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Heart and kidney failure often co-exist and confer high morbidity and mortality.
The complex bi-directional nature of heart and kidney dysfunction is referred to as
cardiorenal syndrome, and can be induced by acute or chronic dysfunction of either
organ or secondary to systemic diseases. The five clinical subtypes of cardiorenal
syndrome are categorized by the perceived primary precipitant of organ injury but
lack precision. Traditional biomarkers such as serum creatinine are also limited in
their ability to provide an early and accurate diagnosis of cardiorenal syndrome. Novel
biomarkers have the potential to assist in the diagnosis of cardiorenal syndrome
and guide treatment by evaluating the relative roles of implicated pathophysiological
pathways such as hemodynamic dysfunction, neurohormonal activation, endothelial
dysfunction, inflammation and oxidative stress, and fibrosis. In this review, we
assess the utility of biomarkers that correlate with kidney and cardiac (dys)function,
inflammation/oxidative stress, fibrosis, and cell cycle arrest, as well as emerging
novel biomarkers (thrombospondin-1/CD47, glycocalyx and interleukin-1β) that may
provide prediction and prognostication of cardiorenal syndrome, and guide potential
development of targeted therapeutics.

Keywords: cardiorenal syndrome (CRS), biomarker (BM), heart failure, chronic kidney disease, prognosis

INTRODUCTION

Heart failure (HF) and chronic kidney disease (CKD) are increasing public health issues with a
prevalence of 4% and 9% respectively, and a global rise in attributable deaths by 41% for both
diseases since 1990 (1, 2). Cardiorenal syndrome (CRS) refers to the concurrent dysfunction
of the heart and kidney, which can initiate and perpetuate disease in the other organ through
hemodynamic, neurohormonal, and immunological and/or biochemical feedback pathways (3).
Combined HF and CKD is associated with high morbidity and mortality (4–9). In people with HF,
every 10 ml/min decrease in estimated glomerular filtration rate (eGFR) increases the risk of all-
cause death by 7%, while HF hospitalization in people with CKD increases the risk of all-cause
death 3–7-fold (8, 9).
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CLASSIFICATION OF CARDIORENAL
SYNDROME

Currently, CRS is classified into 5 different subtypes based on the
perceived primary precipitant of organ injury: (10)

1. CRS type 1: rapid decline in cardiac function (e.g.,
cardiogenic shock or acute decompensation of chronic HF)
resulting in acute kidney injury (AKI).

2. CRS type 2: chronic cardiac dysfunction (e.g., chronic HF)
causing progressive decline in kidney function and CKD.

3. CRS type 3: acute decline in kidney function (e.g., AKI
or glomerulonephritis) causing acute cardiac dysfunction
(e.g., HF, arrhythmia, or myocardial infarction).

4. CRS type 4: CKD causing progressive decline in cardiac
function (e.g., left ventricular hypertrophy, HF, or
myocardial infarction).

5. CRS type 5: combine cardiac and kidney dysfunction
caused by an acute or chronic systemic disorder (e.g., sepsis
or diabetes mellitus).

While this classification system is clinical intuitive, it may
be difficult to identify the initial insult. Furthermore, this
classification system does not incorporate the pathophysiological
pathways implicated in CRS such as hemodynamic
dysfunction, neurohormonal activation, endothelial dysfunction,
inflammation, and fibrosis (11, 12).

Current biomarkers of kidney function such as serum
creatinine also have limited sensitivity and specificity. A rise
in serum creatinine only occurs after a significant decline in
GFR (e.g., 48–72 h after AKI or after 50% of function is lost
chronically), is non-specific to the underlying disease process,
and is affected by clinical characteristics (e.g., age, weight, gender,
ethnicity, volume status, and medication use) that do not reflect
true parenchymal injury (13). In this review, we summarize the
evidence for different biomarkers in CRS (Figure 1 and Table 1)
as well as promising emerging biomarkers that may inform on
future management in this debilitating condition.

BIOMARKERS OF FUNCTION
(GLOMERULAR FILTRATION AND
INTEGRITY)

Albuminuria
Albuminuria is a cheap and widely available biomarker,
which may not only reflect glomerular injury but also
endothelial dysfunction (14). In three large chronic HF
trials, microalbuminuria (30–299 mg/g) and macroalbuminuria
(≥ 300 mg/g) were associated with a 1.4–1.8-fold increased risk
of all-cause death, cardiovascular death, or HF hospitalization
(15–17). Albuminuria predicted these outcomes independent of
serum creatinine, HbA1c and left ventricular ejection fraction
(LVEF) (16). While treatments exist to reduce albuminuria
[e.g., renin-angiotensin-aldosterone system (RAAS) inhibitors],
whether targeting albuminuria improves prognosis in CRS
requires further study.

Cystatin-C
Cystatin-C, a 13-kDa cysteine protease inhibitor, is produced
at a constant rate by all nucleated cells and is freely filtered
through the glomerulus, almost completely reabsorbed, and not
secreted by the renal tubules. Cystatin-C inhibits collagen- and
elastin-degrading cysteine proteases of the cathepsin family and
protects against atherosclerosis in apolipoprotein E–deficient
mice, though its role in CRS is unclear (18). In both acute
and chronic HF, elevated plasma or urinary cystatin-C was
associated with a 2–3-fold increased risk of all-cause death,
independent of serum creatinine or eGFR (19–22). In acute
HF, plasma cystatin-C modestly predicted AKI [area under the
receiver operating characteristic curve (AUC-ROC) 0.68] and all-
cause death or HF hospitalization (AUC-ROC, 95% confidence
interval: 0.73, 0.66–0.80) (23, 24), providing prognostic value in
addition to N-terminal prohormone of brain natriuretic peptide
(NT-proBNP) and troponin (25). In elderly patients with chronic
HF, the highest quartile of cystatin-C doubled the risk of all-cause
death, outperforming serum creatinine in multivariate analyses
(21). After cardiac surgery, plasma cystatin-C modestly predicted
AKI (AUC-ROC 0.68), (26) while urinary cystatin-C has not
consistently predicted AKI (27, 28).

Unlike serum creatinine, plasma cystatin-C is not affected
by muscle mass but both are affected by volume status.
In the Renal Optimization Strategies Evaluation–Acute Heart
Failure (ROSE-HF) trial, protocol-driven aggressive diuresis
caused worsening of renal function (WRF), based on ≥ 20%
decrease in eGFR using cystatin C, in 21% of participants but
was not associated with an increase in kidney tubular injury
markers (29). This suggests tubular markers may have utility in
differentiating AKI due to diuretic-induced volume depletion or
parenchymal injury in CRS.

Galectin-3
Galectin-3 is a 30-kDa glycoprotein synthesized by cardiac
macrophages in response to angiotensin II and aldosterone,
which mediates collagen deposition by fibroblasts resulting in
cardiac fibrosis (12). Plasma galectin-3 levels are also inversely
related to renal function and therefore represents a biomarker
for both cardiac fibrosis and GFR. In acute HF, while NT-
proBNP was superior to galectin-3 for diagnosis, galectin-3
may be superior to NT-proBNP at predicting 60-day mortality
(AUC-ROC 0.74 vs. 0.67, p = 0.05) and was associated with a
14-fold increased risk of all-cause death or HF hospitalization
in multivariate analysis (30). In chronic HF, galectin-3 only
modestly predicted all-cause death (AUC-ROC 0.612, 0.538–
0.685) and all-cause death or HF hospitalization (AUC-ROC
0.58, 0.55–0.61). Pooled analysis of chronic HF trials (mean
eGFR 54–58 ml/min/1.73 m2) showed elevated galectin-3 was
associated with a 1.6–2-fold increased risk of all-cause death or
HF hospitalization (31–33).

Proenkephalin A
Proenkephalin A is an endogenous opioid secreted by cardiac
cells and mediates negative inotropic effects via the delta opioid
receptor. Plasma proenkephalin is inversely proportional to
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FIGURE 1 | Biomarkers in the pathways of injury in cardiorenal syndrome. Created with Biorender. Cardiorenal syndrome involves the complex bidirectional nature of
heart and kidney dysfunction. The pathways involved include hemodynamic dysfunction, neurohormonal activation (primarily the renin-angiotensin-aldosterone
system), inflammation and oxidative stress, endothelial dysfunction, and ultimately injury and fibrosis to both heart and kidney. We have outlined the pathways which
each biomarker is associated with as well as indicated biomarkers with the most clinical applicability based on the evidence quality of existing literature (underline) vs.
biomarkers requiring further research and validation in larger cohort of patients with cardiorenal syndrome (italics). Of note, biomarker performance will depend on
kidney function, timing of collection and type of cardiorenal syndrome. Furthermore, a combination of biomarkers may have superior performance to a single
biomarker. Therefore, further research is required to identify the type and timing of biomarker(s) analysis in the prediction and prognostication of cardiorenal
syndrome. NGAL, neutrophil gelatinase-associated lipocalin; KIM-1, kidney injury molecule-1; L-FABP, liver fatty acid-binding protein; NAG,
N-acetyl-beta-D-glucosaminidase; BNP, brain natriuretic peptide; NT-proBNP, N-terminal pro-brain natriuretic peptide; IL, interleukin; TIMP2, tissue inhibitor of
metalloproteinases-1 and -2; IGFBP7, insulin-like growth factor-binding protein-7; TSP-1, thrombospondin-1.

GFR and associated with a 1.5-fold increased risk of CKD
(highest vs lowest tertile) (34). In acute HF, proenkephalin A
modestly predicted AKI (AUC-ROC 0.69) and was independently
associated with a 27% increased risk of 1-year mortality or HF
hospitalization (35).

BIOMARKERS OF DAMAGE

Kidney Tubule: Neutrophil
Gelatinase-Associated Lipocalin
Neutrophil gelatinase-associated lipocalin (NGAL) is a 25-
kDa protein secreted by immature neutrophils, epithelial cells
(including renal tubular epithelium) and cardiomyocytes in
response to inflammation. While NGAL has been extensively
studied as a marker of renal tubular injury, it also plays
a role in mineralocorticoid-mediated cardiovascular fibrosis.
NGAL knockout mice demonstrated blunted vascular fibrosis in
response to an aldosterone-salt challenge, and reduced cardiac
fibrosis, inflammation and left ventricular dysfunction in a
myocardial infarction model (36, 37). However, no treatments
exist to inhibit NGAL for evaluation in CRS.

In neonatal and pediatric cardiac surgery, plasma and
urinary NGAL were detectable 2 h post-surgery (compared to

1–3 days for serum creatinine) and performed exceptionally
at predicting AKI (AUC-ROC 0.92–0.998) (38, 39). A small
study in adult cardiac surgery demonstrated similar predictive
ability for detecting AKI (AUC-ROC 0.98), (40) but this has
not been consistent replicated. In a meta-analysis of NGAL in
diagnosing AKI, subgroup analysis of 10 studies reporting cardiac
surgery-related AKI demonstrated plasma and/or urinary NGAL
moderately predicted AKI (AUC-ROC 0.775, 0.669–0.867) (41).
In a large cohort study of adults undergoing cardiac surgery,
plasma (but not urinary) NGAL significantly improved risk
prediction of AKI over the clinical models using demographic
factors, surgical factors, eGFR and patient comorbidities (42).
These differences highlight the importance of considering time
and baseline kidney function when assessing biomarkers. Indeed,
for the diagnosis of AKI in 529 critically ill patients in the
intensive care unit, cystatin-C, interleukin-18 (IL-18), NGAL,
kidney injury molecule-1 (KIM-1), and γ-glutamyltranspeptidase
demonstrated optimal performance earlier (≤ 12 h after injury)
in patients with preserved kidney function (eGFR ≥ 60 ml/min)
and later (12–36 h after injury) in patients with reduced kidney
function (eGFR < 60 ml/min) (43). In acute HF, plasma and
urinary NGAL were associated with a 1.3–2-fold increased risk
of long-term mortality, (22, 44) and plasma NGAL outperformed
cystatin-C at predicting AKI (AUC-ROC 0.93 vs. 0.68) (23).
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TABLE 1 | Biomarkers in cardiorenal syndrome.

Biomarker Function of biomarker Predictive value
(AUC-ROC per outcome)

Prognostic value
(“x” times increased risk of
outcome)

Involved in the
disease mechanism
of CRS

Targeted treatments References

Biomarkers of function (glomerular filtration and integrity)

Albuminuria Marker of glomerular injury Unclear Type 2 CRS:
-All-cause/CV death or HF
hospitalization: 1.4–1.8 times

No RAAS inhibitors, MRAs,
SGLT2 inhibitors

15–17

Plasma
cystatin-C

Produced by all nucleated cells.
Marker of GFR

Type 1 CRS:
-AKI: 0.68
-All-cause death or hospitalization:
0.73

Type 1 and 2 CRS:
-All-cause death: 2–3 times

No No 19–28

Plasma galectin-3 Involved in RAAS-mediated
collagen deposition by
fibroblasts. Also inversely
related to GFR

Acute HF:
-All-cause death: 0.74
Chronic HF:
-All-cause death: 0.612
-All-cause death or HF
hospitalization: 0.58

Type 1 CRS:
-All-cause death or HF
hospitalization: 14 times
Type 2 CRS:
-All-cause death or HF
hospitalization: 1.6–2 times

Yes RAAS inhibitors, MRAs 30–33

Plasma
proenkephalin A

Involved in opioid
receptor-mediated negative
inotropic effects. Also inversely
related to GFR

Type 1 CRS:
-AKI: 0.69

Type 1 CRS:
-All-cause death or HF
hospitalization: 1.3 times

No No 35

Biomarkers of kidney damage

Plasma and/or
urinary NGAL

Secreted by neutrophils and
epithelial cells in response to
inflammation. Mediates cardiac
fibrosis by aldosterone

Type 1 CRS:
-AKI: 0.775–0.998

Type 1 CRS:
-All-cause death: 1.3–2 times
-AKI: 5 times

Yes No 22–23, 38–41,
44–46

Urinary KIM-1 Facilitates phagocytosis of
apoptotic renal tubular cells

Type 1 CRS:
-AKI: 0.83–0.88

Type 1 CRS:
-All-cause death: 2 times
Type 2 CRS
-All-cause death or HF
hospitalization: 1.1–1.5 times

No No 22, 47–52

Urinary IL-18 Marker of injury from
NLRP3-inflammasome on
cardiac myocytes and renal
tubular cells

Type 1 CRS:
-AKI: 0.61–0.75
-AKI-to-CKD: 0.674

Type 1 CRS:
-AKI: 3.6 times
-All-cause death: 1.2 times

No No 46–47, 52, 56

Urinary L-FABP Binds fatty acid oxidation
products

Type 1 CRS:
-AKI: 0.86 when urinary
L-FABP/NAG combined

Unclear No No 58

Urinary NAG Renal proximal tubule brush
border marker

Type 2 CRS:
-All-cause death: 1.3–1.4 times
-HF hospitalization: 1.2 times

No No 48–49, 58

Urinary
angiotensinogen

Marker of intrarenal RAAS
activation

Type 1 CRS:
-AKI: 0.78
-All-cause death: 0.85

Unclear Yes RAAS inhibitors, MRAs 46

(Continued)
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TABLE 1 | (Continued)

Biomarker Function of biomarker Predictive value
(AUC-ROC per outcome)

Prognostic value
(“x” times increased risk of
outcome)

Involved in the
disease mechanism
of CRS

Targeted treatments References

Biomarkers of cardiac damage

Plasma cTnT Marker of cardiac myocyte
injury

Type 4 CRS:
-AMI: sensitivity 92–95%, specificity
88–97% *

Type 4 CRS:
-CV events: 2–6 times
-All-cause death: not associated

No No 60–64

Plasma BNP and
NT-proBNP

Marker of left ventricular wall
stretch

Type 4 CRS:
-All-cause death: 0.699–0.818
-All-cause death or CV events:
0.666–0.720?

Type 4 CRS:
-CV events: 1.4 times
-All-cause death: 1.6 times

Yes Diuretics 60, 66–67

Cell cycle arrest biomarkers

Urinary
[TIMP2]•[IGFBP7]

Involved in G1 cell-cycle arrest
during early phases of cell injury

Type 1 CRS:
-AKI: 0.75–0.84

Unclear No No 71–72

Novel biomarkers

Plasma TSP-1 Binds to CD47 to limit nitric
oxide-mediated vasodilation

AMI:
-HF: 0.82

Unclear Yes Anti-CD47 blockade
and microRNA-221
targeting TSP-1 in
animal models

84, 86–88

Plasma
syndecan-1

Marker of glycocalyx injury Type 1 CRS:
-AKI: 0.741
-Severe AKI: 0.812
-All-cause death: 0.788

Type 1 CRS:
-All-cause death: 1.3 times
Chronic HF:
-All-cause death or hospitalization:
2 times (HFpEF)
-Not prognostic for HFrEF

Yes Glycocalyx-protective
treatments (albumin,
sulodexide, FFP,
steroids, etanercept,
statins, metformin,
heparin)

94–95, 97–111

Plasma IL-1β Marker of injury from
NLRP3-inflammasome on
cardiac myocytes and renal
tubular cells

Unclear Unclear Yes Anti-IL-1β blockade
(canakinumab) in
human CV disease

113

CRS, cardiorenal syndrome; AUC-ROC, area under the receiver operating characteristic curve; AKI, acute kidney injury; CV, cardiovascular; HF, heart failure; RAAS, renin-angiotensin-aldosterone system; MRA,
mineralocorticoid receptor antagonists; SGLT2, sodium-glucose co-transporter 2; GFR, glomerular filtration rate; NGAL, neutrophil gelatinase-associated lipocalin; KIM-1, kidney injury molecule-1; L-FABP, liver fatty
acid-binding protein; NAG, N-acetyl-beta-D-glucosaminidase; cTnT, cardiac troponin T; AMI, acute myocardial infarction; CKD, chronic kidney disease; BNP, brain natriuretic peptide; NT-proBNP, N-terminal pro-brain
natriuretic peptide; IL, interleukin; GDF-15, growth differentiation factor 15; ST2, suppressor of tumorigenicity 2; TIMP2, tissue inhibitor of metalloproteinases-1 and -2; IGFBP7, insulin-like growth factor-binding protein-7;
TSP-1, thrombospondin-1; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; FFP, fresh frozen plasma.
*cTnT cut-off > 43.2 ng/L for pre-dialysis CKD, > 350 ng/L for kidney failure.
*
*

Cut-offs differ for all-cause death (stage 1–3 CKD: BNP > 90.8 pg/ml and NT-proBNP > 259.7 pg/ml and stage 4–5 CKD: NT-proBNP > 2,584.1 pg/mL) and all-cause death or HF hospitalization (stage 4–5 CKD:

BNP > 157.0 pg/ml and NT-proBNP > 5,111.5 pg/ml).
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Plasma NGAL kinetics may also improve its ability to predict
AKI (AUC-ROC 0.91 for delta NGAL change vs. 0.69 for
NGAL at baseline) (45). Lastly, urinary NGAL performed 2 days
after hospitalization for acute HF differentiated true WRF from
pseudo-WRF based on AKI with or without clinical improvement
(AUC-ROC 0.83, 0.73–0.93), (22) was associated with a 5-fold
risk of AKI, (46) but failed to predict AKI-to-CKD transition (47).

Kidney Tubule: Kidney Injury Molecule-1
Kidney injury molecule-1 (KIM-1) is a transmembrane
glycoprotein with immunoglobulin and mucin domains, which
is expressed by renal proximal tubule epithelium in response to
injury and facilitates phagocytosis of apoptotic tubular cells. In
chronic HF, elevated urinary KIM-1 was modestly associated with
a 10–15% increased risk of all-cause death or HF hospitalization
but did not predict AKI nor AKI-to-CKD transition in acute
HF (22, 47–49). In contrast, urinary KIM-1 measured 12 h
after cardiac surgery predicted AKI with good performance
(AUC-ROC 0.83–0.88), (50, 51) and a high cut-off for urinary
KIM-1 (highest vs. lowest tertile) was associated with a doubling
of 3-year mortality risk, independent of post-operative AKI (52).

Kidney Tubule: IL-18
Interleukin-18 (IL-18) is an 18-kDa pro-inflammatory cytokine
produced by immune cells (e.g., macrophages) and non-immune
cells (e.g., vascular endothelial cells and renal proximal tubular
cells) in response to tissue injury via activation of the NLRP3-
inflammasome, which causes programmed cell death in both
cardiomyocytes and renal tubular cells (53–55). In acute HF,
elevated urinary IL-18 was associated with a 3.6-fold increased
risk of AKI in multivariate analysis, (46) and modestly predicted
AKI-to-CKD transition at 6 months (AUC-ROC 0.674, 0.543-
0.805) (47). In people undergoing cardiac surgery, urinary IL-18
also modestly predicted AKI (AUC-ROC 0.61 at 4 h post-surgery,
0.75 at 12 h, and 0.73 at 24 h), (56) which was superior to clinical
models using eGFR, (42) and was associated with a modest
1.2-fold increased risk of long-term mortality (52).

Kidney Tubule: Liver Fatty Acid-Binding
Protein (L-FABP),
N-Acetyl-Beta-D-Glucosaminidase (NAG)
and Urinary Angiotensinogen
Fatty-acid binding proteins (FABPs) are a family of 15-kDa
cytoplasmic proteins that are involved in the intracellular
transport of long-chain fatty acids. L-FABP is located on the renal
proximal tubular cells may reduce oxidative stress by binding
fatty acid oxidation products (57). NAG is a large lysosomal
brush border enzyme (>130 kDa), predominantly expressed on
proximal tubular cells, and is not freely filtered. In patients
undergoing cardiac surgery, combining urinary L-FABP and
NAG at 4 h after surgery with pre-operative clinical factors
(including demographics, comorbidities and serum creatinine)
improved AKI prediction compared to pre-operative clinical
factors alone (AUC-ROC 0.86, 0.74–0.93 vs. 0.79, 0.66–0.88,
p < 0.05) (58). In chronic HF, elevated urinary NAG was also
associated with a 1.2-fold increased risk of HF hospitalization

and 1.3–1.4-fold increased risk of all-cause death in multivariate
models (48, 49). In acute HF, urinary angiotensinogen also
predicted AKI (AUC-ROC 0.78) and all-cause death (AUC-ROC
0.85) (46).

Cardiac Myocyte: Troponin
Cardiac troponin I (cTnI) and T (cTnT) are established diagnostic
and prognostic biomarkers in myocardial infarction and HF (59).
While troponin levels are elevated in people with CKD due to
reduced plasma clearance, elevated cTNT was associated with a
2–6-fold increased risk of cardiovascular events, (60, 61) but not
all-cause death after adjusting for kidney function (62). Adjusting
cTnT cut-off retained good performance at detecting acute
myocardial infarction in people with CKD (cTnT > 350 ng/L
(standard cut-off > 14 ng/L) for eGFR < 15 ml/min/1.73 m2:
sensitivity 95%, specificity 97%; cTnT cut-off > 43.2 ng/L
for eGFR < 60 ml/min/1.73 m2: sensitivity 92%, specificity:
88%) (63, 64).

Cardiac Ventricular Stretch: Brain
Natriuretic Peptide and N-Terminal
proBNP
Pro-BNP is secreted by cardiomyocytes in the ventricle and atria
in response to ventricular wall stretch and cleaved into active BNP
and inactive NT-proBNP, which are both established biomarkers
in HF (65). While NT-proBNP is elevated in people with CKD,
elevated NT-proBNP was still associated with a 1.3-fold increased
risk of cardiovascular events and 1.6-fold increased risk of all-
cause death after adjusting for kidney function (60). In people
with CKD, both BNP and NT-proBNP demonstrated moderate
predictive ability for all-cause death and/or cardiovascular events
at different cut-offs. For stage 1–3 CKD, BNP > 90.8 pg/ml
(AUC-ROC 0.699) and NT-proBNP > 259.7 pg/ml (AUC-
ROC 0.702) predicted all-cause death. In comparison, for stage
4–5 CKD, BNP > 157.0 pg/ml (AUC-ROC 0.666) and NT-
proBNP > 5,111.5 pg/ml (AUC-ROC 0.720) predicted all-cause
death or cardiovascular events (66). NT-proBNP kinetics may
have improved clinical utility in the CKD population with a
doubling of NT-proBNP associated with a 1.4-fold increased
risk of cardiovascular events in African-Americans with CKD in
multivariate analysis (67).

BIOMARKERS OF CELL CYCLE ARREST

Tissue Inhibitor of Metalloproteinase-2 x
Insulin-Like Growth Factor-Binding
Protein-7 [TIMP2]•[IGFBP7]
TIMP2 and IGFBP7 are involved in G1 cell-cycle arrest
during early phases of cell injury and the product of urinary
TIMPIGFBP7 concentrations (NephroCheck) is the first Food
and Drug Administration-approved test to assess the risk of
AKI based on studies in critically ill patients in the intensive
care unit (68–70). Small studies have demonstrated urinary
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[TIMP2]•[IGFBP7] predict AKI after cardiac surgery (AUC-
ROC 0.84), (71) and in acute HF, where it outperformed KIM-1
(AUC-ROC 0.75, 0.61–0.88 vs. 0.54, 0.37–0.70) (72).

CURRENT CHALLENGES IN THE
IMPLEMENTATION OF BIOMARKERS
AND EMERGING NOVEL BIOMARKERS

The forementioned biomarkers demonstrate diagnostic utility
for AKI and/or cardiac events though implementation remains
challenging. Key suggestions for biomarker use from the 23rd
Acute Disease Quality Initiative meeting included combining
damage and functional biomarkers to identify patients at high-
risk of AKI, to improve the diagnostic accuracy of AKI,
discriminate AKI etiology, and to assess AKI severity (73).
In CRS, biomarkers may assist our understanding of the
interaction of heart-kidney injury. Kidney damage biomarkers
(e.g., plasma/urinary NGAL, urinary IL-18, urinary KIM-1,
urinary L-FABP, urinary NAG and urinary angiotensinogen) and
cell cycle arrest biomarkers (e.g., urinary [TIMP2]•[IGFBP7])
may inform in CRS type 1, and cardiac damage biomarkers
(e.g., troponin and BNP) in CRS type 3 and 4. In contrast,
the utility of biomarkers in CRS type 2 and 5 require further
study though potentially more sensitive markers of GFR (e.g.,
plasma cystatin-C and proenkephalin A) may be inform in
CRS type 2, plasma galectin-3 may inform in both CRS type
2 and 4 since it is both a marker of GFR and cardiac fibrosis,
and CRS type 5 likely requires a combination of biomarkers
since it reflects simultaneous heart and kidney injury. However,
interventions in CRS remain limited and few existing biomarkers
(e.g., albuminuria, plasma galectin-3, urinary angiotensinogen,
plasma BNP and NT-proBNP) offer insights into therapeutic
targets that may benefit patients with CRS.

Loop diuretics remain the first-line treatment for fluid
removal in HF, however, animal studies raise concerns
regarding frusemide-mediated RAAS activation and subsequent
myocardial and renal fibrosis (3). While aldosterone-mediated
fibrosis in CRS suggest RAAS inhibitors and mineralocorticoid
receptor antagonists may be beneficial, the risk of hyperkalemia
or AKI may limit their use (74). The thrombospondin-
1/CD47 axis, glycocalyx and IL-1β are emerging biomarkers in
cardiovascular disease which may also provide prognostic value
and therapeutic targets in CRS.

Thrombospondin-1 (TSP-1)/CD47 Axis
TSP-1 is a 480 kDa matricellular protein secreted by tissue in
response to hypoxia and binds to the ubiquitously expressed
CD47 to limit nitric oxide (NO)-mediated vasodilation, thereby
limiting tissue perfusion (75, 76). The TSP-1/CD47 axis has been
implicated in renal ischemia reperfusion injury (IRI), (77, 78)
atherosclerosis, (79) endothelial dysfunction, (80, 81) pulmonary
hypertension, (82) and vaso-occlusive events in sickle cell anemia
(83). In microarray analysis of peripheral blood samples, TSP-1
outperformed BNP and cTnT at predicting HF after myocardial
infarction (AUC-ROC 0.82 vs. 0.63), (84) and plasma TSP-1 levels
are also increased in people with CKD (85).

In human hearts after autopsy and experimental myocardial
infarction in mice, CD47 is upregulated on cardiomyocytes
and inhibited phagocytosis of apoptotic cardiomyocytes by
macrophages (86). CD47 inhibition ameliorated myocardial
infarction in mice and rats by enhancing myocardial
phagocytosis, resolving monocyte infiltration, increasing
endothelial nitric oxide synthase activity and reducing oxidative
stress, resulting in reduced infarct size, reduced cardiac fibrosis,
and improved left ventricular ejection fraction (86, 87). Anti-
CD47 blockade also successfully ameliorated kidney fibrosis in
a renal IRI model and reduced expression of fibrosis markers
such as transforming growth factor (TGF)-β, SMAD2 and
connective tissue growth factor (85). More relevant to CRS,
microRNA-221 inhibits TSP-1 upregulation, reduces TGF-β1-
mediated cardiac fibrosis, and improves cardiac function and
survival in 5/6 nephrectomy rats, a model of CKD (88). Overall,
the TSP-1/CD47 axis represents a promising biomarker and
therapeutic target in CRS.

Syndecan-1
The glycocalyx is a 0.5–8 µm thick carbohydrate-rich structure
composed of glycoproteins (e.g., syndecan-1) bound to
glycosaminoglycan side-chains (e.g., heparan sulfate and
hyaluronan), which overlies vascular endothelial cells and
governs its barrier function as well as antiadhesive and
anticoagulant properties (89, 90). Degradation of the glycocalyx
has been proposed as an early marker of endothelial dysfunction,
which has been increasingly recognized as a critical process in
CRS (11, 91–93). In acute HF, elevated serum syndecan-1 at
hospital admission predicted AKI (AUC-ROC 0.741), severe AKI
(AUC-ROC 0.812) and in-hospital death (AUC-ROC 0.788),
and was associated with a 1.3-fold increased risk of all-cause
death at 6 months in multivariate analysis (94). In chronic HF,
elevated serum syndecan-1 was prognostic in HF with preserved
ejection fraction (2-fold increased risk of all-cause death or
hospitalization) but not HF with reduced ejection fraction (95).

Restoration of the glycocalyx using a novel selectin-
targeting glycocalyx mimetic (DS-IkL) reduced selectin-mediated
neutrophil and macrophage infiltration, endothelial cell and
fibroblast proliferation, and cardiac fibrosis after myocardial
infarction in mice (96). Therapies with proven safety in
humans repurposed for glycocalyx regeneration (e.g., albumin,
sulodexide, fresh frozen plasma, hydrocortisone, etanercept,
rosuvastatin, metformin, and heparin) may also represent
potential novel treatments in CRS (97–111).

Interleukin-1β (IL-1β)
Similar to IL-18, IL-1β is involved in activation of the NLRP3-
inflammasome in myocardial and kidney injury. Rademaker et al.
recently performed RNA sequencing on serial kidney biopsies
in an ovine model of acute HF and identified 675 differentially
expressed genes with human homologs that were enriched for
9 pathways, of which IL-1β was the top-predicted upstream
regulator gene (112). Canakinumab, a humanized monoclonal
antibody targeting IL-1β, reduced cardiovascular events by 15%
in 10,061 patients with previous myocardial infarction though at
the cost of increased fatal infections (113). Similar results were
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reported in the CKD subgroup (114). Whether canakinumab or
other biomarkers identified in the study by Rademaker et al. have
a role in the treatment of CRS require further study.

CONCLUSION

Cardiorenal syndrome is an increasingly common condition in
the aging multimorbid population with significant health burden
and few effective treatments. Current studies of biomarkers
in CRS have largely focused on prognostication and clinical
translation has been limited by sparse data comparing them to
traditional biomarkers such as serum creatinine. Furthermore,
few biomarkers offer insights into the mechanistic basis of
disease needed to inform therapeutic strategies. In this review, we
propose the TSP-1/CD47 axis, glycocalyx and IL-1β as promising
areas for future research in CRS, which have the potential to
prognosticate and direct treatments in this complex condition.
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