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Abstract

It is well known that de-identified research brain images from MRI and CT can potentially 

be re-identified using face recognition; however, this has not been examined for PET images. 

We generated face reconstruction images of 182 volunteers using amyloid, tau, and FDG PET 

scans, and we measured how accurately commercial face recognition software (Microsoft Azure’s 

Face API) automatically matched them with the individual participants’ face photographs. We 

then compared this accuracy with the same experiments using participants’ CT and MRI. Face 

reconstructions from PET images from PET/CT scanners were correctly matched at rates of 42% 

(FDG), 35% (tau), and 32% (amyloid), while CT were matched at 78% and MRI at 97–98%. We 

propose that these recognition rates are high enough that research studies should consider using 

face de-identification (“de-facing”) software on PET images, in addition to CT and structural MRI, 

before data sharing. We also updated our mri_reface de-identification software with extended 

functionality to replace face imagery in PET and CT images. Rates of face recognition on de-faced 

images were reduced to 0–4% for PET, 5% for CT, and 8% for MRI. We measured the effects 

of de-facing on regional amyloid PET measurements from two different measurement pipelines 

(PETSurfer/FreeSurfer 6.0, and one in-house method based on SPM12 and ANTs), and these 

effects were small: ICC values between de-faced and original images were > 0.98, biases were 

<2%, and median relative errors were <2%. Effects on global amyloid PET SUVR measurements 

were even smaller: ICC values were 1.00, biases were <0.5%, and median relative errors were also 

<0.5%.
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1. Introduction

We have recently shown that modern commercial face recognition software now has very 

high accuracy for matching faces reconstructed from brain magnetic resonance imaging 

(MRI) with face photographs, potentially allowing re-identification of anonymous research 

participants from de-identified, publicly shared research datasets (Schwarz et al., 2019a, 
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2021a). Typical data use agreements for public datasets require a downloader to agrvvee 

that they will not attempt to re-identify participants, but these offer no direct protection 

for participants. The U.S. Health Insurance Portability and Accountability Act (HIPAA) 

specifies that de-identified data must remove, among other items, “Full face photographic 

images and any comparable images” (U.S. Department of Health and Human Services 

Office for Civil Rights, 2013). Our previous findings suggest that advancing technology may 

increasingly give brain images “comparable” identifiability. Software for automatic face-

deidentification or “de-facing” MRI (automatically removing facial features or replacing 

them with another face, which is sometimes called “re-facing”) can greatly reduce this 

possibility of re-identification, but further work is needed to develop better defacing tools 

that more effectively prevent face recognition and further minimize effects on measurements 

from de-faced data (Buimer et al., 2021; de Sitter et al., 2020; Gao et al., 2022; Schwarz et 

al., 2021a).

Earlier works have also shown that computed tomography (CT) images, like MRI, are 

identifiable via both visual (human) and automated face recognition (Mazura et al., 2012; 

Chen et al., 2014; Parks and Monson, 2017). Positron Emission Tomography (PET) images 

of the brain are commonly shared by imaging research studies (Jagust et al., 2015; 

LaMontagne et al., 2019; Sperling et al., 2014), especially those of aging and dementia 

because amyloid and tau PET are typically used for the research diagnosis and staging 

of Alzheimer’s disease (Jack et al., 2018). However, the potential of these images for 

re-identification via captured facial imagery has not been studied, perhaps due to the belief 

that brain PET images typically lack sufficient resolution and field of view (FOV) for face 

reconstruction. Our aims for this study were: 1) measure performance of automated face 

recognition to match face photographs with face reconstructions derived from brain PET 

scans; and 2) measure performance of our automated mri_reface software for modifying the 

PET images, both in terms of how well it prevents face recognition, and the effects of its 

image modifications on automated brain biomarker measurements.

2. Materials and methods

2.1. Dataset for Aim 1 (face recognition)

Participants: Our face recognition dataset included 157 individuals from our previous 

face recognition study (Schwarz et al., 2021a), as well as 25 additional volunteers from 

continuing recruitment. In total, we recruited 182 volunteers (ages 34–93, mean=63.2, 

median=65, SD=15.5), stratified by sex and age-decade, who had previous brain imaging 

within six months as part of their existing enrollment in the Mayo Clinic Study of Aging 

(MCSA) (Petersen et al., 2010; Roberts et al., 2008). All participants provided informed 

consent for this specific study, which was approved by the Mayo Clinic Institutional Review 

Board.

Photographs: We photographed each participant’s face under indoor lighting conditions 

using standard iPads (Apple Inc., Cupertino, CA; models Air 2 and 6th generation). 

Participants were instructed to look directly at the camera, and then approximately 10 

degrees up, down, left, and right, for a total of five photos. This design intended to provide 

Schwarz et al. Page 3

Neuroimage. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



five suitable, somewhat-unique photos of each individual with minimal participant burden, 

because we assume that an individual motivated to re-identify a study participant would 

be able to find more than one suitable photograph of their face. Photos were manually 

cropped loosely around the head and converted to grayscale to better match MRI (which 

does not capture color). This cropping retained the head, hair, and ears, removing only 

distant background and torso to reduce image size and speed up repeated image uploading 

during testing.

Brain imaging: All 182 participants underwent a head MRI protocol on Siemens Prisma 

scanners including a magnetization prepared rapid gradient echo (MPRAGE) sequence 

(TR/TE/TI = 2300/3.14/945 ms, flip angle 9°, 0.8 mm isotropic resolution), and a 

sagittal 3D FLAIR sequence (TR/TE/TI = 4800/441/1650, resolution 1.0 × 1.0 × 1.2mm) 

matching the ADNI3 (Alzheimer’s disease Neuroimaging Initiative) protocol. Among these 

participants, 167 had previously undergone imaging with Pittsburgh Compound B (PiB) 

Amyloid PET (Klunk et al., 2004) and Flortaucipir (FTP) tau PET (Xia et al., 2013), 

and 129 had previously undergone imaging with Fludeoxyglucose (FDG) PET, all using 

GE PET/CT scanners (models Discovery 690XT and Discovery MI). We refer to these 

PET scanners as “older”, representing the generation of clinical PET/CT that are currently 

most prevalent in imaging research datasets. A small fraction of these participants (14 

with FDG, 20 with PiB, and 19 with FTP) were also scanned at later visits with a 

Siemens Biograph64 Vision 600. This scanner creates images with higher signal to noise 

ratio than older generation models due to faster coincidence timing resolution, digital 

scintillation detectors, and ability to leverage this improved time-of-flight information 

during reconstructions. We show data from both scanners for that subset of individuals. For 

all PET/CT scans, a low-dose CT scan was acquired for use in attenuation correction, and 

PET images were reconstructed on-scanner using OSEM iterative algorithms with a 5mm 

Gaussian post-reconstruction filter and standard corrections for attenuation, scatter, random 

coincidences, and decay. All PET protocols acquired four late-uptake dynamic frames, 

which were co-registered and summed to produce static images from post-injection minutes 

30–45 for FDG, 40–60 for PiB, and 80–100 for FTP. The low-dose CT scans were separately 

also used for testing face reconstruction and recognition from CT, but aside from their use 

in on-scanner attenuation correction, they were not used when testing face recognition from 

PET images.

2.2. Methods for Aim 1 (face recognition)

Face reconstruction: Details of our methods for creating face reconstructions from 

structural MRI have been previously published (Schwarz et al., 2021a, 2019a). We used our 

previously described “standard” face reconstruction method. Briefly, we apply automated 

thresholding using Otsu’s method (Otsu, 1979) to binarize the image, remove any regions 

of suprathreshold voxels that are not spatially connected with the largest region, and attempt 

to re-attach any aliased nose-parts behind the head (which not occur in PET or CT and 

thus this step does nothing). After this preprocessing, we construct an isosurface using the 

isosurface function in Matlab, and create a render from this using Surf_Ice (Rorden, n.d.). 

For PET/CT images from older scanners, we also tested our “advanced” face reconstructions 

that match each input image with an average template of the same modality and use this 

Schwarz et al. Page 4

Neuroimage. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



template to “fill in” missing regions. The templates used for this process are the same 

average face templates we use in mri_reface (see below). For older PET/CT images, the 

advanced reconstructions replaced parts of nose and mouth that were outside the acquisition 

field of view, enabling face detection and recognition using the imaged regions (e.g. eye 

and forehead) despite their frequently missing nose and mouth. Both methods, originally 

designed for MRI, were applied for PET and CT without any modifications except altering 

some multipliers to automated hresholds to account for different contrast levels across image 

types.

De-identification (de-facing): We have previously published a description and validation 

of mri_reface, our software for replacing face information in MRI to prevent potential 

re-identification via face recognition (Schwarz et al., 2021a). The software registers each 

input image to an average template image of the same modality and transforms the template 

to the native input image space (linearly in the face/ears and nonlinearly in the rest 

of the image)performs global and local intensity matching, then replaces face imagery 

with the linearly transformed average face from the template. Since that publication, 

we have publicly released this software, free for use by the research community (https://

www.nitrc.org/projects/mri_reface). We have also improved its performance for preventing 

face recognition by replacing a larger area of the eyebrow ridge and forehead, because the 

eyebrow ridge (periocular region) is the most important area for modern automatic face 

recognition methods (Juefei-Xu et al., 2015, 2014, 2011; Juefei-Xu and Savvides, 2016; 

Le et al., 2014; Woodard et al., 2010). These changes will be described and validated in 

more detail as part of an upcoming separate publication exploring the potential for face 

recognition in additional MRI sequences.

We also extended mri_reface to support PET and CT by creating new average template 

images for PiB and Florbetapir (FBP) amyloid PET, Flortaucipir tau PET, and FDG PET, 

and by disabling replacement of air in regions in front of and behind the head, because 

PET and CT do not have MRI’s “aliasing” artifacts that may contain identifiable features. 

We show two examples of mri_reface on PET images in Fig. 1. We created templates for 

CT, FDG PET, PiB PET, and Flortaucipir PET using our previously published techniques 

(Schwarz et al., 2021a) with ANTs software (Avants et al., 2010) from in-house scans 

of participants in the MCSA, Mayo Clinic Alzheimer’s Disease Research Center, and 

Mayo Clinic DLB Consortium studies (n=192 FDG, n=200 PiB, n=200 FTP, n=200 CT) 

scanned on a Siemens Biograph64 Vision600 PET/CT scanner (the highest quality PET 

data available to us). Group-wise registration for PET from PET/CT was performed using 

corresponding CT images, and these parameters were used to transform the corresponding 

PET before averaging. To create the Florbetapir PET template, we used similar techniques 

with scans of 120 participants from PET/MRI scanners in the public OASIS-3 dataset 

(LaMontagne et al., 2019), except these PET images were group-co-registered using PET 

images directly, since no CT was available. After group-co-registration, templates were 

warped (nonlinearly) to match existing MRI-based templates, using ANTs (Avants et al., 

2008). Prior to template creation, we intensity-normalized all PET scans to the standardized 

uptake value ratio (SUVR), using corresponding MRI. SUVR for amyloid and tau tracers 

used the bilateral cerebellar crus as a reference region; cerebellar reference regions are the 
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typical choice for amyloid and tau PET because the cerebellum is not typically affected 

by Alzheimer’s pathology until very late stages (Klunk et al., 2004), and we used the crus 

sub-region to avoid bleed-in from cortical signal across the tentorium (Baker et al., 2017; 

Lowe et al., 2018). For FDG, we used the pons as a reference region, which is a typical 

choice because cerebellar cortex metabolism is affected by age and disease (Nugent et al., 

2020). We present images of these templates later, in the Results section.

Face recognition (matching): Details of our methods for using the Microsoft 

Azure Face API to automatically match MRI-based face reconstructions with participant 

photographs have been previously published (Schwarz et al., 2021a, 2019a). Briefly, our 

testing paradigm measures whether a motivated individual, who has reason to believe 

that participant’s brain images exist in a particular dataset, could correctly identify that 

participant using their photographs with face recognition software. We generated face 

reconstructions (renders) from each brain image (see Face Reconstruction, above), and we 

used these as the training set for a face recognition classifier. When given an input face 

image (a participant’s face photograph, in our usage), this classifier returns a ranking of 

the faces in the training set (reconstructions from brain images, in our usage) by their 

similarity to the input face photograph. For each participant in the dataset, we input standard 

face photographs and recorded which face reconstruction in the dataset was chosen by 

the classifier as the best match. When the correct face (reconstructed from de-identified 

imaging) was the software’s top-ranked match for the face photograph (e.g. identified photos 

that would be available to someone trying to re-identify a specific participant), we counted 

this as a successful re-identification. When brain images from a particular modality or 

sequence were not available for a participant, we did not input their photographs, because 

there is no correct match for them in the dataset. Our approach could have been applied to 

MRI, PET, and CT images in the current study without any modification; however, we took 

the opportunity to update our testing software to use Microsoft’s latest pre-trained models 

for face detection (detection_03) and face recognition (recognition_04), updated from 

detection_01 and recognition_02 in our most recent earlier work (Schwarz et al., 2021a). 

These algorithms are proprietary Microsoft products, and their underlying methodologies 

have not been published.

Outcome measure: We statistically compared matching proportions using a Pearson’s 

chi-squared test implemented by prop.test in R version 3.6.2 (R Development Core Team, 

2008).

2.3. Dataset for Aim 2 (effects of de-facing on measurements)

Note that this aim does not require that participants have facial photographs available. 

We re-used a cross-sectional dataset of 300 individuals (100 scanned using each MRI 

vendor, each including 50 cognitively unimpaired (CU) + 50 with clinically diagnosed 

Alzheimer’s disease (AD)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 

previously constructed for our earlier work (Schwarz et al., 2021a). 244 of these individuals 

had available PET scans with Florbetapir, and we used this subset of 244 individuals for 

the current work. Among those 244 (119 CU, 125 with clinical AD), 85 had GE MRI, 

78 had Phillips MRI, and 81 had Siemens MRI. PET scanner manufacturers were: 89 
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GE, 26 Philips, 126 Siemens, and 4 CPS Innovations. Details of ADNI PET acquisitions 

have been previously published (Jagust et al., 2010). We used the maximally preprocessed 

(co-registered, averaged, standardized image and voxel size, uniform resolution) images 

provided by ADNI (Joshi et al., 2009), which are considered homogenized against technical 

sources of variability across PET scanners. We have also previously shown that differing 

MRI vendors have only negligible effects on computing regional PET SUVR measurements 

(Schwarz et al., 2019b).

2.4. Methods for Aim 2 (effects of de-facing on measurements)

Regional Standardized Uptake Value Ratios (SUVRs) were measured for each PET image, 

before and after de-facing, using two different pipelines that each use corresponding T1-

weighted MRIs for spatial normalization. For de-faced PET images, we also de-faced the 

corresponding MRIs, since we expect that shared datasets with de-faced PET would also 

de-face MRI. The pipelines were: 1) a previously published in-house cross-sectional method 

(Schwarz et al., 2021b) based on SPM12 (Ashburner, 2009), the Mayo Clinic Adult Lifespan 

Template (MCALT; https://www.nitrc.org/projects/mcalt/) (Schwarz et al., 2017), and ANTs 

(Avants et al., 2008), and 2) PETSurfer (Greve et al., 2016) from FreeSurfer version 6.0 

(Fischl, 2012). The in-house pipeline performs a rigid registration of each PET to the 

corresponding T1-weighted MRI, then re-samples and performs regional calculations in this 

native MRI space with SPM12-based MRI segmentation and an ANTS transform of the 

MCALT_ADIR122 atlas to native MRI space. PETSurfer performs a rigid registration of 

each PET to the corresponding MRI using mri_coreg, then transforms these PET images 

to its standard MNI-based template space and performs regional calculations in this space 

using the Desikan-Killiany atlas (Desikan et al., 2006). We did not use partial volume 

correction (PVC) for either approach, to minimize effects of MRI on PET measurements. 

SUVR intensity normalization used the cerebellar crus for the in-house pipeline in order 

to avoid potential bleed-in from cortical uptake across the tentorium into the superior 

cerebellum. This option is not available for PETSurfer, so we used the standard cerebellar 

gray matter reference.

Outcome measures: We compared regional SUVR values from each pipeline before and 

after de-facing using three metrics: 1) Intraclass Correlation Coefficient (ICC, a measure 

of non-systematic or random error), 2) bias (a measure of systematic error), and 3) 

median relative error (a measure with more intuitive units, including both systematic and 

non-systematic error). For ICC, we used the ICC function from the pysch package in R 

(Revelle, 2019) to calculate the fixed-raters ICC3 variant that is not sensitive to differences 

in means between raters (i.e. is not sensitive to systematic error). We then separately 

measured the systematic error (bias) of the de-faced image measurements as the percent 

difference between the identity line and a linear least-squares fit (lm function) of the original 

vs. de-faced measurements, taken at the “centercept” point (mean value across the x axis, 

i.e. all measurements from the unmodified images) (Wainer, 2000). We then separately 

calculated median relative error as a percentage by subtracting each pair of original and 

de-faced SUVR measurements for each region for each scan, taking the absolute value, 

normalizing by the SUVR from the original scan, and taking the median across scans (Eq. 

1).
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median
i ∈ scans

100 × SUVRi, original − SUVRi, de–faced
SUVRi, original

(1)

Finally, we then summarized these ICC, bias, and median relative error values (across all 

regions, within each combination of pipeline and de-facing method) using median values 

and boxplots. For readers who may prefer root mean square error instead of median relative 

error, we also provide this measurement in the supplementary table.

3. Results

3.1. Validation criterion 1: protection from face recognition

Human, visual face recognition assessment: First, we present examples of 

photographs and face reconstructions from four volunteers, in Fig, 2. These images, from 

participants who generously consented to their publication, allow visual comparison of 

face identifiability across modalities and across PET scanner generations. While skin 

pigmentation, hair, and eyewear are not imaged by these modalities, many structural features 

of the faces were preserved. The older-generation, currently prevalent PET scanners have 

worse resolution, a lower signal to noise ratio (i.e. reduced sensitivity and contrast), and 

smaller field of view (i.e. the mouth is often omitted) than newer scanners, but the shape 

of the eyebrow ridge (the most important feature for modern algorithmic face recognition) 

was still present. Recognizability was visually similar across all three PET tracers. Artifacts 

around the mouth due to dental fillings or implants were present on MRI and CT in the two 

right-most participants, but not on PET. On the CT, the two left-most participants also had 

parts of face masks, worn due to COVID-19, visible across the nose bridge. Next in Fig. 3, 

we also show the average head template images for each image type that we constructed for 

use during face replacement with mri_reface. This figure is provided for additional visual 

comparison across modalities, including average brain slices for comparison of contrast 

properties (which we cannot show for individual participants), but because images were 

averaged across multiple scans from multiple individuals, they have higher image quality 

than most individual participant scans.

Automatic, algorithmic face recognition: In Table 1, we present the results of 

automated face recognition testing from using the Microsoft Azure Face API to attempt 

to match participants’ face photos with their face reconstructions from brain imaging. T1-

weighted and FLAIR MRI had the highest recognition rates at 97% and 98% respectively. 

This was followed by CT (from low-dose attenuation correction CT scans for PET/CT) at 

78%. PET scans from older-generation, more prevalent PET/CT scanners had higher match 

rates when using our “advanced” face reconstruction methods (which replaced missing nose 

and mouth typically outside their field of view with average nose and mouth to enable face 

detection) than the “standard” reconstructions that used only their imaged FOV. Using these 

advanced reconstructions, match rates were highest for FDG (42%), while those of PiB and 

Tau PET were both smaller and comparable to each other (32% and 35% respectively). 

However, sample sizes were smaller with FDG (129) than PiB and Tau (both 167), and 

these differences across modalities were not significant (p=0.12 for FDG vs. PiB). Although 

our sample sizes for newer-generation PET scanners were very small (<=20), differences 
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within-tracer across scanners were significant (all <0.001), but because matching problems 

are inherently easier with fewer candidates, their match percentages (85%–100%) are likely 

overestimated vs. what would be expected with a larger sample and they should not be 

directly compared to the percentages from other table rows with larger samples. De-facing 

each scan with mri_reface (replacing each face with a different, average face) greatly 

reduced recognition rates for all image types. Among modalities with data from at least 100 

participants, the highest de-faced match rates were 8%, with MRI (both T1-w and FLAIR), 

which was reduced from 97–98%. Match rates with older PET scanners were reduced from 

32–42% to 0–4%, and rates with CT were reduced from 78% to 5%. Match rates with 

newer PET scanners were also greatly reduced (85–100% to 15–21%), but due to their small 

sample sizes we suggest caution in interpreting their likely-inflated percentages.

3.2. Validation criterion 2: minimizing effects on brain measurements

We compared regional SUVR values computed from 244 Florbetapir amyloid PET scans 

from ADNI, each measured before and after de-facing with mri_reface, using both: 1) an 

in-house pipeline based on SPM12, MCALT, and ANTs, and 2) PETSurfer from FreeSurfer 

6.0. For de-faced images, both the PET and the T1-weighted MRI (used for normalization) 

were each de-faced individually. FreeSurfer failed to produce segmentation results for one 

participant’s MRI after de-facing, and this participant was omitted from analyses of results 

from both pipelines. Effects on the standard global amyloid region (combined bilateral 

prefrontal, orbitofrontal, parietal, temporal, anterior cingulate, and posterior cingulate/

precuneus regions) (Klunk et al., 2004) are presented in Fig. 4. Overall, effects of de-facing 

on this large, global region were very small: ICC values were 1.00, biases were <0.5%, 

and median relative errors were also <0.5%, and difference magnitudes were consistent 

across the range of amyloid levels. Across these global SUVR measurements (486 total), 

only 3/486 (0.6%) deviated >3% from their values with unmodified images. The largest 

differences overall were 5.5% with FreeSurfer and 3.1% with Mayo pipelines (on different 

images). Effects on individual regions are presented in Fig. 5. For all regions, ICC values 

were >0.98, biases were <2%, and median relative errors were also <2%.

4. Discussion

4.1. Face recognition rates

Contrary to our initial hypothesis, we found that brain PET images have a substantial risk 

for re-identification. We hypothesized that identifiable face reconstructions would not be 

feasible because the spatial resolution of clinical PET scanners (roughly 5mm or more) 

would be insufficient. Instead, we found that images from newer PET scanners can produce 

very high-quality face reconstructions, and that even scans from older, more-prevalent PET 

scanners could be recognized at rates up to 42%, which we consider sufficient to warrant de-

identification. Among the three tested PET tracers (FDG, PiB, and FTP), we hypothesized 

that face recognition rates would be smallest with FDG because the amount of signal relative 

to the brain, in typical attenuation-corrected images, is the smallest. Instead, we found that 

FDG had the highest recognition rates at 42%, compared to 32% and 35% for PiB and FTP 

respectively. These differences were not statistically significant, but still we were incorrect 

that recognition with FDG would be significantly smaller. This may be because there is 
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some on-target uptake of glucose in facial muscle, whereas PiB and FTP binding in these 

regions is off-target with uncertain mechanisms that may vary across scans or be spatially 

nearby but different from the ideal recognizable face contour.

Our finding of high face recognition match rates for CT images (78%) was expected based 

on previous works (Mazura et al., 2012; Chen et al., 2014; Parks and Monson, 2017). We 

expected these rates to be higher and more comparable with MRI (97%–98%), but their 

reduced recognizability may be because our CT images are low-dose scans from PET/CT 

scanners that were designed only to provide data for attenuation correction during PET 

image reconstruction, and these have a lower signal to noise ratio (and thus lower contrast), 

and likely lower spatial resolution, than standard-dose head CT scans from dedicated CT 

scanners, which were used in these earlier studies. Dental fillings and implants also cause 

more prominent effects on CT than structural MRI, and these are likely more prevalent in 

our sample of older individuals than the younger populations used in earlier studies.

Rates of face recognition after mri_reface (Table 1) were still higher than the rate of 

recognition (correct identification) by chance alone of 1/n (1 over sample size). However, 

they were far lower than the original rates before de-facing, lower than the 30% we 

previously found for MRI with our older version of mri_reface (Schwarz et al., 2021a), 

and lower than the 28%–38% we previously found for MRI with other competing software 

(Schwarz et al., 2021a). It is important to note that recognition rates remaining above chance 

after mri_reface were not caused by “failures” for any subset of the images: for all images, 

the face was completely replaced, as designed. We believe the face recognition software is 

exploiting remaining information from the proportions of the head, through the replacement 

face that is transformed only linearly to match the rest of the head. For all modalities, we 

will continue to improve mri_reface and release updated software at https://www.nitrc.org/

projects/mri_reface, but we propose that the current performance is acceptable and worth 

using until newer versions are developed.

4.2. Effects of de-facing on brain measurements

Effects of de-facing both PET and MRI with mri_reface on global amyloid PET 

measurements (Figure 4) were very small: ICC values were 1.00, biases were <0.5%, and 

median relative errors were also <0.5%. Only 0.5% of measurements deviated >3% from 

their values with unmodified images. Estimates of scan-rescan error on global measurements 

from amyloid PET images range from 3% (Schwarz et al., 2018) to as high as 8% 

(Tolboom et al., 2009). Thus, only 0.5% of de-faced global amyloid SUVR measurements 

had differences due to de-facing that exceeded even the smallest estimates of test-retest 

error (3%), and the maximum difference (5.5%) was still well below the largest estimates 

(8%). Effects on individual regions were larger than the global meta-region, consistent 

with previous findings that measurements from larger PET regions tend to be more stable 

(Schwarz et al., 2021b). These effects were still very small, with ICC values > 0.98, biases 

<2%, and median relative errors also <2%. We believe these effects are small enough 

to be acceptable, but they are not perfect (where de-facing has no measurable effects on 

brain measurements). It is important to note that these effects were not caused by any 

alteration of brain regions or voxels by mri_reface; rather, quantification of brain regions by 
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popular software is affected by alteration of non-brain voxels in the image. For example, 

most methods include linear registration of the entire image to a template, and alterations 

anywhere in the image can cause small effects on this registration that affects quantification 

globally. Many methods also use relative intensity during segmentation, e.g. comparing 

brain regions to other parts of the image, and thus altering non-brain regions can affect 

segmentation of brain regions (Buimer et al., 2021; de Sitter et al., 2020; Gao et al., 2022; 

Schwarz et al., 2021a). Again, we will continue to improve mri_reface and release updated 

software, but we propose that the current performance is acceptable and worth using until 

newer versions are developed. The regions with the largest effects (Figure 5) frequently 

included frontal areas most proximal to the face, and areas in the basal ganglia, consistent 

with previous findings showing that these were most affected by de-facing MRI (Buimer et 

al., 2021; Schwarz et al., 2021a). For PET images, instability in the basal ganglia may also 

be explained by the relatively low counts (i.e. noisier signal after boosting by attenuation 

correction) in these regions. These also included relatively small regions like the entorhinal 

cortex, accumbens, and dorsal mesopontine areas, which were not relatively poor performers 

in de-faced MRI, but their worse performance in de-faced PET is consistent with the 

principle that smaller regions typically have less-stable PET measurements.

4.3. Strengths and limitations of current study

Strengths: While previous works have examined face identifiability of brain images from 

MRI and for CT, this is, to the best of our knowledge, the first to examine this question 

for PET images. We tested face recognition performance using leading, publicly available 

face recognition software, which we believe best represents the types of scenarios in which 

a motivated individual might attempt to re-identify research participants from de-identified 

data. We have previously published extensive discussion of the strengths and limitations 

of our face recognition testing approach (Schwarz et al., 2019a, 2021a). We believe this 

work is also the first to compare identifiability of MRI, PET, and CT directly, and our 

results were largely consistent across three different classes of PET tracers. We validated 

our de-facing software both for preventing face identification and minimizing its impacts on 

brain measurements from de-faced images, and we provide this software free to the research 

community.

Limitations: Our sample sizes for newer PET scanners were very small (<=20), but 

our major conclusions were well supported without this data, and the limited data from 

these newer scanners suggests that face recognizability from PET images will only become 

a larger threat as data from these scanners becomes more widely available. We will re-

examine these conclusions with a larger sample in future work as we continue to acquire 

data from newer scanners. We did not test face recognition with additional amyloid or tau 

tracers, but since our results were very consistent across FDG, PiB, and FTP, we hypothesize 

that other amyloid and tau tracers would behave similarly. We also did not test additional 

MRI modalities, but this is a focus of our future work. We also did not test for any 

relationships between brain PET signal and potential for face recognition (e.g. frontal lobe 

cortical signal spilling into the eyebrow region), but as our cohort grows we will have more 

participants with enough amyloid and tau tracer uptake allow this in future work. We also 

did not examine the effects of different levels of post-reconstruction smoothing filters on 
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identifiability of PET images; it is possible that less smoothing could allow reconstruction 

of smaller identifiable features but also retain more noise that could impede reconstruction. 

We only tested our own de-facing software (mri_reface) because we believe it is the only 

one that has been adapted for PET imaging data. It would be theoretically possible to run 

programs designed for MRI or CT using PET images instead, but since they would be 

registered to MRI or CT templates with very different contrast and resolution properties, it is 

uncertain how well this would work. We tested effects of de-facing on SUVR measurements 

using amyloid PET (Florbetapir) images from ADNI because it is a free, public dataset 

that could allow replication of our findings. We did not perform similar testing using other 

PET tracers because these were not available in sufficient numbers from our re-used dataset, 

but the quantification techniques used for these modalities are identical to those used for 

amyloid, Still, we will examine this in future work. We hypothesize that results would be 

very similar, because we have shown that estimates of test-retest error and software factors 

that affect measurement precision are remarkably similar across amyloid and tau PET tracers 

(Schwarz et al., 2021b, 2018). Our datasets were both sampled from studies of aging and 

contain only images from older adults. Others have found that that de-facing software, 

primarily designed for images of older adults, may perform worse in images from younger 

individuals (Buimer et al., 2021), and we will also explore this in future work.

Our face recognition testing paradigm measures the success rates at which a motivated 

individual might be able to re-identify a participant whom they have reason to believe 

exists within a dataset. We think this is a plausible and scenario, but it is a much easier 

recognition problem than an opposite paradigm where someone attempts to identify brain-

imaging-based face reconstructions by matching them to large databases of identified photos 

from theoretically all people on Earth. We are unable to quantify this paradigm due to 

limited legally obtained public datasets with face photographs of older participants, and 

limitations of the consent signed by our participants. However, our 98% recognition rates 

with the current paradigm (with MRI) suggests that the performance of matching MRIs with 

photos is rapidly approaching that of photos to photos, for which modern face recognition 

algorithms can successfully identify photos from databases of >12 million with <1% failure 

rates (Grother et al., 2018), so we hypothesize that the opposite paradigm may already be 

plausible with current or near-future technology.

5. Conclusions

To the best of our knowledge, this study is the first to demonstrate that de-identified research 

PET images may be re-identifiable via face recognition. Images from the currently prevalent 

generation of PET/CT scanners were automatically matched with identified face photos at 

rates of 32–42%. These rates were lower than MRI (97–98%) and CT (78%), but still high 

enough that research studies should consider using face de-identification software on PET 

images in addition to CT and structural MRI. We also showed preliminary evidence that 

the newest generations of PET/CT scanners can produce even better face reconstructions 

than older scanners, and the need for de-facing PET images may increase as these scanners 

become more prevalent. We tested FDG, amyloid (PiB) and tau (FTP) PET, and all showed 

similar rates of identifiability (32%–42%). We also extended our mri_reface software to 

support de-facing of PET and CT images, and we validated its effects. Rates of face 
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recognition on de-faced images were reduced to 0–4% for PET, 5% for CT, and 8% for 

MRI. Effects of de-facing on regional amyloid PET SUVR measurements were small: ICC 

values were >0.98, biases were <2%, and median relative errors were <2%. Effects on global 

amyloid PET SUVR measurements were even smaller: ICC values were 1.00, biases were 

<0.5%, and median relative errors were also <0.5%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Two example PET images Florbetapir PET scans from ADNI (with all standard ADNI 

pre-processing), both before (left) and after (right) replacing face imagery with mri_reface.
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Fig. 2. 
Example face reconstructions from PET and CT, for visual comparison with photographs 

and MRI. PET scans from the newer model of clinical PET/CT scanner showed many 

identifiable features, across all tracers. CT scans (from PET/CT) were also highly 

identifiable despite some dental artifacts and face mask nose bridges. PET from older-

generation scanners had lower quality and a smaller field of view but retained some 

identifiable features. These participants specifically consented to allow publication of their 

photographs and face reconstructions. Note that although positioning and head restraints in 
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the scanner distort the lower face in the facial reconstructions, the brow ridge, which is a 

dominant feature in facial recognition, is minimally affected.
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Fig. 3. 
Average brain image templates from each image type, constructed for replacing the face 

with our mri_reface software. These illustrate the contrast properties of each modality and 

their relative potential for face reconstruction, but they are average images and thus have 

higher quality than individual participant scans. Scales were adjusted for best visibility for 

each image type. For FDG, the brain was intentionally oversaturated to allow visibility of the 

relatively dark face contour.
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Fig. 4. 
Effects of de-facing PET and MRI with mri_reface on global amyloid PET measurements 

from the FreeSurfer/PETSurfer pipeline (left) and the in-house pipeline (right). The top row 

are scatterplots, and the bottom row are Bland-Altman plots of percent differences from 

the same data. On the Bland-Altman plots, dashed lines show the 95% limits of agreement 

(mean ± (1.96 * SD)).
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Fig. 5. 
Effects of de-facing PET and MRI with mri_reface on regional amyloid PET measurements. 

The most extreme values on each plot are labelled. Complete data tables are available in 

supplementary material.
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Table 1

Rates of automatically matching 5 photos of each participant to their correct corresponding imaging-based 

face reconstruction, using the Microsoft Azure Face API, before and after each de-facing technique.

Standard Face Reconstruction 
(using the input image only, with 
minimal preprocessing)

Advanced Face Reconstruction 
(missing nose and mouth 
automatically replaced with those 
from an average template)

After Re-facing with 
mri_reface

FLAIR MRI 178/182 (98%) N/A 15/182 (8%)

T1-w MRI 176/182 (97%) N/A 14/182 (8%)

Older FDG PET 44/129 (34%) 54/129 (42%) 0/129 (0%)

Older PiB PET 41/167 (25%) 54/167 (32%) 6/167 (4%)

Older Tau PET 48/167 (29%) 59/167 (35%) 3/167 (2%)

Newer FDG PET 14/14 (100%*) N/A 3/14 (21%)

Newer PiB PET 17/20 (85%*) N/A 3/20 (15%)

Newer Tau PET 18/19 (95%*) N/A 4/19 (21%)

CT (from older PET/CT) 131/167 (78%) N/A 8/167 (5%)

A * marks percentages with very low sample sizes that are likely overestimated and should not be directly compared with other rows.
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