [256]. Specifically, a marked
beneficial effect and greater response to treatment with these
EGFR inhibitors have been observed in patients with muta-
tions in exon 19 (codons 746–750) and exon 21 (substitution
of leucine by arginine in codon 858 (L858R)) of EGFR com-
pared to patients without these mutations [258].

The EGFR signaling pathway plays a crucial role in
tumor processes since it modulates the cell cycle, inhibits
apoptosis, induces angiogenesis, and promotes the motility
of cancer cells and metastasis [259]. The first therapeutic
approaches against EGFR began with the development of
reversible pharmacological inhibitors of EGFR such as gefi-
tinib (competes with ATP to bind the intracellular tyrosine
kinase domain of EGFR, preventing its phosphorylation).
Subsequently, erlotinib was designed, which presented a bet-
ter pharmacokinetic and toxicity profile [260]. However, the
response to gefitinib and erlotinib did not improve survival
and improvements were only observed in those patients with
mutations in EGFR [261, 262]. Another newly developed
inhibitor is afatinib, with dual specificity against EGFR/
ERBB1 and HER2/ERBB2 [263]. Due to the involvement of
these pathways in embryonic development and cell prolifer-
ation, most efforts so far are focused on anti-EGFR therapies.
These therapies involve the use of tyrosine kinase inhibitors,
which are small molecules that bind intracellularly and inter-
fere with signaling of the receptor, and the use of monoclonal
antibodies that block the extracellular domain of the EGFR
kinase. Among the developed antibodies, cetuximab stands
out, which improved the survival rates in patients with lung
cancer and colorectal cancer in combination with chemo-
therapy [264, 265]. In a kidney cancer study, administration
of a murine/human chimeric anti-EGFR antibody (C225)
was shown to inhibit the growth of normal renal cell carci-
noma explants in NUDE mice [266].

EGFR regulates vascular homeostasis and pathophysiol-
ogy. Studies with spontaneously hypertensive rats showed
that vascular smooth muscle cells expressed high levels of
EGFR and increased proliferation [267]. In models of
experimental hypertension, EGFR blockers reduced blood

pressure elevation and improved vascular lesions [69, 250,
268–270]. In atherosclerosis, increased expression of EGFR
and some of its ligands, such as HBEGF, were described in
the different stages of the atherogenic process [135, 271–
273]. EGFR activation has also been involved in the vascular
complications of diabetes [274–276].

1.17. Future Perspectives. All these studies show the complex-
ity of EGFR pathway activation and its involvement in the
pathogenesis of kidney damage. The canonical EGFR ligand
EGF participates in acute renal damage mainly regulating cell
proliferation, and future studies focusing on its role in renal
regeneration are important. The other official ligands, TGFA
and HBEGF, have an important role in the process of EGFR
transactivation, by modulating key factors of renal damage,
including Ang II, aldosterone, and TWEAK, mainly by regu-
lation of renal inflammation. The recently described EGFR
ligand CTGF is a potential therapeutic target that exerts
proinflammatory and fibrotic properties, although more
research is needed to completely understand EGFR binding
and its involvement in EGFR transactivation in vivo. These
data suggest that inhibiting EGFR or some of its ligands is
an interesting therapeutic strategy for CKD and future stud-
ies are warranted.
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