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Introduction
Serotonin, known as the happy hormone, is a crucial neuro-
transmitter that modulates vital processes of the body and 
brain. The serotonin transporter gene (SLC6A4) is a very 
important target for the candidate genes involved in psychi-
atric disorders such as bipolar disorder (BP) and schizo-
phrenia (SCZ), obsessive-compulsive disorder (OCD), 
anxiety disorder, depression, autism, seizure, eating disorder, 
attention-deficit hyperactivity disorder (ADHD), and sub-
stance abuse disorders.1,2 The serotonin transporter protein, 
the SLC6A4 gene product is located on chromosome 
17q11.2.3,4 The Human SLC6A4 gene contains 15 exons 
spanning ~40 kb, while the human serotonin transporter 
protein contains 630 amino acids with 12 transmembrane 
domains. It has been seen that both normal and pathological 
association of the SLC6A4 serotonin transporter gene vari-
ants was identified with human behaviors.5 Usually, the 
SLC6A4 protein helps the cell in up taking the right amount 
of serotonin. However, variations due to different polymor-
phisms of this gene might affect the normal function of the 

gene product. In humans, the most common source of 
genetic variations is single nucleotide polymorphisms 
(SNPs).6 Single nucleotide alterations can occur both in the 
intronic and exonic regions of a gene. However, SNPs in the 
coding region have a higher impact on the functional prop-
erties of the gene product and are known as the nonsynony-
mous SNPs (nsSNPs).7,8 Evidences from genetic research 
show that more than 50% of the SNPs that are associated 
with genetic disorders are nonsynonymous (nsSNPs), also 
known as the missense variants.8,9 The nsSNPs may affect 
protein functions by lowering the protein solubility or 
reducing the stability of the protein structure.10-13 Thus, 
studying the association between different SNPs and their 
phenotypic impacts can help in understanding the molecu-
lar basis of many complex hereditary diseases.5,14-18

In this study, we aimed to identify the most deleterious and 
damaging nsSNPs of the human SLC6A4 gene to unveil the 
structural–functional relationship between the genetic poly-
morphisms and their phenotypic effects using in silico 
approaches. Several open databases for SNPs, such as GWAS 
Central, dbSNP, and Swiss-Var6 were used to extract the mis-
sense SNPs data of the human SLC6A4 gene.
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We investigated the functional consequences of the mis-
sense SNPs: whether they are normal or disease-causing or 
effective by any chance using SIFT, Align GVGD, 
PolyPhen2, PROVEAN, SNAP2, P-Mut, PhD-SNP, 
SNPs&GO, and PANTHER.6,17,19 The stability of the 
mutated proteins was analyzed using computational tools 
like MUpro and I-Mutant. Then most potential nsSNPs 
were further analyzed using MutPred2.20 Conservation of 
the amino acid residues was predicted using ConSurf.19 We 
also investigated the posttranslational modification (PTM) 
sites in the human SLC6A4 protein using Musite and 
PROSITE.21,22 Mutated protein structures were generated 
by SPARKS-X, and the quality of the protein models was 
validated by Varify3D and PROCHECK. Furthermore, 
molecular characteristics and interactions of the predicted 
protein structures were investigated using UCSF Chimera. 
The ligand-binding sites were analyzed using COACH.16,23-

25 Together, this study conducted a thorough, in-depth com-
putational analysis on all the nsSNPs of the SLC6A4 gene to 
predict and identify the most damaging and deleterious nsS-
NPs in humans. The flow chart of the overall methodology is 
shown below (Figure 1).

Materials and Methods
SNPs data

The nucleotide, SNPs, and protein data of the SLC6A4 gene 
were retrieved from the following database: all SNPs (rs IDs) 
were extracted from the NCBI database of SNP (dbSNP) 
(http://www.ncbi.nlm.nih.gov/snp/). FASTA format of the 
nucleotide sequence (NC_000017.11) and amino acid sequence 
(NP_001036.1) were retrieved from NCBI (https://www.ncbi.
nlm.nih.gov) and Uniprot ID (UniprotKB = P31645) from 
Uniprot database (https://www.uniprot.org) were retrieved for 
further computational analysis.

Prediction of the functional effects of 
nonsynonymous SNPs

The SIFT (Sorting Intolerance from Tolerance) tool employs 
an algorithm that determines if an amino acid substitution has 
an impact on protein function based on sequence homology 
and physicochemical qualities.26,27 The substitution is consid-
ered deleterious if the SIFT score is between 0 and 0.05, and it 
is considered tolerant if the SIFT value is between 0.05 and 
1.28 The rs IDs of SLC6A4 SNPs from the dbSNP data set 
used here as the input key for SIFT tool.

Align GVGD (http://agvgd.hci.utah.edu) is a freely available 
tool that predicts amino acid variants based on Grantham varia-
tion (GV) and Grantham deviation (GD) score.29 Align GVGD 
produces a score with 7 classes (C0, C15, C25, C35, C45, C55, 
and C65), with C0 being neutral, C15 to C55 being less likely 
influenced, and C65 being the most likely affected.30 The input 
key for Align GVGD was the FASTA format of the SLC6A4 
protein and the position of amino acid substitutions.

Screening of non-acceptable Polymorphism2 (SNAP2) is a 
computational tool (https://www.rostlab.org/services/SNAP/). 
It predicts whether the amino acid variation is effective or neu-
tral. The input query was the FASTA format of the SLC6A4 
protein sequence.

Protein Variation Effect Analyzer (PROVEAN) is a tech-
nique that detects nonsynonymous variants that can alter pro-
tein function. PROVEAN (http://provean.jcvi.org/index.php) 
uses alignment-based ratings to determine whether an amino 
acid variation is deleterious or neutral. If the score range is less 
than −2.5, the variant is regarded detrimental, while a score 
range of more than −2.5 is considered neutral.31 The input 
query was amino acid variants and FASTA format of the 
SLC6A4 protein sequence.

Polymorphism Phenotyping v2 (PolyPhen2) is an online tool 
(http://genetics.bwh.harvard.edu/pph2/) that predicts the effect 

Figure 1. Schematic representation of whole work.
PTM indicates posttranslational modification.
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of amino acid substitutions on the structure and function of 
human proteins using the physical and evolutionary compari-
son.32 This algorithm calculates PSIC (Position-Specific inde-
pendent score). A score greater than 0.85 indicated probably 
damaging and >0.15 predicted possibly damaging otherwise 
designated as benign.32 The input query was the FASTA format 
of the SLC6A4 protein sequence and amino acid variants.

PANTHER (http://pantherdb.org/tools/csnpScoreForm.
jsp) predicts specific nonsynonymous SNP that affect protein 
function using the PSEP (position-specific evolutionary pres-
ervation) method. Through PSEP scores, it predicts whether 
the amino acid substitution is probably benign or damag-
ing.20,33 The input key was the SLC6A4 protein sequence and 
amino acid substitution.

Predictor of human harmful single nucleotide polymor-
phism (PhD-SNP) (http://snps.biofold.org/phd-snp/phd-
snp.html) uses the support vector machine (SVM) method to 
discriminate between neutral and disease-related single-point 
amino acid polymorphisms.34 The results were sequence- and 
profile-based, whereas reliability scores between 0 and 9 deter-
mined the amino acid substitution as disease-causing or neu-
tral. The input query was the SLC6A4 protein sequence, 
residue position, and altered residue.

Single nucleotide polymorphism and gene ontology 
(SNPs&GO) is an online server (http://snps-and-go.biocomp.
unibo.it/snpsand-go/) that predicts the effects of single amino 
acid change in protein sequence and function related to human 
diseases.35 The input query was the UniProt accession number 
of the SLC6A4 protein (P31645) and its amino acids substi-
tute variants.

P-Mut (http://mmb.pcb.ub.es/PMut/) is a free program 
that can predict pathogenic mutations with an accuracy of 80% 
and indicate users whether a single-point amino acid mutation 
is diseased or neutral.36 The input query was the FASTA for-
mat of the SLC6A4 protein sequence and variations.

MUpro (http://mupro.proteomics.ics.uci.edu/) is a web server 
that accurately predicts protein stability change (due to amino 
acid substitution) based on SVM and neural network >84% 
accuracy through 20-fold time cross-validation.37 The input 
query was the plain sequence of SLC6A4 protein, mutation posi-
tion, and original residue as well as substituted residue.

I-Mutant (http://folding.biofold.org/cgi-bin/i-mutant2.0) is a 
support vector tool used to determine protein stability change due 
to the substitution of an amino acid in a protein sequence. 
Prediction of the protein stability change is based on RI (Reliability 
Index) score from 0 to 10, where 0 shows the lowest, and 10 shows 
the highest reliability.38 The input query was the SLC6A4 protein 
sequence, substitution position, and new residue.

Mutational association with the disease by 
MutPred

MutPred2 (http://mutpred.mutdb.org/) is a machine learning–
based tool that predicts whether amino acid substitutions are 

pathogenic or not and their molecular mechanisms. It uses to 
screen functional and structural variations such as altered sta-
bility, loss catalytic site, and gain O-linked glycosylation. 
MudPred2 provides a result with a probability score where 
more than 0.5 is considered as deleterious and >0.75 is consid-
ered as most deleterious.39-41 The input query was the FASTA 
amino acid sequence of the SLC6A4 protein.

Conservation analysis of deleterious nsSNP in 
SLC6A4

The ConSurf server (http://consurf.tau.ac.il) is a bioinformat-
ics tool for predicting the evolutionary conservation of amino 
acid residues in protein sequence based on the phylogenetic 
association between similar sequences.19 A conservation score 
(ranging from 1 to 9) of 1 to 3 indicates variable residues, 4 to 
7 indicates average conserved residues, and 8 to 9 indicates the 
most conserved residues.42,43 The input data were the FASTA 
format of the SLC6A4 protein sequence.

GnomAD

The genome Aggregation Database (gnomAD) is an open-
source bioinformatics tool (https://gnomad.broadinstitute.org/) 
that provides MAF value to distinguish between common and 
rare variants in the population. The MAF value of rare variants is 
less than 0.05, whereas the common variants are greater than 
0.0.44 The input query was the SLC6A4 gene name.

Prediction of the posttranslational site’s 
modification

The MusiteDeep (https://www.musite.net) is an online tool 
that gives a general model for protein PTM site prediction and 
visualization within the protein sequence. Posttranslational 
modification, such as phosphorylation, glycosylation, ubiquit-
ination, sumoylation, acetyl-lysine, methylation, pyrrolidone 
carboxylic acid, palmitoylation, and hydroxylation is identified 
by the MusiteDeep server.45 PROSPER (https://prosper.erc.
monash.edu.au/) is a web server for computer simulation and 
prediction of 24 different protease types of protease substrates 
and their cleavage sites, covering 4 leading protease families: 
aspartic acid (A) and cysteine (C), Metal (M), and serine (S). It 
is applied an algorithm-based approach to anticipate protease 
cleavage locales by using diverse but complementary sequence 
and structure characteristics.22 The input query, both 
MusiteDeep, and PROSPER, was the FASTA format of the 
SLC6A4 protein sequence.

Prediction of nsSNPs positions in different protein 
domains

NCBI Conserved Domain Search tool (https://www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi) is used to determine con-
served domains and motifs in a particular protein. It is used to 

http://pantherdb.org/tools/csnpScoreForm.jsp
http://pantherdb.org/tools/csnpScoreForm.jsp
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predict nsSNPs location in different domains of SLC6A4 pro-
tein structure and provides functional analysis of proteins.46,47 
The input key was the FASTA format of the SLC6A4 protein.

Prediction and validation of mutant 3D protein 
structure

SPARKS-X (http://sparks-lab.org/yueyang/server/
SPARKS-X/) server is used to generate the 3D structure of the 
mutant proteins. It uses template-based modeling, and the 
degree of similarity of templates was checked by BLASTp.48 
To create the SLC6A4 mutant protein structure, the changed 
amino acid has to be placed in the specified place, and this 
modified FASTA format amino acid sequence was an input 
query for SPARKS-X.

TM-align server (https://zhanglab.ccmb.med.umich.edu/
TM-align/) checks the similarity between wild-type and 
mutant models. It is a structural alignment program for com-
paring 2 proteins whose sequences can be different. The out-
put of TM-align is TM-score (template modeling score), 
RMSD (root-mean-square deviation), and structural super-
position. TM-score ranges from 0 to 1, where 1 indicates a 
perfect match between 2 structures, scores less than 0.2 deter-
mine unrelated proteins, and more than 0.5 generally assume 
a similar fold in SCOP/CATH. Root-mean-square deviation 
values also determine variations between wild- and mutant-
type structures, whereas higher RMSD value assumes more 
significant variation.49,50 The input query was a wild and 
mutant protein structure. The input query for Varify-3D and 
PROCHECK was the protein structure generated by 
SPARKS-X. Protein structures generated by SPARKS-X 
were checked using both Varify-3D (http://servicesn.mbi.
ucla.edu/Verify3D) and PROCHECK (https://servicesn.
mbi.ucla.edu/PROCHECK/).24 Finally, Chimera V1.14 was 
used to study the features and interactive visualization of the 
predicted protein structure at the molecular level.25

Ligand-binding site prediction

COACH (http://zhanglab.ccmb.med.umich.edu/COACH/) 
is a web tool used for protein–ligand binding site prediction. 
COACH provides a C-score (confidence score) that deter-
mines binding site reliability of the protein-ligand interaction. 
C-score ranges (0-1), where a higher score indicates a higher 
reliable prediction. Cluster size is the whole number of tem-
plates in a cluster. Ligand lists provide all ligands in a cluster.51 
The input key was the SLC6A4 protein structure.

Results
SNPs data

This study investigated the SLC6A4 gene, and SNP data are 
taken from the dbSNP database (dbSNPNCBI: https://www.
ncbi.nlm.nih.gov/snp/?term=SLC6A4). It contains 10 593 

SNPs, out of which 360 are missense (nsSNPs), 198 are syn-
onymous, 72 are noncoding transcript variants, 2 are inframe 
deletion, 2 are inframe insertion, and 8572 are intronic 
sequence (Figure 2). Only nsSNPs of SLC6A4 were selected 
for this study.

Identif ication of deleterious nsSNPs

All the nsSNPs retrieved from the dbSNP database were sub-
jected to various bioinformatics tools for the prediction of 
functional nsSNPs in the SLC6A4 gene. Through SIFT analy-
sis, 89 SNPs were predicted to be tolerated or deleterious out of 
a total of 360 nsSNPs. From these 89 SNPs, SIFT classified 67 
as tolerated and 22 as deleterious. All the 89 SNPs predicted in 
SIFT were further validated by Align GVGD, SNAP2, 
PROVEAN, PolyPhen2, and PANTHER, PhD-SNP, 
SNPs&GO, P-Mut, MUpro, I-Mutant tools to increase the 
accuracy of computational techniques (Table 1).

Out of 89 nsSNPs, Align GVGD anticipated 38 SNPs as 
the most likely affected and 50 nsSNPs as less likely involved, 
and 1 predicted neutral. SNAP2 exhibited, 28 had an effect on 
protein function and 61 anticipated as neutral. PROVEAN 
analysis anticipated 31 SNPs were as deleterious, whereas 58 
SNPs were neutral. PolyPhen-2 server, predicted 34 SNPs as 
probably damaging, 54 SNPs were determined as benign, and 1 
SNP was not predicted by PolyPhen2. Out of 89 nsSNPs, 33 
nsSNPs were predicted probably damaging, 36 nsSNPs pre-
dicted possibly damaging, and 20 nsSNPs predicted probably 
benign using PANTHER (Table 1).

Total 35 SNPs showed disease association, and the rest of 
54 predicted neutral by PhD-SNP server. SNPs&GO pre-
dicted 16 as diseased and 73 as neutral, whereas the P-Mut 
predicted 29 SNPs disease-causing, and 60 SNPs predicted 
neutral. The SNPs were further analyzed for their impact on 
protein stability using MUpro and I-Mutant. MUpro pre-
dicted 81 nsSNPs, with decreased SLC6A4 protein stability, 
and 8 nsSNPs showed increased protein stability. I-Mutant 
predicted 13 nsSNPs that increased SLC6A4 protein stability 
and 76 nsSNPs with decreased protein stability (Table 1).

From all these analyses, we identified the 15 nsSNPs that 
met the criteria and predicted by all 11 different algorithms as 
harmful SNPs. We selected these 15-high risk nsSNPs for fur-
ther analysis using MutPred and ConSurf (Table 2). MutPred 
results showed that many nsSNPs may cause protein alteration 
and may affect their function or structure (Supplementary File 
3). The ConSurf server predicted Gly342, Trp282, Arg104, 
Pro131, Pro156, and Asn315 as highly conserved with a con-
servation score of 9 and predicted as buried or exposed as well 
as functional or structural residues. The Arg607 was also pre-
dicted as highly conserved (conservation score 8) and exposed 
and predicted as functional residue. Arg596 predicted variable 
residue, and 7 amino acids were predicted averagely conserved 
(Table 3).

http://sparks-lab.org/yueyang/server/SPARKS-X/
http://sparks-lab.org/yueyang/server/SPARKS-X/
https://zhanglab.ccmb.med.umich.edu/TM-align/
https://zhanglab.ccmb.med.umich.edu/TM-align/
http://servicesn.mbi.ucla.edu/Verify3D
http://servicesn.mbi.ucla.edu/Verify3D
https://servicesn.mbi.ucla.edu/PROCHECK/
https://servicesn.mbi.ucla.edu/PROCHECK/
http://zhanglab.ccmb.med.umich.edu/COACH/
https://www.ncbi.nlm.nih.gov/snp/?term=SLC6A4
https://www.ncbi.nlm.nih.gov/snp/?term=SLC6A4
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Prediction of the posttranslational modification 
sites

Posttranslational modification sites associated with the selected 
15 most potent nsSNPs were predicted using Musite and 
PROSITE. Ten out of the 15 most-significant nsSNPs were 
predicted to be involved in PTM, including O-linked glyco-
sylation, N-linked glycosylation, proteolytic cleavage, phos-
phorylation, methylation, and hydroxylation. Residues R607, 
W282, and P156 were anticipated to have sites for proteolytic 
cleavage, whereas W607 and P156 also had methylation and 
hydroxylation sites, respectively. The results of Musite and 
PROSITE are shown in Table 3.

Prediction of minor allelic frequency (MAF)

The MAF data for the selected nsSNPs of the SLC6A4 gene 
was extracted from the gnomAD database. The highest fre-
quency was found for T192M, P533L, and G530S, while the 
lowest frequency was found for I270T, G342E, P303H, R607C, 
and N351S. The result of the MAF is given in Table 3.

Prediction of nsSNPs position in different protein 
domains

NCBI-conserved domain search tool figured 2 major domains 
in the SLC6A4 gene. One was SLC6sbd-SERT domain (Na 
(+) and Cl (−)-dependent serotonin transporter SERT), which 
comprises 79-615 amino acids, and another 1 was 5-HT_
transport_N domain (Serotonin (5-HT) neurotransmitter 
transporter, N-terminus) which comprises 24-64 amino acid. 
In SLC6A4, 208 and 217 amino acids were present in the 
putative glycosylation site; 94-437 amino acid sequences were 
present in Na-binding site 2; 96-168 amino acid sequences 

were present in Na binding site 1; 95-442 amino acid sequences 
were present in putative substrate-binding site 1 and 103-407 
amino acid were present in putative substrate-binding site 2 
(Figure 3).

Ligand-binding site prediction

The SLC6A4 protein–ligand binding site was predicted by the 
COACH server. COACH server predicted IXX and site 4 
ligand could bind to the Thr192 site. Again, Y01, CLR could 
bind to the Trp282 site. The confidence score (C-score) and 
the predicted binding site residues by COACH were shown 
(Supplementary File 4).

Prediction and validation of mutant 3D protein 
structure

The 3D structure of SLC6A4 protein is available in the pro-
tein data bank (PDB id: 6VRH). From the ConSurf, PTM, 
and MAF results, a total of 8 SNPs were the most potential 
disease-causing nsSNPs. The 3D models of these 8 nsSNPs 
mutant proteins were built using the SPARKS-X server. It 
gave the 10 best protein structures. From them, the structure 
with the highest Z-score was taken for our study. For each of 
the mutant protein structures, first one was selected. Again, 
these mutant structures were validated by Verify 3D and ana-
lyzed using PROCHECK for Ramachandran plot analysis. 
The RMSD values and TM score between wild-type and 
mutant models were analyzed using TM-align (Supplementary 
File 5). The 3D structure of wild-type and mutant proteins 
was analyzed through UCSF Chimera. These 8 mutant pro-
teins showed a significant alteration in H-bonding interac-
tions of amino acids compared to native (Supplementary File 
1 and 2).

Figure 2. Distribution of SNPs according to the dbSNP database among different SLC6A4 gene functional classes.
dbSNP indicates database of SNP; SNP, single nucleotide polymorphisms.
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Discussion
SLC6A4 gene encodes a serotonin transporter protein that car-
ries the serotonin neurotransmitter from the synaptic cleft into 
presynaptic neurons. This protein ceases the action of serotonin 

and reuses it in a sodium-dependent manner.52 Also, it is a tar-
get of taking many antidepressant drugs.53,54 Polymorphisms in 
the SLC6A4 gene has been shown to influence the rate of sero-
tonin reuptake and play a significant role in numerous disease 

Table 3. Most deleterious nsSNP showing conservation predicted from ConSurf and their posttranslation sites prediction by Musite and PROSPER 
with their minor allelic frequency (MAF).

SNP AA VARIANT CONSERVATION SCORE B/E F/S PTM MAF

rs74330808 I270T 7 B - 0.00000398

rs144427337 T192M 4 E - O-linked Glycosylation, Phosphorylation 0.0000119

rs199876253 G342E 9 B S 0.00000398

rs200015551 R607C 8 E F Methylation, Proteolytic Cleavage 0.00000812

rs200341915 F377S 6 B - -  

rs200435184 w282S 9 B S Proteolytic Cleavage  

rs200924626 P303H 3 E Hydroxylation 0.00000398

rs200953188 R104C 9 E F Methylation  

rs201114547 P533L 4 E Hydroxylation 0.0000119

rs201480140 P131l 9 B S Hydroxylation  

rs201833332 I161T 7 B  

rs201940331 P156l 9 E F Hydroxylation, Proteolytic Cleavage  

rs201481838 R596W 1 B Methylation  

rs201688096 N351S 9 E F N-linked glycosylation 0.00000398

rs374144565 G530S 8 B 0.0000142

Abbreviations: B, buried; E, exposed; F, functional; MAF, minor allelic frequency; nsSNP, nonsynonymous SNPs; PTM, posttranslational modification; S, structural; SNP, 
single nucleotide polymorphisms.
The significant results are shown in bold in the table.

Figure 3. Graphical representation of the domain and position of nsSNP in SLC6A4 gene and protein.
nsSNP indicates nonsynonymous SNPs.
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like autism, OCD, and major depressive disorder (MDD).55 
The G56A substitution in exon 2 of the SLC6A4 gene has a 
prominent association with autism.55 An I425V variation in 
exon 9, A1438G, and T102C SNPs of the SLC6A4 gene were 
reported to be related to OCD.56,57 Another study reported 
that the I550V polymorphism in exon 12 and the K605N in 
exon 13 of the SLC6A4 gene were associated with MDD and 
nonfatal suicidal behavior in cases of autism and OCD in 
Chinese patients.58

In this study, in silico approaches were applied to screen and 
foresee the impacts of different SNPs on the structure-function 
of the SLC6A4 gene. To date, more than 10 000 SNPs of the 
SLC6A4 gene are reported in the dbSNP of NCBI, of which 
360 polymorphisms are nonsynonymous (nsSNPs). The nsS-
NPs could either have a neutral effect or a major deleterious 
effect on protein 3D structure and function. For most of the 
nsSNPs of the SLC6A4 gene, still, the potential to cause disease 
is not characterized. So, in this research work, we screened 
retrieved all the nsSNPs of the SLC6A4 gene and then analyzed 
to identify the potential nsSNPs in the human SLC6A4 gene 
that was deleterious, damaging, and disease-causing. We further 
studied the impacts of this nsSNP on the 3D protein structure, 
stability, and biological function using different Bioinformatics 
tools and algorithms. To evaluate the pathogenicity of the iden-
tified nsSNPs of the human SLC6A4 gene, diverse structure-
based algorithms along with machine learning tools were 
employed to infer and validate the predictions. We used 6 dif-
ferent bioinformatics tools (SIFT, PROVEAN, PolyPhen2, 
SNAP2, PANTHER, and Align GVGD) to evaluate the func-
tional implications of nsSNPs of the human SLC6A4 gene. In 
addition, 3 other tools (P-Mut, SNPs & GO, and PhD-SNP) 
were applied to determine the disease-causing nsSNPs of the 
human SLC6A4 gene. Alterations of protein stability due to 
nsSNPs were predicted using MUpro and I-Mutant.

A total of 360 nonsynonymous SNPs of the human SLC6A4 
gene were retrieved and analyzed. SIFT identified 89 amino 

acid variants, of which 22 were predicted to have deleterious 
effects on the structure and the rest predicted as tolerable. 
These 89 SNPs were further explored to validate their effects 
on protein structure-function using MUpro and I-Mutant. 
MUpro-analyzed data indicated 81 out of 89 nsSNPs with 
decreased protein stability, whereas I-Mutant analysis pre-
dicted 76 nsSNPs associated with decreased protein stability. 
In literature, SNP rs25531 has been extensively studied in 
SLC6A4. This SNP is extensively studied in the population to 
check its relation with autism, depression, and anxiety, insom-
nia, irritable bowel syndrome, and ADHD.59-63 Interestingly, 
the computational analysis of this study predicted this SNP as 
not deleterious. From all these analyses, we identified 15 sub-
stitutions that were found common using all the tools in this 
study. These 15 SNPs were predicted as deleterious or disease-
causing and decreasing protein stability in the human SLC6A4 
gene product (Table 2).

These 15 screened nsSNPs of the human SLC6A4 gene were 
further analyzed using bioinformatics tools: MutPred, ConSurf 
web server, Musite, PROSPER, gnomAD, NCBI conserved 
domain search tool, SPARKS-X, TM-Align, Varify3D, 
PROCHECK, COACH, GeneMenia, and STRING to evalu-
ate the structural and functional properties in silico. MutPred 
results predicted 7 variants: W282S, P303H, R104C, P131L, 
and N351S as the highest damaging SNPs. These substitutions 
might alter the structures in ways that might alter cell mem-
brane; a gain of a helix, a gain of relative solvent accessibility, loss 
of catalytic site or loss of metal-binding sites in the protein. The 
ConSurf-analyzed data predicted that G342, R607, W282, 
R104, P131, P156, N351, and G530 variants of the human 
SLC6A4 gene were highly conserved (The conservation score is 
8 to 9); of which 3 variants: G342, W282, and P131 were buried 
as important structural residues and R607, R104, P156, and 
N351 were exposed as functional residues (Table 3).

In the MAF results we have found that R607C, G342E, 
and N351S showed more frequency to occur than others. 

Figure 4. Concurrence of all the deleterious SNPs.
SNP indicates single nucleotide polymorphisms.
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Although the most of values of MAF indicates rare value to 
occur frequently, these values will help future in the various 
community.

In this study, Musite and PROSPER tools were applied for 
the post-PTM sites. The analyzed data indicated proteolytic 
cleavage sites at R607, W282, and P156 residues; hydroxylation 
sites were present at P303, P533, P131, and P156 residues; 
methylation sites were situated at R607, R104, and R596 resi-
dues; O-linked and N-linked Glycosylation sites were at T192 
and N351 residues, respectively. From these analyzed data, it is 
evident that among the 15 functionally significant nsSNPs, 
both methylation and proteolytic cleavage sites were predicted 
to be at R607 residue; and both hydroxylation and proteolytic 
sites were found at P156 residue (Table 3). Therefore, these 2 
mutations might significantly affect PTM of the human 
SLC6A4 gene product.

COACH-analyzed data indicated that the T192 and W282 
residues of the human SLC6A4 gene product were involved in 
the interactions of the ligand-binding site. The ligand that can 
bind to the T192 and W282 sites can affect the structural con-
formation or functional consequences. The outputs of the 
NCBI-conserved domain search tool showed that the R104C, 
P131L, P156L, and I161T variants were present in sodium ion 
(Na+) binding site 1 and the R104C, P131L, P156L, I161T, 
T192M, I270T, G342E, F377S, W282S, P303, and N3351S 
variants were located in Na+ binding site 2. The human 
SLC6A4 gene product is a sodium-dependent serotonin trans-
porter, so a mutation in the Na+ binding site might interfere 
with serotonin transporter activity. Taken together with the 
result of MutPred, ConSurf, Musite, PROSPER, COACH, 
and NCBI conserved domain search tools, we have selected 8 
nsSNPs out of 15 for further structural analysis.

For checking the effects of the mutant variants of the human 
SLC6A4 gene on the protein structure and binding interac-
tions, the 3D protein models of the 8 variants: T192M, G342E, 
R607C, W282S, R104C, P131L, P156L, and N351S were 
generated and validated using SPARKS-X, and Verify3D and 
then further analyzed using PROCHECK. All of these 
mutants had almost the same TM score, which means that 
their topological similarity is high with the wild-type protein. 
But in the case of RMSD value, R607C had the highest devia-
tion, and P131L had the lowest. Verify 3D analyzed data sug-
gested that all the structures had around 80%; that is, almost all 
amino acids had scored ⩾0.2 in the 3D and 1D Profile. 
PROCHECK results also suggested that all the mutant pro-
tein structures had 90% or above amino acid residues in the 
favorable region, and hence they were used for further analysis. 
Native 3D model of the SLC6A4 protein was retrieved from 
the Protein Data Bank (PDB id: 6VRH) compared with the 
mutant protein structures. Further structural study of the wild-
type and mutant proteins predicted alterations in H-bonding 
interactions in T192M, G342E, R607C, W282S, R104C, 
P131L, P156L, and N351S. The alteration in hydrogen bonds 

might cause structural instability, which in turn might cause 
defects in protein function.

Summarizing all the results of this study, we identified that 
T192M, G342E, R607C, W282S, R104C, P131L, P156L, 
and N351S variants of the human SLC6A4 gene were the 
most deleterious, pathogenic, and functionally significant 
nsSNPs in the humans (Figure 4). This in-depth in silico 
structure-function study suggested that these damaging nsS-
NPs of the SLC6A4 gene have the potential to be explored as 
important biomarkers for serotonin-related mental disorders 
in the future. However, more studies and further experimental 
validation are needed to confirm the role of SLC6A4 SNPs in 
disease susceptibility.

Conclusion
The results of this study identified the most deleterious and 
risky polymorphisms of the SLC6A4 gene and analyzed their 
encoded protein 3D structural alterations in association with 
the biological functions. We have figured out T192M, G342E, 
R607C, W282S, R104C, P131L, P156L, and N351S SNPs are 
the most deleterious SNPs and can reduce the protein stability 
of SLC6A4. The screened nsSNPs will provide deep insight for 
further exploring the SLC6A4 gene as an effective biomarker 
for serotonin-related various mental disorders. Finally, this 
research can be a strong direction for understanding the molec-
ular basis of serotonin-related disorders and promote more 
accessible wet-laboratory studies.
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