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Biomarkers or biosignature profiles have become accessible over time in population- 
based studies for Chagas disease. Thus, the identification of consistent and reliable 
indicators of the diagnosis and prognosis of patients with heart failure might facilitate the 
prioritization of therapeutic management to those with the highest chance of contracting 
this disease. The purpose of this paper is to review the recent state and the upcoming 
trends in biomarkers for human Chagas disease. As an emerging concept, we propose a 
classification of biomarkers based on plasmatic-, phenotype-, antigenic-, genetic-, and 
management-related candidates. The available data revisited here reveal the lessons 
learned thus far and the existing challenges that still lie ahead to enable biomarkers to 
be employed consistently in risk evaluation for this disease. There is a strong need for 
biomarker validation, particularly for biomarkers that are specific to the clinical forms of 
Chagas disease. The current failure to achieve the eradication of the transmission of this 
disease has produced determination to solve this validation issue. Finally, it would be 
strategic to develop a wide variety of biomarkers and to test them in both preclinical and 
clinical trials.

Keywords: Chagas disease, biomarkers for immune responsiveness, human experimentation, clinical forms, 
mini review

inTRODUCTiOn
Population-based studies have identified a range of biomarkers that indicate exposure to, effects of, 
and genetic susceptibility for different pathogen-related diseases. These biomarkers could potentially 
be applied for diagnostic and prognostic purposes in human Chagas disease. The available data 
reveal the lessons learned to date and the current challenges that still remain to enable biomarkers 
to be employed reliably in risk evaluation for this disease. Our main purpose here is to revisit the 
current evidence and future trends in biomarker research for human Chagas disease. And due to 
recent, elegant systematic reviews focusing on this important topic (see below), we instead present 
here a literature review.

Chagas disease, or American trypanosomiasis, is caused by the etiological agent Trypanosoma 
cruzi and affects at least eight million people in Central and South America (1). The morbidity is 
high. The acute phase of infection is followed by an asymptomatic phase, but ~30% of infected 
patients develop a symptomatic, chronic phase that is characterized by either severe cardiac or diges-
tive forms of Chagas disease (2, 3). Hence, the identification of consistent and reliable indicators 
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TABLe 1 | Summary of biomarker investigations related to Chagas disease.

Study Source Biomarker name Result Reference

Experimental, parasitemia-specific Antigenic Aptamer Increased levels (39, 40)
Chagasic cardiomyopathy Genetic CCL2 and MAL/TIRAP Increased susceptibility (41)
Chagasic cardiomyopathy Genetic CCR5 Protection (41)
Chagasic cardiomyopathy Phenotype CD15s+ Treg cells Protection (35, 36)
Chagasic cardiomyopathy Phenotype CD27+CD28+CD8+ T cells Protection (37, 38)
Non-specific Plasmatic TIMP-1 and TIMP-2 Increased levels (5, 6)
Non-specific Plasmatic Troponin I Increased levels (5, 6)
Non-specific Plasmatic TGF-β Increased levels (5, 6)
Asymptomatic Plasmatic IL-10 Increased levels (11)
Non-specific Plasmatic APOA1 Decreased levels (7)
Non-specific Plasmatic Fibronectin Increased levels (7)
Asymptomatic Plasmatic MMP-2 Increased levels (14)
Chagasic cardiomyopathy Plasmatic MMP-9 Increased levels (14)
Chagasic cardiomyopathy Plasmatic ANP, BNP, N-terminal pro-BNP, IFN-γ, TNF-α, IL-1β,  

and IL-6
Increased levels (4, 8, 10, 11)

Chagasic cardiomyopathy Plasmatic miRNA-1, miRNA-133a and -133b, and miRNA-208a  
and -208b

Decreased levels (13)

Experimental, chagasic cardiomyopathy Plasmatic PICP and PIIINP Increased levels (15)
Experimental, chagasic cardiomyopathy Plasmatic Syndecan-4, ICAM-1, and Galectin-3 Increased levels (16)
Efficacy Management KMP11, HSP70, PAR2, and Tgp63 Increased Ab. levels (5, 6)
Efficacy Management Antigen 13 and SAPA Increased Ab. levels (5, 6)
Efficacy Management Tc24 Increased Ab. levels (43)
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of Chagas disease pathology, namely biomarkers or biosignature 
profiles, might facilitate the prioritization of management to 
those with a chance of contracting Chagas disease. Biomarker 
candidates might be engaged for the determination of some 
forms of Chagas disease. It is difficult to predict features related 
to morbidity and mortality as well as disease evolution. This 
information would assist in the supervision, decision-making, 
and follow-up related to this complex disease. Hence, there is 
a need to discover simple and quantifiable biomarkers that are 
more reliable than conventional screening methods and can be 
applied to support the diagnosis and prognosis of patients with 
heart failure (4).

A total of two systematic reviews of prospective biomarker 
targets during the course of therapeutic chronic Chagas disease 
underlined the requirement for the development of unique bio-
markers to assess prompt responses to therapeutic management 
of the disease (5, 6). There are several studies that are investing in 
new diagnostic approaches to cure Chagas disease, particularly 
regarding the identification of disease biomarkers. Data from 
forthcoming studies will assist the categorization of patients in 
terms of clinical aspects for initial follow-ups (6).

Some blood-derived biomarkers that have demonstrated 
the capacity to predict the progression of early Chagas disease 
cardiomyopathy have been engaged to assess the value of anti-
parasitic drugs and to identify initial cardiac and gastrointestinal 
injuries in asymptomatic patients. Nevertheless, future studies 
with extended follow-ups are required to establish biomarkers 
that are able to assess clinical or parasitological cures following 
therapy (6).

Biomarkers might be categorized based on biochemical con-
figurations and major biological activities, such as inflammation 
and cellular injury biomarkers, metabolic biomarkers, prothrom-
botic biomarkers, and antigenic biomarkers (i.e., specific antigens 

of the parasite). Conversely, we propose a different classification. 
Table 1 and the next sections of this review summarize the recent 
data related to biomarker research. Once the scientific data 
become more readily available, the future identification of critical 
and consistent biomarker candidates for human Chagas disease 
should be simplified.

PLASMATiC-ReLATeD CAnDiDATeS

Effectively treated and cured chagasic patients may be identi-
fied based on their patterns of circulating biomarkers (7). 
Recently, studies have indicated that serum markers, such as 
A- and B-type natriuretic peptides (ANP and BNP, respectively), 
N-terminal pro-BNP, troponin I, TGF-β, MMP-2, and TIMP-1 
and -2, are higher during the severe stages of Chagas disease 
and represent cardiac damage and inflammation. However, 
several candidates are not disease specific. Hitherto, the levels 
of these aforementioned natriuretic peptides have been found 
to be higher in Chagas disease patients with cardiomyopathy 
than in those with different forms or other etiologies. Moreover, 
natriuretic peptide levels are increased in asymptomatic chagasic 
patients who exhibit no signs of ventricular dysfunction. Hence, 
natriuretic peptides showed a high predictive value for evaluated 
outcomes (4, 8). Both of the pioneering studies were performed 
in Brazilian cohorts. According to the data from these studies, 
BNP is comparable to echocardiogram in terms of the assess-
ment of cardiological patients. To reinforce those prior findings, 
another study performed in an independent setting found that 
BNP, pro-BNP, creatine kinase (CK)-MB, and MMP-2 have 
high predictive values for short-term mortality even in the pres-
ence of a decreased ejection fraction and other clinical signs of 
congestive heart failure, which were all found to be associated 
with severe chagasic cardiomyopathy in a Bolivian cohort (9). 
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Because the BNP procedure is simple and quick, this biomarker 
can be used in endemic zones of Chagas disease with limited 
access to echocardiographic housing facilities. Finally, pro-BNP 
and T. cruzi DNA as detected by PCR are the only tests that have 
been found to have independent clinical value for disease staging 
in concert with electrocardiogram (ECG), echocardiogram, and 
clinical assessments (10). In a different study, the authors found 
that cytokine levels are related to cardiac injury in Chagas disease 
(11). Asymptomatic individuals exhibited high IL-10 levels that 
were associated with better prognosis. Conversely, IL-1β, IL-6, 
IFN-γ, and TNF-α reached the highest levels of expression in 
chagasic patients with cardiomyopathy. Overall, these findings 
sustain the perception that the balance between regulatory and 
inflammatory cytokines is associated with different forms of 
chronic Chagas disease (11, 12). Some micro (mi)RNAs, such 
as miRNA-1, miRNA-133, and miRNA-208, have been demon-
strated to be involved with gene regulation properties and specific 
expression profiles, and imbalances can be found in chagasic 
cardiomyopathy (13). Recently, Santamaria and colleagues 
(7) pursued the identification of serum biomarkers that might 
be used as surrogates of therapeutic management in Chagas 
disease. APOA1 and specific fragments thereof and one frag-
ment of fibronectin were uncovered. In chagasic samples, these 
biomarkers, excluding the full-length APOA1, are upregulated. 
These biomarkers revert to regular levels in 43% of cured patients. 
Notably, whenever serum MMP-9 levels are dominant, cardiac 
remodeling is strengthened and the advance of the cardiac form 
of Chagas disease is favored. Conversely, when serum MMP-2 
levels prevail, patients persist as clinically asymptomatic. These 
processes might be IL-1β- and TNF-α dependent (14). In a 
particular model of infection, the cardiac levels of collagen I, III, 
and IV rise steadily and reach a peak during the chronic phase of 
Chagas disease. Thereafter, high serum levels of procollagen type 
I carboxy-terminal propeptide (PICP) and procollagen type III 
amino-terminal propeptide (PIIINP) are also observed. Given 
that increased PICP and PIIINP levels may indicate cardiac fibro-
sis, it is tempting to speculate that both biomarkers are suitable 
for detecting fibrosis during cardiac remodeling associated with 
T. cruzi infection (15). ICAM-1, galectin-3, and syndecan-4 have 
been found to be overexpressed in the hearts of mice chronically 
infected with T. cruzi (16). High levels of expression of galectin-3 
in inflammatory cells have also been uncovered, and these levels 
are correlated with a decline in inflammation. A reduction in 
syndecan-4 and ICAM-1 might indirectly reduce cell migration 
into the myocardium and, thus, decrease inflammation (17). By 
contrast, in attempts to the uncover critical aspects of TGF-β as 
a candidate with prognostic value, several studies have demon-
strated the influence of this anti-inflammatory cytokine on the 
development of chagasic cardiomyopathy by facilitating parasite 
cell invasion and its cycle (18, 19), improving parasite survival 
(20, 21), inducing exacerbated heart fibrosis and remodeling (22, 
23), downregulating cardiac gap junctions (24), and mediating 
hypertrophy of the surviving cardiomyocytes (25). Increased 
circulating levels of TGF-β are observed in chronic Chagas 
disease patients (22, 26), and its active form is observed in the 
myocardia of chronic patients (27, 28). Moreover, due to the 
substantial involvement of TGF-β in the development of cardiac 

damage observed in Chagas disease, active compounds targeting 
TGF-β are currently under study as alternative treatments for the 
symptomatic cardiac form of Chagas disease (24, 29). Recently, 
the major cysteine protease from T. cruzi, cruzipain, has been 
observed to be capable of directly activating latent TGF-β, which 
favors parasite invasion into host cells (30). New therapeutic 
approaches for Chagas disease using anti-cruzipain compounds 
would be of beneficial not only due to their trypanocidal effect but 
also because they indirectly inhibit different TGF-β activities that 
are crucial for the development of Chagas disease. A retrospective 
study reported evidence supporting the clinical prognostic value 
of TGF-β as a biomarker for Chagas disease by demonstrating an 
association between its serological levels and clinical outcomes 
after 10 years of follow-up (31). Accordingly, TGF-β has demon-
strated prognostic value as an independent predictor of all-cause 
mortality in patients without heart failure and with an ejection 
fraction above 45%. The optimal TGF-β cutoff for identifying 
patients who presented with all-cause mortality was 12.9 ng/ml. 
A further prospective study is clearly necessary to validate these 
data. Thus, the serological levels of TGF-β could be considered 
one potential biomarker for the outcome of Chagas disease and, 
moreover, could be used to follow the effects of treatments and 
interventions.

PHenOTYPe-ReLATeD CAnDiDATeS

First, we would like to propose the regulatory T cell (Treg) axis 
as a biomarker for Chagas disease progression. As discussed 
elsewhere, a malfunction of regulatory immune mechanisms 
may also be involved in the pathogenesis of Chagas disease (32). 
This malfunction may be due to the action of Treg cells that 
have the potential to curb effector responses, allow a partially 
effective anti-parasite immune response, and therefore enable 
the establishment and maintenance of chronic Chagas infection 
(32). By contrast, recent findings in humans have demonstrated 
an increased rate of Treg cells in chagasic patients in the inde-
terminate chronic phase (free of disease) compared with those 
with heart damage, which suggests an important role for Treg 
cells in the control of the inflammatory response during Chagas 
disease (33). Additionally, using a non-depleting monoclonal 
antibody to CD25, it was recently demonstrated that Treg cells 
bearing the CD4+CD25+Foxp3+ phenotype may also help to 
control the inflammatory immune response in mice that are 
chronically infected with T. cruzi (34). Therefore, there is a clear 
indication that the functional activity of Treg cells might be of 
crucial importance during the chronic phase of the infection 
due to their potential to decrease tissue damage and pathology. 
Recently, the expression of CD15s (Sialyl Lewis x) was described 
to identify the majority of suppressive Treg cells in humans (35). 
Thus, this biomarker discriminates suppressive from effector 
CD4+CD25+Foxp3+ T cells in humans (35). Interestingly, a pre-
vious study reported that the expression of CD15s is decreased in 
peripheral blood lymphocytes from patients with severe Chagas 
disease (36). Although additional studies are urgently required to 
uncover the critical aspects of both phenotypes, the expression of 
CD15s in Treg cells may be a reliable biomarker for the prediction 
of the progression to pathology of chagasic patients. Additionally, 
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another distinct phenotype, i.e., fully differentiated memory CD8 
T cells (CD27−CD28−) bearing increased CCR7 expression, has 
been related to Chagas disease outcome (37). This study dem-
onstrated an increase in total effector/memory CD8+ T cells in  
T. cruzi-infected individuals with mild heart disease compared 
with otherwise healthy controls. The study was based on the 
combined expression of CD27 and CD28 as previously proposed 
by Appay and colleagues (38), being related to a linear differentia-
tion model for memory CD8+ T cells (38). This study suggested 
different fates of the T cell lineage, including early, intermedi-
ate, and late stages of cell-memory as follows: CD27+CD28+, 
CD27−CD28+ (or CD27+CD28−), and CD27−CD28− cells, 
respectively. As has previously been recognized, the proportion 
of fully differentiated memory (CD27−CD28−) in the total 
amount of CD8+ T cells is increased in mild Chagas disease. 
Conversely, the frequency of CD27+CD28+CD8+ T cells in the 
total memory CD8+ T cell population decreases as the disease 
becomes more severe. Albareda and colleagues (37) hypothesized 
that this pattern could be a consequence of the gradual clonal 
exhaustion of the CD8+ T cell population during infection. 
Analysis of the chemokine receptor CCR7 for lymph node hom-
ing (CCR7 expression) also revealed a significant increase in total 
effector/memory CD8 T cells in subjects with mild heart disease 
compared with healthy controls (37).

AnTiGeniC-ReLATeD CAnDiDATeS

A correlated ELISA approach to the detection of aptamers in 
mouse plasma that is highly specific for circulating parasite 
excreted-secreted antigens (TESA) has been developed for 
biomarkers of T. cruzi infection (39, 40). An aptamer exhibited 
specific binding to TESA and trypomastigote extract, but it 
did not bind to self-proteins or Leishmania donovani proteins. 
Infected mice have exhibited increased levels of aptamer binding 
compared with control littermates, which suggests this aptamer 
as a potential candidate for a future biomarker of T. cruzi 
infection. Furthermore, this aptamer might sense circulating 
biomarkers in both acute and chronic phases of Chagas disease 
(39). Recently, the same group confirmed that T. cruzi-infected 
mice have considerably higher biomarker levels than their non-
infected counterparts. This study found that the biomarker levels 
are also diminished upon therapy (40). However, the biomarker 
levels in the infected and treated group did not decrease entirely 
and persisted above the assay cutoff point, which suggests that 
parasitemia was reduced, but a cure was not achieved. The test 
was capable of distinguishing circulating biomarkers in animals 
infected with several subpopulations of T. cruzi.

GeneTiC-ReLATeD CAnDiDATeS

Genetic markers can provide evidence of the pathogenesis of 
Chagas disease and also have the potential to be utilized to iden-
tify new therapeutic targets. Frade and colleagues (41) studied 
genetic predispositions that influenced left ventricular ejection 
fractions in a Brazilian cohort. The authors found that CCL2 
and MAL/TIRAP, but not CCR5, were linked to an increased 
susceptibility to chagasic cardiomyopathy.

MAnAGeMenT-ReLATeD CAnDiDATeS

Regardless of most recent advances in drug development, there 
is virtually no consensus regarding the use of biomarkers to 
assess the efficacies of new drugs. Between the two main classes 
of recombinant proteins that are active during distinct ages and 
stages of Chagas disease, a 16-protein group and a combination 
of four recombinant proteins, namely KMP11, HSP70, PAR2, 
and Tgp63, have been identified (5). That combination could 
potentially serve as biomarkers candidates. Similarly, antibodies 
against antigen 13, among 5 others comprising the shed acute 
phase antigen (SAPA), have been demonstrated to be potential 
markers of cure efficacy [reviewed in Ref. (5)]. Additionally, a 
complement-mediated lysis test and an ELISA method based 
on Tc24 have also been created and the latter found to be a 
reliable candidate for a helpful parasite biomarker (42, 43).

FUTURe TRenDS

Researchers agree that the use of biomarkers in human Chagas 
disease will foster the progressing steps during the clinical 
assessment and also assist in the development of consistent 
diagnostic tools to lessen the time gap between the progres-
sion and detection of disease-relevant measures. Additionally, 
such biomarkers will allow for the prediction of both primary 
(genetic) and secondary (acquired factors) immunodeficiencies 
related to individual susceptibility. The deficiency of biomarkers 
in the prediction of parasitological outcome status and cure 
represents a main hurdle for the development of new drugs 
for Chagas disease. Thus, it is crucial to develop a reliable 
method to assess the cure of this disease. The aforementioned 
classes of biomarkers could yield uninterrupted longitudinal 
results related to Chagas disease management. Processes that 
are commonly used to identify biomarkers cannot be employed 
as endpoint evaluations in human clinical trials for ethical 
reasons. Some existing studies aim to develop alternative, 
emerging applications for biotechnologies based on the results of 
chagasic biomarker research. Furthermore, data from biomarker 
discovery research, such as the presence of TESA, could be 
used in vaccine development. In parasite-challenged vaccinated 
animals, TESA positivity could be an indication that the immune 
response was not appropriate to control the infection (39, 40). As 
a result of these struggles, the success of biomarker research in 
Chagas disease has not yet allowed for a better understanding of 
the disease risk from the clinical perspective. A range of issues 
exacerbates this frustration. One such issue is the incomplete 
validations of many biomarker candidates. Before conducting 
human trials, it is essential to identify and validate biomarkers 
that indicate cured patients. It is also necessary to evaluate the 
risks associated with the use of new agents in larger cohorts; 
thus, high-throughput biomarker procedures are needed. 
Ideally, approaching an accurate, rapid, and reliable point-of-
care diagnostic tool in resource-limited, high-burden settings 
for Chagas disease through evaluation of biomarkers across that 
clinical spectrum in order to detect relevant pathogen-specific 
fingerprints will be of communal benefits, which undoubtedly 
outweigh the costs. The WHO predicted the eradication of 
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Chagas disease transmission by the year 2010, but this goal has 
not yet been achieved. Indeed, the disease is spreading beyond 
locations in which it was originally endemic (1). It is crucial 
to understand the partial corroboration of simple biomarker 
technologies to avoid generating data that exceeds our ability to 
analyze the applications of novel technologies that are emerging 
from population studies. Finally, it would be strategic to develop 
a wide variety of biomarkers and to test them during preclinical 
and clinical trials.
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