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Abstract: In view of research suggesting a possible beneficial impact of vitamin D on systemic in-
flammatory response, the authors decided to investigate an influence of vitamin D supplementation
on serum levels of certain inflammatory markers in obese patients. The current study included
such biomarkers as interleukin-6 (IL-6), pituitary adenylate cyclase-activating peptide (PACAP),
advanced oxidation protein products (AOPP), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), mono-
cyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO). The measurements were performed
with the ELISA method before and after 3-month-long supplementation of 2000 IU of vitamin D
orally. The results showed that the therapy did not induce any statistically significant changes in
serum levels of MCP-1, IL-6, CX3CL1, and PACAP. The supplementation was related to a significant
increase in measurements of NO and AOPP levels, although the correlation analysis between vitamin
D concentration after its supplementation and the concentration of the molecular parameters did not
show significant relation. In conclusion, our study seems to contradict certain aspects of findings
available in the literature regarding the vitamin D’s impact.

Keywords: vitamin D; inflammation; obesity; pathways; pharmacology

1. Introduction

Obesity is the most common risk factor for cardiovascular disorders and is directly
connected with morbidity and mortality. Scientists suggest that adipose tissue is not only an
energy deposit but that it has also a secretory function. Adipocytokines such as IL-6, TNFα,
and MCP-1 are involved in inflammatory processes and belong to pathophysiological risk
factors of various cardiovascular disorders. Moreover, it has been found that they may
play an important role in cancer development and even dementia. Currently, ongoing
experiments throw a new light on the obesity-linked clinical risk factors [1].

1.1. Obesity and Inflammation

We can divide adipose tissue into three types: white, brown, and pink adipose tis-
sue. During pregnancy, as well as lactation and post-lactation periods, subcutaneous
white adipocytes convert to milk-producing glands formed by lipid-rich elements that
can be defined as pink adipocytes [2]. The brown type, although especially abundant in
newborns and hibernating mammals, remains present and metabolically active in adult
humans. Its primary function is thermoregulation. What is more, it has been proven
to be inversely corelated with BMI in adults [3]. Recent studies suggest two types of
thermogenic adipocytes with distinct developmental and anatomical features: classical
brown adipocytes and beige adipocytes. The latter have recently attracted special interest
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because of their ability to dissipate energy and potential to differentiate themselves from
white adipocytes. Numerous factors affecting the differentiation process have become
attractive therapeutic targets for treatment of obesity and obesity-related diseases (re-
viewed in [4]). White adipose tissue is known to be involved in production and regulation
of various substances involved in the inflammation and immune response. Monocytes,
macrophages, adiponectin, endothelial cells, lymphocytes, and a cross talk between them
play a crucial role in those processes. Adipose tissue can be called a double-edge sword
in the context of our physiology and health state. It produces pro- and anti-inflammatory
molecules [5]. Many clinical studies suggest that overexpression of pro-inflammatory me-
diators in obese patients is the result of adipocyte hypertrophy, which leads to hypoxia and
macrophage infiltrations [6]. Accumulation of non-esterified fatty acids (NEFA) increases
the activity of c-Jun N-terminal kinases, protein kinase R, and Toll-like receptors (TLR) [7].
Those molecules are implicated in interleukin-6 (IL-6) secretion, which leads to hepatocyte-
dependent C-reactive protein (CRP) production. This systemic inflammatory response
determines platelet and white blood cells’ release [8]. The process of chemotaxis, that is,
migration of morphological elements of the blood, is mediated through the expression of
various molecular agents. Among them are CC chemokines, a family of monocyte and
macrophage chemoattractants. The C-C chemokine receptor type 2 (CCR2) was found
to be increased in obesity [9]. Scientists from the University of Central Florida reported
that a novel zinger finger protein called MCPIP (MCP-1-induced protein) proved to have
a potential to induce adipogenesis without PPARγ participation. It has been found that
forced expression of MCPIP induces expression of the C/EBP family of transcription factors
and adipogenesis in PPARγ (−/−) mouse embryonic fibroblasts [10]. All the findings may
suggest that higher MCP-1 concentration is the result of adipose tissue excess, possibly due
to macrophage infiltration. It is noteworthy that MCP-1 signaling pathways may develop
obesity by themselves [11]. Fractalkine and its receptors (CX3CL1/ CX3CR1) are known to
be essential mediators in monocyte/macrophage cell migration [12]. Nagashimada et al.
found that CX3CL1–CX3CR1 signaling participates in adipose tissue inflammation and
insulin resistance development in obese mice [13]. As another subfamily of molecular
attractants, the CXC chemokines act mainly on neutrophils and lymphocytes, whereas
the CC chemokines, such as the aforementioned MCP-1/CCL2, act majorly on monocytes
and lymphocytes without affecting neutrophils [14]. Tumor necrosis factor α (TNFα) is
highly expressed in fat tissue [15]. Its concentrations correlate with a degree of obesity. The
stromal vascular cells are mainly responsible for TNF-α secretion in humans. It should be
mentioned that there are two forms of soluble TNF α receptors: type 1 and type 2. Both
types can be found in adipose tissue; however, type 1 shows higher expression in omental
than subcutaneous adipocytes [16]. Pituitary adenylate cyclase-activating polypeptide
(PACAP) is involved in inflammatory process as well as glucose and lipid metabolism [17].
Xiao et al. showed that the Fas apoptosis inhibitory molecule (FAIM) can be a new mediator
for Akt2 pathways. What is more, PACAP may promote FAIM expression in hepatocytes,
leading to a consequent decrease in body mass. Chinese scientists proved that FAIM may
reduce adipogenesis proteins such as sterol regulatory element-binding protein 1 (SREBP1),
sterol regulatory element-binding protein 2 (SREBP2), stearoyl-CoA desaturase (SCD1),
and fatty acid synthase (Fas) [18]. SREBP1c (sterol regulatory element-binding protein 1c)
is a metabolic syndrome-associated transcription factor controlling fatty acid biosynthe-
sis related to glucose/insulin stimulation. Oxidative stress increases lipid accumulation,
which subsequently promotes the generation of reactive oxygen species (ROS). ROS may
stimulate lipid accumulation in HepG2 cells via SREBP1c activation leading to an example
of a vicious circle [19]. Based on the facts, it is possible that advanced oxidation protein
product (AOPP) constitutes an adequate marker for evaluation of such phenomena [20].
Nitric oxide (NO) is considered a free radical of limited bioactivity. Due to its half-life
of 2 ms to 42 s, the potential significance of NO action seems to be dependent on the
availability of other reacting molecules [21]. Apart from the oxidative potential, NO has
multiple biological properties leading to changes in, among others, angiogenesis, platelet
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aggregation, leukocytes interactions, synaptic transmission, and immune system signaling
on various levels [22,23]. Formerly known as endothelial-derived relaxing factor (EDRF),
nitric oxide is one of the most potent regulators of blood flow acting via soluble guanylyl
cyclase (sGC) activation and cyclic guanosine monophosphate (cGMP) production-related
vasodilatation [24,25]. Nitric oxide synthase (eNOS) is an enzyme involved in the synthesis
of nitric oxide. There are a few isoforms of eNOS implicated to various extents in different
processes including regulation of blood pressure, regulation on medullar and hypothala-
mus level (eNOS3), penile erection (eNOS1), microvascular circulation (both eNOS1 and
eNOS3), or inflammatory processes (eNOS2) [26–28]. There are findings showing that NO
bioavailability is decreased in obese and diabetic states. The data concern both animal mod-
els of obesity and diabetes [29,30] as well as obese and diabetic human patients [31,32]. The
disruption in balance between its generation and degradation may be caused by changes in
expression of eNOS, impairments in eNOS activity, or some influence of related factors [23].
Long-term elevation in NO levels results in mitochondrial biogenesis [33,34], directing cell
programming towards higher metabolic capacity.

1.2. Vitamin D: Structure and Function

The popularity of vitamin D increased significantly in the last decade. Supplementa-
tion of vitamin D is constantly tested, with more and more reports of its beneficial effect not
only in the calcium–phosphate turnover, but also on skeletal, immune, and cardiovascular
systems. The term “vitamin D” describes two compounds: ergocalciferol (Vitamin D2
found in plants) and cholecalciferol (vitamin D3 found in animals) [35]. The last form
is synthesized in the skin with the participation of UV-B radiation. Activity of vitamin
D2 and vitamin D3 is comparable. Vitamin D and its metabolites are soluble in fats [36].
Metabolism of vitamin D starts in the liver with the hydroxylation at C25. This reaction
results in the first metabolite: 25(OH)D3, calcifediol. The half-life of 25(OH)D3 is approx-
imately 21 days. It does not fluctuate rapidly; therefore, calcifediol is the best marker of
vitamin D supply independently of the source (skin synthesis or diet) [37]. Kidneys play
a crucial role in vitamin D metabolism. At this spot, hydroxylation at C1 takes place and
1,25(OH)2D3 is formed. This most active type of vitamin D has a short half-life of 1 to
7 h [38]. Calcitriol is structurally related to steroids and it shows hormone-like effects. It
affects targeted cells via vitamin D receptors (VDR) in the nucleus. Those receptors are
located in many organs such as the heart, brain, blood vessels, adrenal gland, pancreas,
small and large intestines, and others [39]. Calcitriol may regulate transcription of over a
few hundred genes; thus, the presence of VDR is connected with the wide spectrum of its
action on numerous cell types. The first factor that determines the mechanism of action
of vitamin D is the binding potential to VDBP (Vitamin D-binding protein). Within the
all-natural form of vitamin D found in serum, calcifediol shows the highest affinity [40].
Overexpression of VDBP in our physiological compartments helps in many pathological
states, i.e., liver injury or nephrotic syndrome. Moreover, megalin is the receptor found
in proximal tubule, which reabsorbs both VDBP and RBP (retinol-binding protein). It has
been reported that megalin can bind the skip protein, the crucial activator of VDR. Intra-
cellular VDBP controls the transfer of 25(OH)D3 to mitochondria (IDBP3) and calcitriol
binding to the VDR (IDBP1). After binding to a ligand, VDR is able to create a complex
with retinoid X receptor: VDR/RXR [41]. The whole complex is then linked to vitamin
D responsive elements (VDRE), that is, DNA sequences found in the promoter region of
vitamin D-regulated genes [42].

1.3. Vitamin D and Inflammation

It has been reported that vitamin D may play a crucial role in the inflammatory process.
The molecular basis to that statement is the presence of VDRs in macrophages, neutrophils,
activated lymphocytes B and T, and dendritic cells [43]. Macrophages’ stimulation of
Toll-like receptors results in upregulation of VDR and CYP27B1 (the gene that encodes
the 25-hydroxy vitamin D-1α-hydroxylase) [44]. Overexpressed CYP27B1 leads to accu-
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mulation of 1,25(OH2) D3 and subsequent target gene transcription via VDRE. What is
more, Toll-like receptor pathways can be regulated by suppression of cytokine signaling 1
protein (SOCS1) [45]. Numerous studies suggest that vitamin D inhibits IL-6 and TNF-α
production via the histone H4-dependent manner in human monocytes [46]. Other trials
showed that vitamin D may decrease MCP-1 and IL-6 release due to reduced activation
of NF-κB in macrophages. The 1,25(OH)2D3 affects differentiation of human dendritic
cells (DCs), probably linked to the limitation of their surface expression for CD40 and
CD80 [47]. Scientists from the University of Birmingham found that vitamin D inhibits
production of proinflammatory mediators such as IFN-γ, IL-17, and IL-21 and promoted
the development of T-reg cells. The last ones may also stimulate vitamin D metabolism
via the aforementioned upregulations of CYP27B1 [48]. Endothelial nitric oxide synthase
(eNOS) expression was reduced in mice lacking the VDR gene. Additionally, increased
endothelin-1 (ET-1) expression and sensitivity to the angiotensin II hypertensinogenic
properties were observed in the same study [49]. Tare et al. noticed that mesenteric arteries
of rats with vitamin D deficiency were characterized by a 2-fold decrease in the ability to
relax. The mechanism of impairment has been related to NO and endothelial hyperpolariz-
ing factor (EDHF) signaling [50]. It is possible that the abovementioned effects could be
reversed by vitamin D supplementation [49]. Studies of Andrukhova et al. showed that
cholecalciferol is a direct transcriptional regulator of eNOS [51].

In view of the above, we decided to investigate the influence of vitamin D supplemen-
tation on serum levels of certain inflammatory markers in obese patients. A summary of
the proposed mechanism underlying a potential influence of vitamin D on inflammatory
markers levels is presented in Figure 1.
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of activated B cells; SREBP1c, Sterol regulatory element-binding transcription factor 1c; 1,25(OH)2D3, calcitriol/1,25-
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VDR, Vitamin D Receptor; VDRE, Vitamin D response element, RXR, retinoid X receptor; MCP-1, monocyte chemoattractant
protein-1; CXCL1, chemokine (C-X-C motif) ligand 1; Th1, type 1 T helper cells; Th2, type 2 T helper cells; IL-10-,
Interleukin 10; IL-6, Interleukin 6, IL-6R, Interleukin 6 receptor; PACAP, Pituitary adenylate cyclase-activating peptide;
PAC1, activated GPIIb/IIIa complex; AOPP, Advanced oxidation protein products; Jak- Janus-activated kinases; PI3K/Akt,
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway; mTORC1, mammalian target of
rapamycin complex 1; eNOS, Endothelial Nitric Oxide Synthase; NO, nitric oxide; FAIM, Fas apoptotic inhibitory molecule 1.

2. Materials and Methods

The study group included 33 obese patients, 16 women and 17 men. Participants
signed Written, Informed Consent Form at the beginning of the study. Those patients
were assigned to a control group (Time point 0, before supplementation of vitamin D) or
intervention group (Time point 1, after 3 months of vitamin D supplementation). Inclusion
criteria were set according to anthropometric measurements such as body weight, BMI,
and age between 23–71 years old. Moreover, all participants did not supplement vitamin
D before the start of the experiment and showed vitamin D deficiency. The study design
was approved by the ethics committee of Collegium Medicum in Bydgoszcz, Nicolaus
Copernicus University, in Toruń (approval number KB48/2019). The study was conducted
according to the criteria set by the declaration of Helsinki and each subject signed an
informed consent before participating in the study.

2.1. Incusion and Exclusion Citeria

Inclusion criteria for the study were age of over 18 years old and obesity (by BMI or %
body fat). Criteria excluding participation in the study were nicotinism, use of estrogen
or estrogen–progestogen-based hormone therapy, myocardial infarction or stroke within
the last year, neoplastic diseases, dialysis, liver diseases, osteoporosis, pregnant women,
possible vitamin D malabsorption (cystic fibrosis, Crohn disease), allergy to the ingredients
contained in a cholecalciferol preparation tablet intended for patients, or refusal to collect
blood for testing.

2.2. Measurements

Anthropometric characteristics were provided on an In-body device in the Department
of Pharmacology and Therapeutics, Medicine Faculty, Collegium Medicum in Bydgoszcz.
Vitamin D was administrated at a dose of 2000 IU. The concentration of vitamin D at all
stages of the experiment was measured on a Beckman Coulter DXI 800 by the chemilu-
minescence method (mini Vidas Blue 25 H Vitamin D total quantitative kit). Biomarkers
were determined with the ELISA method on a BioTek EPOCH Instrument using Elisa
Kits by SunRed for such factors as PACAP (catalog number: 201-12-1308), AOPP (catalog
number: 201-12-1267), CX3CL1 (catalog number: 201-12-2102), MCP-1 (catalog number:
201-12-0125), NO (catalog number: 201-12-1511), and Elisa Kits by DRG (catalog number
EIA-4640) for IL-6. Body mass composition was determined with an InBody Composition
270 analyzer (four-limb leads’ electrodes). Distribution of abnormal body mass stages was
determined according to WHO recommendations (Table 1).

2.3. Statistical Analysis

Quantitative results were presented as mean values with standard error of the mean
(±SEM) and additional minimum and maximum values. The compliance of the results’ dis-
tribution with the normal distribution was checked using the Shapiro–Wilk test separately
for the results obtained before (Time point 0) and after the 3-month vitamin D supplemen-
tation (Time point 1). The comparison of the results having a normal distribution for the
dependent variables was provided using the Student’s t test for the dependent variables
and, when the variables were not normally distributed, using the Wilcoxon test. The third
type of test was a multivariate regression analysis. The dependent variables (dependent,
Y) were the parameter of vitamin D concentration before supplementation and after the
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3-month supplementation. The explanatory variables (independent, x) were the parameters
of anthropometric features and the analyzed molecular markers. Multivariate regression
analyses were performed using the method of progressive stepwise introduction to the
model with the adopted testing level at the level of F > 1.0. The redundancy/collinearity of
the variables in the model was assessed using the wedge-shaped methods (cross-correlation
table for all parameters used) and, finally, the model used a preventive algorithm in the
form of ridge regression. Statistically significant differences between the groups were
considered as a p value < 0.05. Correlated variables were considered when R value was
> 0.3 with simultaneous p value < 0.05 for the statistical test. The interpretation of the
correlation index is included in Table 1. In multiple regression models, where there was a
final model fit index r, the results of the interpretation are also presented in Table 2. All
calculations were provided via GraphPad Prism 8.0.

Table 1. Obesity classification.

BMI (kg/m2) WHO Classification

<18.5 Underweight

18.5–24.9 Normal weight

25.0–29.9 Overweight

30.0–34.9 Obesity I grade

35.0–39.9 Obesity II grade

>40 Obesity III grade
According to WHO recommendations, 13 patients were classified as obesity grade I, 12 patients as obesity grade
II, seven patients as obesity grade III, and one patient as overweight.

Table 2. Power of correlation.

Correlation Factor
R Statistical Power of Correlation

0.0–0.3 None

0.3–0.4 Weak

0.4–0.7 Moderate

0.7–0.9 Strong

0.9–1.0 Very strong

3. Results

The baseline characteristics include age, gender, weight, height, BMI, adipose tissue
mass, skeletal muscles mass, and visceral fat levels. Body weight and BMI values did not
differ significantly before and after the therapy (Table 3).

Table 3. Body weight and BMI values before and after therapy (Wilcoxon’s test).

Parameter Time Point N ¯
x SD Min Max p-Value

Body mass
Time point 0 (before) 33 110.50 23.91 75.9 194.5

0.089
Time point 1 (after) 33 110.24 25.45 75.7 195.2

BMI
Time point 0 (before) 33 36.92 6.00 26.6 55.0

0.153
Time point 1 (after) 33 36.82 6.48 27.0 55.2

According to the World Health Organization interpretation of the BMI values, all
subjects were obese to varying degrees. At the same time, this observation was also true
for the interpretation of the BMI values after the therapy. After the end of the 3 months of
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vitamin D supplementation, the value of this index did not change significantly. Among the
individuals, both before and after vitamin D supplementation, the majority were patients
with first-degree obesity (before: 39.39%; after: 36.36%) and second-degree obesity (before:
36.36%; after: 39.39%). After the therapy, the percentage of people with first-degree obesity
(39.39% vs. 36.36%, before vs. after) and third-degree (21.21% vs. 18.18%, before vs. after)
slightly decreased. With second-degree obesity (36.36% vs. 39.39%, before vs. after) and
overweight (3.03% vs. 6.06%, before vs. after) it slightly increased. The anthropometric
features assessed before and after vitamin D supplementation also included skeletal muscle
mass, adipose tissue mass, % of adipose tissue, and the level of visceral fat (Table 4).

Table 4. Descriptive and statistical analyses of the comparison of skeletal muscle mass, adipose tissue mass, % of adipose
tissue, and the level of visceral fat before and after the 3-month vitamin D supplementation (Wilcoxon’s test).

Parameter Time Point N ¯
x SD Min Max p-Value

Skeletal muscles mass (kg)
Time point 0 (before) 33 37.18 8.34 24.6 65.5

0.437
Time point 1 (after) 33 36.88 9.20 24.3 66.8

Adipose tissue mass (kg)
Time point 0 (before) 33 45.19 13.31 30.0 81.3

0.964
Time point 1 (after) 33 45.87 13.80 30.4 82.7

% Adipose tissue
Time point 0 (before) 33 40.81 5.98 29.7 53.2

0.297
Time point 1 (after) 33 41.42 6.53 28.4 52.9

Visceral fat levels
Time point 0 (before) 33 17.52 2.68 11.0 20.0

0.583
Time point 1 (after) 33 17.45 2.87 11.0 20.0

Results for any of the four characteristics listed (skeletal muscle mass, adipose tissue
mass, % of adipose tissue, and visceral fat levels) did not show significant differences
between the time points 0 and 1. The concentration of vitamin D 25-(OH) in all subjects
before the therapy equaled, accordingly, an average level of 18.22 ± 1.103 ng/mL, and after
the therapy it increased to the level of 29.89 ± 1.160 ng/mL. The Wilcoxon pair test was
statistically significant (p < 0.001).

In Tables 5 and 6, divided results for women and men are presented. In Table 7 we
have shown Vitamin D concentration before and after the 3-month supplementation.

Table 5. Body mass composition and its changes during the therapy in women.

Women
(n = 16)

Body Mass
(kg)

BMI
(kg/m2)

Skeleton
Muscles Mass

(kg)

Fat Tissue
Mass (kg)

% Fat
Tissue

Visceral
Fat Tissue

Before
Therapy

Minimum 75.90 26.60 24.60 30.00 35.40 11.00

Maximum 147.8 51.10 40.40 78.60 53.20 20.00

Mean 101.0 35.92 31.73 45.23 44.48 16.81

Std. Deviation 19.07 6.103 5.241 13.56 5.795 3.124

Std. Error of Mean 4.768 1.526 1.310 3.389 1.449 0.7811

After
Therapy

Minimum 75.70 27 24.30 30.70 35.70 11

Maximum 150.4 52 40.10 79.60 52.90 20

Mean 100.1 35.60 31.06 45.92 45.26 17.06

Std. Deviation 19.34 6.326 5.183 13.45 5.353 3.08

Std. Error of Mean 4.836 1.582 1.296 3.361 1.338 0.77
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Table 6. Body mass composition and its changes during the therapy in men.

Men (n = 17) Body Mass
(kg)

BMI
(kg/m2)

Skeleton
Muscles Mass

(kg)

Fat Tissue
Mass (kg)

% Fat
Tissue

Visceral
Fat Tissue

Before
Therapy

Minimum 101.7 31.10 34.40 31.6 29.70 14

Maximum 194.5 55 65.50 81.3 44.70 20

Mean 119.4 37.85 42.32 45.15 37.36 18.18

Std. Deviation 25.06 5.923 7.458 13.48 3.748 2.069

Std. Error of Mean 6.077 1.437 1.809 3.27 0.909 0.501

After
Therapy

Minimum 97.60 30.40 29.90 30.4 28.40 12

Maximum 195.2 55.20 66.80 82.70 47 20

Mean 119.8 37.98 42.35 45.82 37.81 17.82

Std. Deviation 27.30 6.595 8.849 14.54 5.45 2.698

Std. Error of Mean 6.621 1.6 2.146 3.526 1.322 0.654

Table 7. Descriptive and statistical analyses of the Vitamin D concentration before and after the 3-month supplementation.

Parameter Time Point N ¯
x SEM Min Max p-Value

Vitamin D 25-(OH)
(ng/mL)

Time point 0 (before) 33 18.22 1.106 81 28.4
<0.001

Time point 1 (after) 33 29.89 1.160 19.1 52.1

In the next step of our experiment, molecular parameters involved in the inflammatory
process were determined. Our measurements included interleukin-6 (IL-6), Pituitary adeny-
late cyclase-activating peptide (PACAP), Advanced oxidation protein products (AOPP),
C-X3-C Motif Chemokine Ligand 1 (CX3CL1), Monocyte Chemoattractant Protein-1 (MCP-
1), and nitric oxide (NO). All parameters were compared between two time points (Time
point 0 vs. time point 1). MCP-1, IL-6, CX3CL1, and PACAP did not show significant
differences before and after vitamin D therapy. Results have been presented in Table 8.

Table 8. Molecular markers of inflammation: descriptive and statistical analyses (Wilcoxon’s test).

Parameter Time Point N ¯
x SEM Min Max p-Value

MCP1 (ng/mL)
Time point 0 (before) 33 230.35 47.83 10.0 670.0

0.157
Time point 1 (after) 33 246.41 47.80 10.0 669.0

IL-6 (pg/mL)
Time point 0 (before) 33 29.67 18.68 2.3 625.9

0.198
Time point 1 (after) 33 36.39 24.92 2.4 832.7

CX3CL1
fraktalin (ng/mL)

Time point 0 (before) 33 10.22 0.64 4.0 15.9
0.056

Time point 1 (after) 33 10.80 0.61 3.4 15.1

AOPP (nmol/mL)
Time point 0 (before) 33 55.07 12.21 2.5 167.5

0.047
Time point 1 (after) 33 58.94 12.10 2.5 167.2

NO (µmoL/L)
Time point 0 (before) 33 39.19 10.96 5.0 39.19

0.021
Time point 1 (after) 33 7002 13.80 24.2 70.02

PACAP (ng/mL)
Time point 0 (before) 33 2.30 0.47 0.1 6.5

0.218
Time point 1 (afteR) 33 2.25 0.48 0.1 6.7

The AOPP concentration in the subjects before the therapy reached the average level
of 55.07 ± 12.21 nmoL/mL, and after the therapy it increased to the level of 58.94 ±
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12.10 nmoL/mL. The difference between the mean concentrations of AOPP before and
after treatment (3.87), as shown by the Wilcoxon pair test, was statistically significant
(p = 0.047). The concentration of NO in all subjects before the therapy reached the av-
erage level of 39.19 ± 10.96 µmoL/L, and after the therapy it increased to the level of
70.02 ± 13.80 µmoL/L. The difference between the mean concentrations of NO before
and after treatment (30.83) µmoL/L), as shown by the Wilcoxon pair test, was statistically
significant (p = 0.021).

The Spearman r correlation analysis between vitamin D concentration before its
supplementation and the concentration of molecular parameters (MCP1, IL-6, NO, CX3CL1,
AOPP, and PACAP) before Vitamin D therapy did not show any significant relations
between the studied values (Table 9).

Table 9. Correlation analysis between vitamin D supplementation and pre-therapy concentrations of biomarkers.

Variables N R 95% Confidence
Interval p-Value

Vitamin D (Before) vs. MCP1 (Before) (ng/mL) 33 0.21 −0.15 to 0.52 0.23

Vitamin D (Before) vs. IL-6 (Before) (pg/mL) 33 0.01 −0.34 to 0.36 0.93

Vitamin D (Before) vs. NO (Before) (µmoL/L) 33 0.13 −0.23 to 0.46 0.44

Vitamin D (Before) vs. CX3CL1 (Before) (ng/mL) 33 −0.03 −0.38 to 0.31 0.83

Vitamin D (Before) vs. AOPP (Before) (nmol/mL) 33 0.235 −0.12 to 0.54 0.18

Vitamin D (Before) vs. PACAP (Before) (ng/mL) 33 0.151 −0.21 to 0.47 0.40

The Spearman r correlation analysis between vitamin D concentration after its sup-
plementation and the concentration of molecular parameters (MCP1, IL-6, NO, CX3CL1,
AOPP, and PACAP) after the 3-month Vitamin D therapy did not show any significant
relations between the studied values (Table 10).

Table 10. Correlation analysis between vitamin D supplementation and post-therapy concentrations of biomarkers.

Variables N R 95% Confidence
Interval p-Value

Vitamin D (After) vs. MCP1 After (ng/mL) 33 0.052 −0.16 to 0.52 0.25

Vitamin D (After) vs. IL-6 After (pg/mL) 33 0.104 −0.40 to 0.30 0.75

Vitamin D (After) vs. NO After (µmoL/L) 33 −0.183 −0.02 to 0.61 0.06

Vitamin D (After) vs. CX3CL1 After (ng/mL) 33 −0.148 −0.08 to 0.57 0.12

Vitamin D (After) vs. AOPP After (nmol/mL) 33 0.156 −0.11 to 0.55 0.16

Vitamin D (After) vs. PACAP After (ng/mL) 33 −0.106 −0.15 to 0.52 0.23

4. Discussion

Nitric oxide’s modulatory influence on vascular and immune function is beyond dis-
cussion. Vast experimental evidence presents NO as a potentially protective agent as well as
an unbeneficial one, related to oxidative injuries [52,53]. The nature of vitamin D’s impact
on NO signaling remains controversial. Calcitriol is known to inhibit LPS-induced immune
activation in human endothelial cells [54]. Activation of 1α-hydroxylase in macrophages
elevates the level of calcitriol, which inhibits the iNOS expression and reduces NO pro-
duction within LPS-stimulated macrophages [55]. In that case, calcitriol production by
macrophages may constitute a protective mechanism against the oxidative injuries that are
caused by the so-called NO burst. The same effect on iNOS has been observed in rat CNS
during an experimental model of allergic encephalomyelitis [56]. Conversely, according
to Andrukhova et. al., vitamin D has a potential to improve endothelial function and
health by an increase in signaling for the transcription of endothelial nitric oxide synthase
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(eNOS) [50]. Studies in mice have proven that subjects deprived of the eNOS and/or nNOS
gene exhibit metabolic syndrome, leading to possible vascular consequences [57,58].

In the current investigation, NO concentrations in the studied patients reached an
average level of 39.19 ± 10.96 µmoL/L prior to vitamin D supplementation. Subsequent
therapy increased its levels to 70.02 ± 13.80 µmoL/L in a statistically significant manner
(p = 0.021). Previous studies have shown that vitamin D may upregulate eNOS expres-
sion and increase NO bioavailability. Vitamin D administration in the study of Abeer M.
Mahmoud et al. improved flow-induced and acetylcholine-induced dilation of arterioles
isolated from adipose and subcutaneous tissues of bariatric patients. The effects have been
connected with increased NO production in the resistance arterioles. Achieved improve-
ment in vessels’ reactivity was diminished by eNOS inhibition via NO synthase inhibitor-
N(ω)-nitro-L-arginine methyl ester (L-NAME). Interestingly, researchers noted that vita-
mins D actions were more significant before the bariatric surgery and consequent weight
loss [59]. The extent of the therapeutical response to the vitamin D treatment may be related
to skin pigmentation. Due to UV ray-absorbing properties, melanin and its relatively higher
concentrations can contribute to impaired vitamin D production in adults with darker
pigmentation, placing such populations at risk for vitamin D deficiency [60–62]. Reduced
cutaneous microvascular vasodilation in response to local heating and reduced nitric oxide
(NO) contribution to that response have been observed in college-aged African Americans
(AA) compared to European American (EA) adults [63–65]. It is possible that modulation of
NO-mediated signaling can be utilized to limit the discrepancies. Wolf, S. T. et al. reported
a mitigation of such differences after 4 weeks of 2000 IU/day oral vitamin D supplemen-
tation. They achieved significant improvement in serum 25(OH)D concentrations of AA
(from 17.93 ± 5.24 to 26.07 ± 3.73 ng/mL, p = 0.04; g = 1.66) but not of EA (p = 0.16). Vita-
min D supplementation increased the NO contribution to the local heating-induced vessel
dilation in AA (from pre- to post-supplementation (29.83 ± 13.70 vs. 46.79 ± 21.93% max,
p = 0.01; g = 0.89)), abolishing the difference between groups (p = 0.47). Its assessment was
possible thanks to L-NAME administration and subsequent NO-dependent vasodilation
(%NO) quantification [66]. The report of Harris et al. seems to be consistent in terms of
vascular effect. Sixteen-week-long supplementation of 60,000 IU monthly oral vitamin
D3 (~2000 IU/day) proved to be effective at improving vascular endothelial function
in AA adults [67]. Although the observed increase in NO concentrations appears to be
statistically significant in the present study, the Spearman r correlation analysis did not
show any significant relations between the values of NO and vitamin D concentration after
its supplementation. A similar neutral effect on nitric oxide has been observed in PCOS
women. The condition makes the suffering prone to multiple metabolic disorders [68–70].
A meta-analysis of Akbari et al. concluded that vitamin D supplementation resulted in a
significant decrease in hs-CRP, but did not affect NO levels [71].

The second parameter in which significant increase might be observe is AOPP. The
difference between the mean concentrations of AOPP before and after treatment (3.87), as
shown by the Wilcoxon pair test, was statistically relevant (p = 0.047). Characterized for
the first time by Witko-Sarsat et al. [72], advanced oxidation protein products (AOPPs) are
considered adequate markers of oxidative stress and related tissue injury. Increased AOPP
levels have been reported in both obesity and diabetes [73,74]. Koçak et al. demonstrated
that serum AOPP levels were significantly elevated in obese and diabetic women compared
to healthy control. In all cases, AOPP levels have been positively correlated with blood
glucose concentration and age [75]. A simultaneous relative increase in IL-6 levels could
be observed, which supports previous findings associating women’s obesity and IL-6
elevation [76,77]. In the study of Oliveira et al. assessing AOPP, they showed a relation
between oxidative and nitrosative stresses and vitamin D deficiency in multiple sclerosis
patients. Researchers observed decreased levels of AOOP in patients with 25(OH)D
concentrations lower than 20 ng/mL than in those with ≥20 ng/mL (133.83 ± 58.95
vs. 164.99 ± 91.40, p = 0.046). However, after further analysis, it remained statistically
irrelevant [78]. Gradinaru et al. found significantly negative associations between vitamin
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D status and the susceptibility of LDL to oxidation, the AOPPs, and certain cardiovascular
risk biochemical markers like AGEs and nitric oxide metabolic pathway products (NOx) in
the elderly, mostly obese patients with IFG and/or T2DM [79]. After correlation analysis in
our own study, there was no relation between vitamin D supplementation and post-therapy
concentrations of AOPP.

For the first time, a report on a potentially advantageous impact of a sufficient vitamin
D level on inflammatory status in humans was presented by Jablonski et al. [80]. They
found that vascular endothelial cell expression of the p65 subunit of NFκB, being a major
pro-inflammatory nuclear transcription factor, and IL-6, a pro-inflammatory cytokine and
downstream target of NFκB, was higher in 25(OH)D deficient patients when compared to
middle-aged/older adults who were sufficient in that manner. In the study of our own,
measurements of MCP-1, IL-6, PACAP, and CX3CL1 concentrations did not show signifi-
cant differences before and after vitamin D therapy. Ni et. al., in their research conducted
on diabetic rats, demonstrated that vitamin D treatment decreases significantly hepatic
expression of pro-inflammatory mediators such as NF-κB and MCP-1 [49]. Wamberg et al.,
in a series of studies, reported that incubation with 1,25(OH)2D decreased the expression
of MCP-1, IL-6, and IL-8 and reduced IL-8 protein secretion in human adipose tissue
(AT) fragments [81]. In the follow-up evaluation, supplementation with a daily dose of
7000 IU of vit. D for 26 weeks did not affect the expression of the inflammatory markers
in AT or the concentration of circulating inflammatory markers [82]. Similar discrepan-
cies have been observed in numerous studies. On one hand, treatment for 3 years with
700 IU vitamin D plus 500 mg of calcium daily showed no effect of on circulating levels
of IL-6 or CRP in healthy adults [83]. Similarly, in the research of Jorde et al. in obese
human patients, a 1-year-long treatment with a weekly dose of 40,000 IU of cholecalcif-
erol had no effect on hsCRP, MCP-1, or several other markers of systemic inflammation
such as IL-2, IL-4, IL-5, IL-10, IL-12IL-13, IL-17, intercellular adhesion molecule-1, and
interferon-gamma [84]. Furthermore, Calton et al. found a lack of benefit with vitamin D
supplementation on inflammatory cytokines such as CRP and IL-6 [85]. On the other hand,
vitamin D supplementation with 3332 IU daily for 1 year during a weight loss trial of obese
subjects enhanced the decrease in TNFα but not CRP or IL-6, compared to placebo [86].
The strongest conclusions regarding the issue can be drawn on the basis of Jamka et al.’s
metanalysis, including data from 13 randomized, controlled trials and 1955 overweight
and obese subjects [87]. The vitamin D supplementation did not have an influence on CRP
(std. mean differences −0.11; 95% CI −0.27–0.04; p = 0.15), TNF-α (std. mean differences
−0.13; 95% CI −0.38–0.12; p = 0.31), and IL-6 concentrations (std. mean differences 0.1;
95% CI −0.43–0.63; p = 0.71). In the metanalysis, IL-6 concentrations were evaluated in
eight studies. At baseline, in vitamin D groups, the average plasma concentrations of
IL-6 varied between 1.00 and 8.90 pg/mL. There was no statistical significance of vitamin
D supplementation on plasma concentrations of IL-6 (std. mean differences 0.1; 95% CI
−0.43–0.63; p = 0.71). The authors brought to attention that reported results might have
been affected by differences in ethnicity, advanced age, and sex age [87,88].

Fractalkine is expressed in adipocytes and has been shown to promote monocyte
adhesion in adipose tissue from obese patients [89]. It takes part in the regulation of
pancreatic islet β cell function and insulin secretion [90]. There is vast evidence that
fractalkine/CX3CL1 is actively involved in many states related to inflammation such as
atherosclerosis, HIV infection, or cancer [14]. Recent studies prove that serum fractalkine
levels may constitute a potent diagnostic marker of childhood onset of SLE, independently
of stage of lupus-related nephritis [91]. In the studies of Shinzari et al., subgroups of
obese patients presented impaired reactivity to nitric oxide-dependent vasodilator stimuli
and enhanced ETA-dependent vasoconstrictor tone when increased circulating fractalkine
levels were observed. The authors noted that vascular function impairment may be
directly linked to increased plasma concentrations of atherogenic substances including
fractalkine [92,93]. Thus, increased LDL-cholesterol or reduced HDL-cholesterol have been
reported to elevate fractalkine’s levels. They proposed the presence of lipid abnormalities
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as a potential key factor in the underlying mechanism of its influence [94–96]. In the study
of Yegorov et al., 21 cytokines were measured in serum at baseline and after 6 months of
vitamin D supplementation in deficient children. Vitamin D deficiency was linked to the
reduction of such chemokines as MIP-1α (CCL3) and IL-8 (CXCL8). This relation was not
observed with fractalkine. The median blood 25(OH)D concentration at baseline was 13.7
nmol/L (IQR = 10.0–21.7). Supplementation tripled blood 25(OH)D levels (p < 0.001) [97].
Another similar trial, conducted by Davaasambuu et al., also in children, showed no
statistically significant elevation of various cytokines (IL-1b, 2, 4, 5, 6, 7, 8, 10, 12p70, 13,
17a, 21, 23, GM-CSF, IFN-γ, TNF-α, ITAC, Fractalkine, MIP1a, MIP1b, MIP3a) except the
levels of granulocyte–macrophage colony-stimulating factor (GM-CSF) following vitamin
D oral supplementation [98].

Unfortunately, data available in literature regarding vitamin’s D influence on PACAP
are limited. Nevertheless, PACAP relation with inflammatory processes and obesity-related
metabolic changes has been previously described [99,100]. It is expressed both in the
peripheral and central nervous systems. The cells of the mediobasal hypothalamus (MBH)
contain PACAP in the ventromedial hypothalamic nucleus (VMN), which serves a key
role in modulating sympathetic nervous system activation to regulate glucose metabolism,
energy expenditure, thermogenesis, and satiety [99]. The study of Green et al. showed
that 14 days of treatment with the PACAP receptor antagonist had an unbeneficial effect
on glucose tolerance and insulin sensitivity in obese diabetic ob/ob mice [101]. Although
details of PACAP’s influence remain unclear, it has been proven that PACAP mediates
sympathetic effects of leptin in a tissue-specific manner. The data brought by Tanida et al.
suggest that PACAP signaling is connected to leptin’s control of feeding patterns and
lipocatabolic sympathetic outflow. What is interesting is that the renal sympathetic traffic
appears to be spared and not affected [102].

Despite many reports regarding the abovementioned markers and therapies, the pri-
mary outcomes remain the most important issues for clinical practitioners. There are many
findings implying the efficacy of vitamin D supplementation in diseases and processes
related to inflammation (reviewed in [103]). Levels of vitamin D higher than 50 mmol/L
were connected with reduced risk of prostate and colorectal cancer by 30–50% [104,105].
Martineau et al., in their metanalysis, presented evidence on a possible protective effect of
vitamin D against acute renal injury [106]. Some recent studies have presented data about
differences in vitamin D dosages and their influence on the course of COVID-19 and the risk
of developing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [107,108].
Vitamin D deficiency may be related to other inflammatory-based diseases such as allergies.
Negative correlation between low concentrations of 25(OH)D and IgE in the serum of
studied children have been observed [109]. What is more, antenatal supplementation of
vitamin D preparation has been shown to decrease a risk of food allergies in infants with
GT/TT genotype [110].

Our study has some potential limitations, within which our findings should be inter-
preted carefully. First, as in much quantitative research, was a relatively modest sample
size and lack of probability sampling due to a strong regional focus of the studied pop-
ulation. Second, body mass composition was determined with the use of an impedance
body composition analyzer rather than utilizing techniques based on magnetic resonance,
computer tomography, or even near infrared spectroscopy. Although certain inclusion
and exclusion criteria were applied, there were factors with the potential impact, such as
medications other that hormonal treatment, that did not affect the qualification process.
All the above remarks need to be taken into consideration in the follow-up studies in this
field, which, hopefully, will be free from restrictions resulting from the pandemic period
and related limitations in the collection of data.

5. Conclusions

The data presented in this paper throw some light on relations of vitamins D and
certain indirect systemic responses related to inflammation. Three months of vitamin
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D therapy did not induce any statistically significant changes in serum levels of MCP-1,
IL-6, CX3CL1, and PACAP. The supplementation was related to a significant increase
in measurements of NO and AOPP levels. The correlation analysis between vitamin D
concentration after its supplementation and the concentration of molecular parameters
did not show any significant relations after the 3-month vitamin D therapy. A summary of
information from literature remains inconclusive. Our own findings, in some aspects, are
consistent with data already published. On the other hand, a lack of statistical significance
or correlation between the vitamin D supplementation and changes observed in levels
of the markers may reflect the limitations of the present study, as well as being related
to methodological differences between this trial and those mentioned in the discussion.
Additional studies are essential to verify the efficacy of vitamin D supplementation on
modifying certain inflammatory markers and related clinical consequences. Subsequent
moderation of inflammatory processes, vascular reactivity, and free radicals’ creation, if
proven to modify certain outcomes, may be utilized to treat obesity-related conditions
when concomitant vitamin D deficiency is being diagnosed.
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