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1. Introduction
Since the first confirmed case of Coronavirus, SARs-CoV-2 (COVID-19), in China’s city of

Wuhan in December 2019, the pandemic has spread across the globe with over 190

countries affected. In Nigeria, the first confirmed case of COVID-19 was detected on 25th

February 2020, in the city of Lagos. Since the index case, the outbreak has spread to 32

states of the country. The first set of confirmed cases was reported to be from foreigners

and nationals who visited Nigeria from different countries mainly Italy, the United

Kingdom, and the United States of America. Though there were several interventions the

governments put in place to curb the spread of the virus, however, as of 28th of April

2020, Nigeria had recorded 1532 cases, 44 deaths, and 255 recoveries from the virus [1].

Though these statistics are minimal compared to the record of most countries in Europe

and America, some experts believe that there is still going to be an exponential rise of the

infected cases in Nigeria if the measures put in place by the governments are not

adequately coordinated. It is, therefore, imperative to bring about scientific efforts to-

ward its control. One of such efforts is the prediction of the future infection pattern of

the virus to enable the governments at the Federal and State levels to make informed

health-related decisions.
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Typically, in epidemiological cases, from the first instances, a high health-risk disease

is identified, researchers often sort the use of mathematical models to predict the course

of the disease over time [2e8]. Mathematical models can be broadly classified into

mechanistic models and empirical models [9]. Mechanistic models require detailed

knowledge and data on the underlying problem.

In places where precise data and computational resources are available, mechanistic

models may suffice for predicting coronavirus infection patterns and modeling the

impact of various intervention strategies more accurately to inform policymakers and

health workers [8]. In Nigeria, detailed and comprehensive data are not available. The

data available are not precise enough for accurate mechanistic modeling. There are

constraints inherent in the collection of the data because of scarce resources such as

testing kits, and inadequate sampling strategies. Also, there is the problem of delayed

infection case reports and under-reporting. As a result, the data are noisy [10]. Empirical

models can be appropriate for extracting patterns in the available data and forecasting

coronavirus transmission dynamics. However, the accuracy of any mathematical and

statistical models depends heavily on assumptions, parameters, and theory. To state:

how good is the assumptions on which the model is based [11e13], how significant are

the estimated parameters in modeling a given infectious disease and within a

geographical region [14], and is the model formulated based on theory. Alternatively,

with an increase in real data points as the disease progresses, computational models,

which are also grounded in mathematical models, can be explored to predict the future

growth pattern of disease.

The use of computational models in epidemiology dates back to the 1980s [15], and it

is still prevalent in modern epidemiology. Some commonly used in modern epidemi-

ology are linear regression (LR) [3,16], poisson regression (PR), negative binomial

regression (NBR) [17,18], exponential smoothing (ES) [19], autoregressive integrated

moving average [20], support vector machines. These models can be adapted to a given

problem. However, there is not a fit-all model, each problem’s outcome data differ by

type and distribution. By outcome data, we mean the data of the dependent variable and

the term will be used as stated throughout this paper except where otherwise specified.

For the current prediction trend of COVID-19, Petropoulos and Makridakis [21]

adopted a computational model from the ES family for the prediction of the global

cumulative confirmed cases of COVID-19. Roosa et al. [22] employed and compared the

generalized logistic growth model, the Richards growth model, and a subepidemic wave

model capability to objectively forecast future global cases of COVID-19. Jia et al. [23]

employed and analyzed the logistic model, Bertalanffy model, and Gompertz model to fit

and analyze the situation of COVID-19. Anastassopoulou et al. [3] compared the

predictions of LR along-side the susceptible-infectious-recovered-dead (SIRD) model for

COVID-19 future spread. Considering that the approaches used to adapt a computa-

tional model to the COVID-19 data differs across these models, their prediction results

will not be compared in this work. Rather, we take the time to acknowledge the quick
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prediction response they have made and present further, our prediction methodology as

it contributes to knowledge, and facilitates health-care interventions.

In this work, we present an epidemiological prediction that is uniquely fashioned for

Nigeria, though can be adapted for other countries. The reason for the focus on Nigeria is

the fact that there is a gradual growing spread of the virus as reported by the Nigerian

Center for Disease Control (NCDC) [1] and because of the heedless attitude of Nigerians

about the virus. Frequently, people cluster to purchase from malls, the market, receive

food aid, and without protective measures in place for preventing the spread of the virus

in such gatherings. Yet, of her approx. 195 million people, only about 10,861 persons,

constituting about 0.00557% of the population has so far been tested as at 28-APR-2020.

Based on the presented case, we make the following assumptions:

There are a lot more people who are carriers of COVID-19 but are not showing

symptoms because they are self-medicating or illegally treated at unauthorized

private hospitals, which is likely to suppress the symptoms and make carriers go

unnoticed. This is because Nigeria isn’t running as many tests as possible, given

the uncontainable interaction of people in gatherings, carriers further transmit to

more persons.

Having stated these, we hypothesize that there is a causal relationship between testing

and identification of COVID-19 carriers in Nigeria. Therefore, we make the following

statement:

“With an increase in COVID-19 testing relative to the suspected percentage of

carriers in Nigeria, the number of infected cases will increase significantly”

Subsequently, we will identify the predictor variables meaningful to the given case for

the prediction of the infection pattern of the virus over some time. Unlike previous

approaches [3,21e23], we explore a prediction model from the family of generalized

linear models (GLMs) for our prediction.

2. Material and methods
This section comprises data, preprocessing, and the prediction model.

2.1 Data

Before data collection, it is important to identify the outcome and predictor variables to

avoid erroneous data collection. Therefore, based on our hypothesis, the outcome

variable: infected count, and the predictor variables: number tested, number of deaths,

time, were identified with no consideration to “best predictors” given. Furthermore,
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these variables helped in the collection of the number of tested data1 and the rest of the

variable’s data.2 Since computational models for epidemiological prediction usually

require historical data collected over a long period for prediction accuracy, we capital-

ized on collecting the daily incidence of COVID-19 from countries with a sufficient

number of test counts to create baseline data. These countries are South Africa, Senegal,

Slovenia, Australia, Belgium, and Israel.

As a result of the inclusion of the number tested predictor variables, the records from

Nigeria as provided by the NCDC is omitted because there was no accurate daily record

of the number of tested data from the period of March 9, 2020 to April 19, 2020. Also,

guided by the trend of occurrence of infection in Nigeria, we consider records from the

USA, UK, and Italy to be too extreme to be included in the data model.

2.2 Preprocessing

First, the data collected from the various countries earlier mentioned in Section 2.1 are

merged into a single data. To enable each sample to still represent an infection count,

two indexes are set; one for index and the other for the date entry. Second, a few null

values appeared in the data. To generate the missing values, we adopted the linear

interpolation method which estimates the null values from known values closest to it.

A sample of the data after the processing is shown in Fig. 31.1. Third, based on our earlier

assumption that the “percentage of infected” will be a significant factor for identifying

new carriers of the virus, we employed feature engineering approach by creating a

percentage-suspected of COVID-19 carriers as an additional predictor variable. This is to

FIGURE 31.1 Deviance residual plot for the proposed model for the COVID-19 data.

1www.worldometers.info/coronavirus/.
2www.ourworldindata.org/covid-testing.
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enable us to test whether there is an effect of increasing testing capacity relative to the

growing number of people suspected to be carriers of the virus and the prediction of the

outcome.

After the data has been prepared, it is split into training and testing sets with a

distribution of 80% and 20%, respectively, that is, 136 observations for the train set to 44

observations for the test set. The data sample is provided in Table 31.1. Different from

other predictions of COVID-19 in the literature [22,23], our predictive model is trained

on global data, of the countries aforementioned, to extract meaningful cues of the virus

spread pattern and subsequently adapt the model to forecasting the future infection

spread of the virus for Nigeria. This approach is inspired by transfer learning used when

there is a limited number of samples for recognition tasks like [24] and basically because

there are numerous missing values in the number of test data from the Nigeria COVID-19

reports. It should be noted that the aspect of transfer learning we refer to is the act using

prediction patterns gained from a different problem to deduce the pattern of a different

but related problem. Therefore, in predicting the future of COVID-19 infection count in

Nigeria, we generated seven-test data, of which 3e7 are as stipulated3

(1) data that fit the current daily testing capacity in Nigeria (see Table 31.2).

(2) data that follow a 300 increase in a testing capacity.

(3) data that meet an expected 1500 daily testing capacity of Nigeria.

(4) data that meet an expected 2000 daily testing capacity of Nigeria.

(5) data that meet an expected 2500 daily testing capacity of Nigeria.

(6) data that meet an expected 3500 daily testing capacity of Nigeria.

(7) data that meet an expected 5000 daily testing capacity of Nigeria

Table 31.1 Current COVID-19 baseline data from South Africa, Senegal, Slovenia,
Australia, Belgium, Israel on infection and death cases.

DATE Infected number_of_deaths number_tested perc_suspected

March 09, 2020 4 0 70 5.7
March 10, 2020 0 0 101 0
March 11, 2020 6 0 90 6.7
March 12, 2020 3 0 203 1.5
March 13, 2020 8 0 76 10.5
March 14, 2020 14 0 93 15.1
March 15, 2020 23 0 459 5
March 16, 2020 3 0 867 0.3
March 17, 2020 21 0 568 3.7
March 18, 2020 31 0 159 19.5
March 19, 2020 34 0 1762 1.9
March 20, 2020 52 0 1606 3.2
March 21, 2020 38 0 987 3.9

3https://covid19.ncdc.gov.ng/media/files/COVID19TestingStrategy_Lz3ZVsT.pdf.
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2.3 Prediction model

We employ a type of GLMs. This family of models is chosen because they are known for

their powerful application to prediction problems of count data. Also, for the fact that

they can be used to validate the relationship between variables to judge the contribution

each variable makes to the model performance.

From the initial descriptive analysis, the population distribution is observed to be

skewed and to approximate the Poisson distribution. However, the respective means of

the outcome data show to greatly deviate from the variance. In statistics, this is termed

over dispersion. By definition, overdispersion can be described as when data variance is

greater than its statistical mean [25]. This characteristic of the data violates fitting the

data to the PR model, a commonly used model for fitting epidemiological count data.

Therefore, we explore the NBR model for fitting the count data. From the literature, the

NBR is more appropriate for fitting overdispersed count data [26] and very much

adopted in solving epidemiological problems like in Refs. [15,17,18,26e28]bib28.

With the NBR model, we consider the goal of predicting the outcome variable yi,

which is the number of infected cases at observation i, given the exposure time ti, and a

set of predictor variables x1i; x2i;.; xki at observation i. Thus, the model is formulated as:

Pðmi;aÞ¼
Gðyi þ a�1Þ

Gða�1ÞGðyi þ 1Þ
�

1

1þ ami

�a�1�
ami

1þ ami

�yi

(31.1)

where a is the dispersion parameter, G is the gamma function, and mi is the expected

mean value of yi per ti, which is given as:

mi ¼ expðb0 þ b1x1i þ b2x2i þ/þ bkxkiÞ; ði ¼ 1; 2;. ; kÞ (31.2)

Table 31.2 Generated COVID-19 data for Nigeria infected and death cases.

Date Infected number_of_deaths number_tested perc_suspected

April 20, 2020 1 1 584 7
April 21, 2020 1 3 347 25
April 22, 2020 1 3 588 20
April 23, 2020 1 3 539 22
April 24, 2020 1 0 370 23
April 25, 2020 1 1 487 22
April 26, 2020 1 2 450 20
April 27, 2020 1 1 500 20
April 28, 2020 1 0 550 19
April 29, 2020 1 0 550 20
April 30, 2020 1 2 421 26
May 01, 2020 1 0 433 24
May 02, 2020 1 0 584 20
May 03, 2020 1 1 418 25
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where b0 is the intercept and the unknown parameters b0; b1; b2;.; bk are regression

coefficients estimated using the maximum likelihood method [25,29]. Consequently, the

future observations of the infection pattern of the virus at time t þ n;n > 0 can be

predicted.

In applying Eq. (31.1) to COVID-19 data, the full model representation of mi can be

specified as:

mi ¼ expðintercept þpercentage suspectedþnumber testedþnumber of deathsþdayÞ (31.3)

The implementation of the prediction model was achieved using the Statsmodel

v0.12.0.dev0 (v207) application programmer interface in Python Environment.

The prediction model result and analysis will be presented and discussed in subsequent

sections.

3. Results and discussion
The results will be presented as follows: (1) goodness of fit of the model to the data, (2)

testing the effect of predictor variables on the outcome variable, (3) model prediction

performance on unknown data, the Nigeria data, for one-month.

3.1 Goodness of fit test

In accessing the fit of the NBR model to the data, we used the Chi-square goodness of fit

statistical measure as proposed in Ref. [30]. Based on the author’s recommendations, we

evaluate the deviance value with the model degree of freedom (see Table 31.3) at a 5%

significance level using the following formula.

c2 ¼
"
ðO� EÞ2

E

#
(31.4)

where c2 is Chi-square goodness of fit, O is observed value, and E expected value.

The P-value determined from the Chi-square distribution calculator, P
�
c2

� ¼ 0.41144,

suggests that the Chi-square test is not statistically significant. Therefore, we conclude

that the NBR model fits the data well.

Furthermore, our claim of the fitness of the proposed model can also be verified using

a plot of the deviance residual and the fitted value, which is illustrated in Fig. 31.1. As

expected, the deviance of the proposed model lies along the zero point and shows no

evidence of one-directional bias, either of overestimation or underestimation given the

Table 31.3 Statistical values for verifying model goodness of fit.

Value Df c2 P-value

Deviance 133.93 131 0.0227 0.41144
Log-likelihood �778.72 e e e
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closeness of the median of the residuals, 0.03912, to zero. Even though an outlier

observation is identified, the median value suggests that it does not statistically differ

from others.

3.2 Model effect and statistical analysis of predictor variables

Here, we report the model effect of the predictor variables given in Eq. (31.3) and their

statistical significance to predicting the outcome count. These reports are tabulated in

Table 31.4. To interpret the result of Table 31.4, we draw the attention of the reader to the

coefficient estimates for the model effect and the P-value for statistical significance.

3.2.1 Statistical significance of predictor variables
The statistical analysis of the predictor variables using the P-values at 5% significance

value reveals that the predictor variables except death are statistically significant to the

model outcome. While the number_tested and percentage_suspected variables show to be

of very high significance given their 0.000 P-values which are way below the 0.01

significance level. The day variable with a P-value of 0.030 reveals a high significance. As

expected, the number_of_deaths variable does not influence the pattern of infection

spread per ti. Since the NBR model performance is in line with our assumptions, it

clearly expresses the prediction power of the model for solving the given problem.

3.2.2 Model effect of predictor variables
The coefficient estimate is not informative by itself. So, we adopted an interpretative

strategy for a coefficient estimate as provided in Ref. [31], it is given as:

H ¼ 100 � ½exp expðb �DÞ� 1� (31.5)

where H is the percentage change in the expected mean of yi, Dh1, which represents the

one-unit change, b is the regression coefficient.

Applying Eq. (31.5) to the predictor variables number_tested, percentage_suspected,

day, number_of_deaths gives the values 0.05%, 7.9%, 2.2%, 0.08%, respectively. By

interpretation, the exponentiated value of each predictor regression coefficient indicates

how much the mean of yi, that is, mi changes with every one-unit increase in X, while

holding other predictors constant. For instance, the percentage_suspected predictor with

Table 31.4 Model outcome and predictor effect and statistical significance
verification.

Estimates Std Error P-value

Intercept 2.2290 0.202 0.000
Number_tested 0.0005 2.45e-05 0.000
Percentage_suspected 0.0763 0.008 0.000
Day 0.0218 0.010 0.030
Number_of_deaths 0.0008 0.002 0.659
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H ¼ 7:9% means that for each one-unit increase in the percentage of the number of

people infected, the mean count of the number of infected persons will increase by 7.9%,

assuming all other variables have a zero value.

An alternative approach to evaluating the relationship between the outcome variable

y and a predictor variable Xk, conditional on other predictor variables Xek, is through a

visual plot of the residuals retrieved by regressing the outcome variable against Xk. The

partial regression plot available in the Statsmodel v0.12.0. dev0 (v207) is used to achieve

this goal. From Fig. 31.2, it is obvious that all observations for the predictor variables

were consistently close to the trend line, though a compact spread along the trend line is

seen for deaths and test predictors which results from the presence of the outlier.

However, there is a lack of trend for the day predictor which illustrates that it is not as

explanatory as the regression coefficients suggested.

FIGURE 31.2 Partial regression plots of the effect of the predictor variables on the outcome variable. (A) outcome
variable against the predictor variable, (B)e(E) outcome variable against variables XkX omitting Xek .
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3.3 Prediction accuracy

The capability of the predictive model can be seen in Fig. 31.3 which illustrates the plot

of the predicted observation of infected cases versus the actual observation of infected

cases over the timestamps of dates from 09-03-2020 to 09-04-2020. These dates represent

the periods most countries began recording numerous cases. It is interesting to see that

the predictive distribution for predicted resembles the actual, though at some

observations (13-03-2020 to 15-03-2020, 30-03-2020 to 04-04-2020) the model over

predicted. However, the predicted observation of infected cases closely resembles the

actual observation.

Of particular interest in epidemiological predictions is the ability to project into the

future the spread pattern a disease might take over a duration of time to help facilitate

health-care decisions. Henceforth, we term this phenomenon, forecasting. We consider

the forecast distribution of future observations for infection pattern of the virus at time

t þ n;n > 0 to be of great significance to public health in Nigeria. This is mainly because

a clear picture of the infection threats of COVID-19 is still not well-understood.

Using the generated data [1e7] discussed in subsection 2.2, which represents Eq.

(31.3) variables, for testing the predictive power of the model to unseen data. The future

cumulative numbers of infected cases for data [1e7] are illustrated in Fig. 31.4D and

Fig. 31.5D. This is a report on a thirty-days-ahead forecast and illustration of the

effectiveness of the proposed model when applied to COVID-19.

We assume that there are more COVID-19 infected cases than is reported and if being

the case then, the Government must increase its COVID-19 testing capacity. As observed

from Figs. 31.4 and 31.5, an increase in the testing capacity increased the number of

infected cases. Though Refs. [1e7] of the generated data is created from the actual

COVID-19 Nigeria data, it is interesting to observe the pattern of the spike on day 30 of

the trained model reoccur on the daily and cumulative plot of the infected cases of

COVID-19 forecast. Also, we observe that the forecast errors between February 20, 2020

FIGURE 31.3 Predicted by i and actual yi observations of infected cases of COVID-19.
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to February 26, 2020, as can be seen from Fig. 31.4, are within the median of the trained

model residuals (median Error ¼ 0.03912). Days 21, 22, and 26 have negative percentage

errors of �0.01%, �0.02%, and �0.03, respectively; while for days 20, 23, 24, and 25 have

positive percentage errors of 0.08, 0, 0.01, and 0.22, respectively.

Interestingly, the cumulative predicted number of infected cases in Nigeria is

expected to continue to rise in the coming weeks as seen from Figs. 31.4D and 31.5D. The

growth level expected on the 30-04-2020 for the three-scenarios of testing capacities are:

(1) scenario of gradual increase in testing capacity as is currently practiced in Nigeria

which is labeled “initial_test_per_day_capacity” is 1756, (2) scenario of a 300 increase in

the current testing capacity labeled as “300_increase_test_per_day_capacity” is 1914,

(3) scenario of achieved 1500 daily test labeled as “1500_test_per_data_capacity” is 2509.

FIGURE 31.4 A 30-day forecast of infected cases of COVID-19. (A)e(C) the daily forecast of confirmed cases for
generated data [1e3], (D) the cumulative COVID-19 forecast for generated data [1e3] together with actual
COVID-19 Nigeria data.
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By 15-05-2020 and 22-05-2020, the infected count is expected to rise to 2951 and 3697,

3280 and 4145, 4518 and 5790 for scenario 1, scenario 2, and scenario 3, respectively.

Furthermore, the worst infected number of COVID-19 cases, in Nigeria, can be

observed for testing capacity from 2000 up to 5000. If Nigeria eventually carries out more

tests as projected for the coming days, there will be more and more persons in need of

health care facilities. As predicted, precisely about 7254, 9135, 14,639, 30,244 infected

number of COVID-19 cases by the 22-05-2020 might be identified for the scenarios of

2000-test-per-day-capacity, 2500-test-per-day-capacity, 3500-test-per-day-capacity, and

5000-test-per-day-capacity, respectively. Therefore, care should be taken as Nigeria

currently considers relaxing lockdown in the coming weeks without careful deliberations

on the potential risk and ways to mitigate against it.

While the benefits of the lockdown can be observed through the gradual rise of the

COVID-19 infected cases, we should be wary of the uncontainable interaction of people

in markets, malls, shops around people’s homes, and the contagiousness of the act of

gathering a cluster of people to give aids to people by noble Nigerian philanthropist. If

these gatherings are not contained, Nigeria should expect a spike that is by far more than

the worst case of the 1500-testing-capacity infected number of cases. The predicted

cases from 2000 up to 5000 testing capacity cases reveal so.

FIGURE 31.5 A 30-day forecast of infected cases of COVID-19. (A)e(C) the daily forecast of confirmed cases for
generated data [4e7], (D) the cumulative COVID-19 forecast for generated data [4e7] together with actual
COVID-19 Nigeria data.
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4. Conclusion
This paper explored the NBR model from the family of GLM for the prediction of the

future infection pattern of COVID-19 in Nigeria. We approached the prediction from a

whole new perspective that is inspired by transfer learning and feature engineering

approaches widely used in machine learning. We trained the model to learn COVID-19

pattern cues of countries such as South Africa, Senegal, Slovenia, Australia, Belgium, and

Israel with sufficient and recorded infection cases and test count as baseline data for

forecasting infection trends in Nigeria. The experimental results showed the effective-

ness of the proposed approach to predict the test set of the trained data and forecast a

rise in the infected number of COVID-19 cases in Nigeria, which closely resembles the

actual number of infected cases in Nigeria.

Acknowledgments
We would like to express our sincere gratitude to the Association of Massachusetts Institute of

Technology Trained African Universities Lecturers (AMTAUL) for providing the platform for this

research collaboration. We acknowledge the role of Professor Akintayo Akinwande (Program

Coordinator) and TOTAL Nigeria for supporting the program.

References
[1] Nigerian Center for Disease Control, COVID-19 Case Update, 2020. Retrieved from covid19.ncdc.

gov.ng [Accessed 28th April 2020].

[2] F.A. Hamzah, C.H. Lau, H. Nazri, D.V. Ligot, G. Lee, C.L. Tan, et al., CoronaTracker: World-wide
COVID-19 outbreak data analysis and prediction, Bull. World Health Organ. (2020), https://doi.
org/10.2471/BLT.20.255695.

[3] C. Anastassopoulou, L. Russo, A. Tsakris, C. Siettos, Data-based analysis, modelling and forecasting
of the COVID-19 outbreak, PLoS One 15 (3) (2020).

[4] M. Arti, K. Bhatnagar, Modeling and predictions for COVID 19 spread in India, Researchgate (2020),
https://doi.org/10.13140/RG.2.2.11427.81444.

[5] V.A. Okhuese, Mathematical Predictions for COVID-19 as a Global Pandemic. medRxiv, 2020,
https://doi.org/10.1101/2020.03.19.20038794.

[6] I. Nesteruk, Statistics-based predictions of coronavirus epidemic spreading in mainland China,
Innov. Biosyst. Bioeng. 4 (1) (2020) 13e18, https://doi.org/10.20535/ibb.2020.4.1.195074.

[7] L. Peng, W. Yang, D. Zhang, C. Zhuge, L. Hong, Epidemic Analysis of COVID-19 in China by
Dynamical Modeling. arXiv.

[8] N.M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Imperial
College COVID-19 Response Team. Impact of Non-pharmaceutical Interventions (NPIs) to Reduce
COVID-19 Mortality and Healthcare Demand, 2020, https://doi.org/10.25561/77482.

[9] Y. Pawitan, In All Likelihood: Statistical Modelling and Inference Using Likelihood, Clarendon Press;
Oxford University Press, Oxford: New York, 2001, p. 528.

[10] S. Callaghan, COVID-19 is a data science issue, Patterns 1 (2) (2020).

[11] N.M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Impact of Non-
pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand.
Imperial College COVID-19 Response Team, 2020 [Accessed 13th May 2020].

Chapter 31 � Data-driven approach to COVID-19 infection forecast 595

https://doi.org/10.2471/BLT.20.255695
https://doi.org/10.2471/BLT.20.255695
https://doi.org/10.13140/RG.2.2.11427.81444
https://doi.org/10.1101/2020.03.19.20038794
https://doi.org/10.20535/ibb.2020.4.1.195074
https://doi.org/10.25561/77482


[12] M.J. Keeling, L. Danon, Mathematical modelling of infectious diseases, Br. Med. Bull. 92 (2009)
33e42.

[13] H. Wearing, P. Rohani, M. Keeling, Correction: appropriate models for the management of infec-
tious diseases, PLoS Med. 2 (8) (2005) e320.

[14] M. Tizzoni, P. Bajardi, C. Poletto, J.J. Ramasco, D. Balcan, B. Gonçalves, et al., Real-time numerical
forecast of global epidemic spreading: case study of 2009 A/H1N1pdm, BMC Med. 10 (2012) 165.

[15] M.B. Bennett, On the use of the negative binomial in epidemiology, Biom. J. (1981) 69e72.

[16] A.N. Varaksin, V.G. Panov, Linear Regression Models in Epidemiology. Institute of Industrial
Ecology, the Urals Branch of the Russian Academy of Sciences.

[17] E. Amene, L.A. Hanson, E.A. Zahn, S.R. Wild, D. Döpfer, Variable selection and regression analysis
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