
Article
Spectral Jaccard Similarit
y: A New Approach to
Estimating Pairwise Sequence Alignments
Highlights
d Current pairwise sequence alignment schemes suffer from

short common subsequences

d Frequent k-mers skew Jaccard similarity-based aligners

d Our scheme, Spectral Jaccard Similarity, implicitly detects

these spurious similarities

d This provides more accurate and computationally efficient

estimates for alignments
Baharav et al., 2020, Patterns 1, 100081
September 11, 2020 ª 2020 The Authors.
https://doi.org/10.1016/j.patter.2020.100081
Authors

Tavor Z. Baharav, Govinda M. Kamath,

David N. Tse, Ilan Shomorony

Correspondence
ilans@illinois.edu

In Brief

To speed up pairwise sequence

alignment, pairwise k-mer Jaccard

similarities are often used as a proxy for

alignment size. However, Jaccard

similarity ceases to be a good proxy for

alignment size when the k-mer

distribution of the dataset is significantly

non-uniform (e.g., due to GC biases and

repeats). We introduce a min-hash-based

approach for estimating alignment sizes

called Spectral Jaccard Similarity, which

accounts for uneven k-mer distributions

leading to significantly better

performance.
ll

mailto:ilans@illinois.�edu
https://doi.org/10.1016/j.patter.2020.100081
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2020.100081&domain=pdf

OPEN ACCESS

ll
Article

Spectral Jaccard Similarity: A New
Approach to Estimating
Pairwise Sequence Alignments
Tavor Z. Baharav,1,4 Govinda M. Kamath,2,4 David N. Tse,1 and Ilan Shomorony3,5,*
1Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
2Microsoft Research New England, Cambridge, MA 02142, USA
3Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
4These authors contributed equally
5Lead Contact

*Correspondence: ilans@illinois.edu

https://doi.org/10.1016/j.patter.2020.100081
THE BIGGER PICTURE Pairwise sequence alignment is often a computational bottleneck in genomic anal-
ysis pipelines, particularly in the context of third-generation sequencing technologies. To speed up this pro-
cess, k-mer Jaccard similarities are often used as a proxy for alignment size to filter pairs of reads, andmin-
hashes are employed to efficiently estimate these similarities. However, when the k-mer distribution of a
dataset is significantly non-uniform (e.g., due to GC biases or repeats), Jaccard similarity is no longer a
good proxy for alignment size.We introduce amin-hash-based approach to estimate alignment sizes called
Spectral Jaccard Similarity, which naturally accounts for uneven k-mer distributions. The Spectral Jaccard
Similarity is computed by performing a singular value decomposition on a min-hash collision matrix. We
show that this metric provides significantly better estimates for alignment sizes, and we provide a compu-
tationally efficient estimator for these spectral similarity scores.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Pairwise sequence alignment is often a computational bottleneck in genomic analysis pipelines, particularly
in the context of third-generation sequencing technologies. To speed up this process, the pairwise k-mer
Jaccard similarity is sometimes used as a proxy for alignment size in order to filter pairs of reads, and
min-hashes are employed to efficiently estimate these similarities. However, when the k-mer distribution
of a dataset is significantly non-uniform (e.g., due to GC biases and repeats), Jaccard similarity is no longer
a good proxy for alignment size. In this work, we introduce a min-hash-based approach for estimating align-
ment sizes called Spectral Jaccard Similarity, which naturally accounts for uneven k-mer distributions. The
Spectral Jaccard Similarity is computed by performing a singular value decomposition on a min-hash colli-
sion matrix. We empirically show that this new metric provides significantly better estimates for alignment
sizes, and we provide a computationally efficient estimator for these spectral similarity scores.
INTRODUCTION

The advent of long-read sequencers such as PacBio and Oxford

Nanopore has made the goal of obtaining gold-standard

genome assemblies a reality. Unlike short-read technologies,

which provide reads of length 100–200 bp with an error rate of

1%, chiefly substitution errors, long-read technologies provide

reads of lengths in the tens of thousands with a nominal error
This is an open access article under the CC BY-N
rate of 13%–15%, consistingmostly of insertions and deletions.1

While the long reads make resolving repeated sequences easier,

the higher error rates make the computational tasks required for

assembly significantly more challenging.

Genome assembly is usually performed based on one of two

main approaches: de novo assembly, whereby one attempts to

assemble a new genome ‘‘from scratch’’ using only the reads ob-

tained, and reference-based assembly, whereby one assembles
Patterns 1, 100081, September 11, 2020 ª 2020 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:ilans@illinois.edu
https://doi.org/10.1016/j.patter.2020.100081
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2020.100081&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1. Overview of the Spectral Jaccard

Similarity Computation

ll
OPEN ACCESS Article
the reads using a pre-assembled genome of a related organism.

Alignment is an integral part of most pipelines in either approach,

and is often the most time-consuming step (Figure S11). In both

settings naive dynamic-programming-based alignment2–4 is

impractical due to its quadratic time complexity.

In reference-based assembly pipelines,5,6 where one has a

reference of a related organism, the first step usually consists

of aligning all reads to the reference; i.e., read-to-reference align-

ment. For n reads each of length L and a reference of length G,

the time complexity of aligning all reads to the reference via dy-

namic programming is OðnLGÞ, which is impractical in settings

where there are n � 105 reads, each of length L � 104, with G

on the order of 106–1011 depending on the organism.

Similarly, the first step in most de novo assembly pipelines7–12

is the pairwise alignment of all reads, which is computationally

very costly. For n reads each of length L, the time complexity

of aligning all pairs of reads would be Oðn2L2Þ. Even for bacterial

genome datasets where the number of reads obtained is on the

order of n � 105, with L � 104, this is impractical. Formost of this

work we discuss alignment in the context of pairwise read align-

ment. However, our ideas can be adapted to the read-to-refer-

ence alignment paradigm.

One key observation that helps alleviate this computational

burden is that in practice one only cares about alignment be-

tween reads when there is a significant overlap. Furthermore,

as shown in Figure 4A, in a typical dataset more than 99:99%

of pairs of reads do not have a significant overlap. Hence,

most practical read aligners follow a ‘‘seed-and-extend’’ para-

digm. The ‘‘seeding’’ step typically involves identifying pairs of

reads that share many k-mers (length-k contiguous substrings).

This step can be understood as a way to ‘‘filter’’ the set of read

pairs to select those that share a reasonable number of k-mers

and are thus likely to have a significant overlap.7,12–14 Once these

‘‘candidate pairs’’ (whose number can be orders of magnitude

smaller than the total number of read pairs) are obtained, compu-

tationally expensive dynamic-programming-based algorithms

are used to obtain detailed alignment maps.

The idea of using the number of shared k-mers as a metric for

filtering pairs of reads is equivalent to viewing the Jaccard simi-

larity between the set of k-mers of each read as a proxy for the

alignment size. Under standard implementations whereby

computing set unions and set intersections has a linear time

complexity in the sizes of the sets, this filtering step has a time

complexity of Oðn2LÞ for pairwise read alignment. Recently Jac-

card similarity has been used in a variety of applications such as

genome skimming,15 and in newmethods to compare whole ge-

nomes and study taxonomic diversity in the microbiome.16,17
2 Patterns 1, 100081, September 11, 2020
One very attractive property of Jaccard

similarity in the context of filtering pairs of

reads is that this metric is amenable to effi-

cient estimation through the use of min-

hashes. This is done by hashing all

k-mers on a read (the total number of

k-mers in a length-L read is L� k + 1) and
computing the minimum hash value (the min-hash) for each

read. For a randomly chosen hash function, the collision proba-

bility for the min-hashes of two reads is precisely their Jaccard

similarity. Hence, one can estimate the Jaccard similarity by

computing the fraction of min-hash collisions out of the set of

hash functions considered. For pairwise read alignment, if one

uses H hashes to estimate the Jaccard similarity, this requires

OðnLHÞ to compute the min-hashes and Oðn2HÞ to compute

the collisions giving us a time complexity of Oðn2HÞ for the

filtering step as generally, for regimes of interest, n[L. We

note that this general approach is related to the minimizers

method, which has been used both in the context of document

fingerprinting and reducing storage requirements for biological

sequence comparison18–20 and to locality-sensitive hashing.21,22

The idea of using min-hashes to estimate the Jaccard similar-

ity provides significant computational savings and is particularly

effective when the genome where the reads come from is close

to a randomgenome, i.e., a genomewhere every k-mer is equally

likely to appear on a read. However, when the k-mer distribution

of the reads being considered is significantly non-uniform, the

Jaccard similarity is no longer a good proxy for the alignment

size. In particular, genome-wide GC biases and the presence

of common k-mers increase the probability of a min-hash colli-

sion, thus biasing the estimate of alignment size provided by

the Jaccard similarity. In this work, we introduce a min-hash-

based approach for estimating alignment sizes called Spectral

Jaccard Similarity (SJS), which naturally accounts for an uneven

k-mer distribution in the reads being compared. The SJS is

computed by considering a min-hash collision matrix (where

rows correspond to pairs of reads and columns correspond to

different hash functions), removing an offset, and performing a

singular value decomposition (SVD). As illustrated in Figure 1,

the leading left and right singular vectors can be seen as

providing a rank-one approximation to the min-hash collision

matrix. The leading left singular vector provides the SJS for

each pair of reads, while the corresponding right singular vector

can be understood as a measure of the ‘‘unreliability’’ or noise

level of each hash function. Intuitively, a hash function that as-

signs low values to common k-mers is more unreliable for esti-

mating alignment sizes, since it is more likely to create spurious

min-hash collisions. Implicitly, this approach leads to a kind of

weighted Jaccard similarity, where the weight of different hash

functions is learned from the dataset.

Experiments on PacBio long-read sequencing data from

several bacterial genomes, spanning a variety of k-mer distribu-

tions, show that the SJS is significantly more correlated with

alignment size than the standard Jaccard similarity. When

A B Figure 2. SJS Has Uniformly Higher Area un-

der the ROC Curve for Experiments on 40

PacBio Bacterial Datasets from the NCTC

Library23

In these experiments, SJS and Jaccard similarity

were used to filter pairs of readswith an overlap of at

least 30%. SJS was used with 1,000 hash functions

while Jaccard similarity was computed exactly. By

varying a second threshold determining which

values of Jaccard similarity (or SJS) are selected, we

can obtain ROC curves describing the performance

of each filter, fromwhich the AUC can be computed.

(A) AUC values using Daligner alignments as ground

truth.

(B) The same results using Minimap2 alignments as

ground truth.

ll
OPEN ACCESSArticle
used as a metric to filter out pairs of reads that are unlikely to

have a large alignment, SJS outperforms Jaccard similarity

on standard classification performance metrics. As an

example, when applied to filtering pairs of reads which have

an overlap of at least 30%, the area under the receiver-oper-

ating characteristic (ROC) curve (AUC) obtained by SJS filtering

was consistently higher than the AUC obtained for Jaccard sim-

ilarity on 40 datasets of the NCTC collection of Public Health

England,23 as shown in Figure 2. These results are obtained us-

ing k = 7, which is an appropriate choice for the PacBio error

rates.14

This paper is organized as follows. First, we present a brief re-

view of Jaccard similarity and its application to seed-and-extend

algorithms for pairwise read alignment. Then we present the ba-

sis for SJS and provide results on real and simulated datasets,

concluding with a discussion.
RESULTS AND DISCUSSION

Jaccard Similarity
In general terms, the Jaccard similarity (denoted in equations as

JS) is a similarity metric between sets. For two sets A and B, the

Jaccard similarity between them, JSðA;BÞ, is defined as the size

of their intersection divided by the size of their union. This is a

very convenient measure as it is bounded between 0 and 1,

JSðA;BÞ= 0 if and only if AXB = B, and JSðA;BÞ= 1 if and

only if A = B. It has gained recent interest in its applications to

finding documents (or web-pages) that are very similar but not

the same as each other and in plagiarism detection. We refer

the interested reader to Leskovec et al.,24 Chapter 3, for a

detailed review of the topic.

The Jaccard similarity was applied to the problem of pairwise

read alignment in Berlin et al.7 by considering the sets of k-mers

of each read. For a fixed parameter k, the k-mer Jaccard similar-

ity between reads S0 and S1 is given by

JSkðS0;S1Þ = jGðS0ÞXGðS1Þj
jGðS0ÞWGðS1Þj; (Equation 1)

where GðSiÞ is defined as the set of k-mers for read Si. This is the

same as k-shingle Jaccard similarity in the data mining litera-

ture.25,26 In this case, Jaccard similarity can be viewed as a

proxy for the size of the overlap (if any) between reads S0 and S1.
For instance, consider length-L reads S0 and S1 with an over-

lap of size a0;1L, for 0%a0;1%1, as illustrated in Figure 3, and let

p0;1 be the fraction of overlap; i.e.,

p0;1 =
a0;1

2� a0;1

: (Equation 2)

If not many k-mers are shared by the non-overlapping parts of

S0 and S1, we have JSkðS0;S1Þzp0;1, making this a useful metric

to filter pairs of reads with a high overlap. Note that this approach

is in a sense robust to errors in the reads. If we assume that each

base is independently corrupted by noise (substitution, insertion,

or deletion) with probability z, then a k-mer is not corrupted with

probability ð1� zÞk . Ignoring the unlikely event of collision of an

erroneous k-mer with some other k-mer, JSkðS0;S1Þ is approxi-

mated as

JSkðS0;S1Þz a0;1ð1� zÞk
2� a0;1ð1� zÞkz

a0;1ð1� zÞk
2

; (Equation 3)

where the last approximation holds when ð1� zÞk is small.

Therefore, the k-mer Jaccard similarity is intuitively still a good

proxy for the overlap size in the presence of errors, as this

expression is monotone increasing in the true alignment. The

parameter k should be large enough to guarantee that not too

many spurious k-mer collisions occur, but small enough so

that a reasonable number of k-mers per read are not corrupted

by noise.7,12,14 For a relative noise rate of 30% (which results

from both reads having error rates of around 15%), Myers14 ar-

gues that k = 7 achieves the optimal trade-off. In the remainder

of this paper, we utilize k = 7.

While Figure 3 depicts an overlap between S0 and S1 (i.e., a

suffix of S0 that matches a prefix of S1), the general alignment

problem is concerned with finding long matches between S0

and S1, which need not be proper overlaps. In general, one

may think of a0;1˛½0;1� as the total size of the matches between

S0 and S1, which may include an overlap and repeats. For

simplicity, we will focus our discussion on overlaps, and show

that this is a sufficiently good model to predict alignment well.

Computing the Jaccard similarity between two reads of length

L takes OðLÞ time. Hence, computing this metric for all pairs of

reads would take Oðn2LÞ time, which is quite expensive. An

attractive feature of the Jaccard similarity metric is that it can

be efficiently estimated. A probabilistic approach for estimating
Patterns 1, 100081, September 11, 2020 3

Figure 3. The k-mer Jaccard Similarity Can Be Seen as a Proxy for

the Alignment Size

ll
OPEN ACCESS Article
Jaccard similarity through the use of min-hashes was originally

proposed by Broder et al.27 In essence, one takes a random

hash function h, hashes all k-mers in a readSi, and picks themin-

imum hash value. Define

hðGðSiÞÞ : = minfhðxÞ : x˛GðSiÞg;

for some hash function h and read Si. We then observe that, for a

randomly chosen hash function h,

Pr½hðGðS0ÞÞ = hðGðS1ÞÞ� = JSkðS0;S1Þ; (Equation 4)

since h is equally likely to have any of the k-mers on both reads as

its minimizer. This surprising fact is elaborated upon and proved

in Section 3.3.3 of Leskovec et al.24 Thismeans that we can use a

random hash function to get an unbiased estimate of the Jaccard

similarity between two strings. More precisely, if we sample

random hash functions h1;h2;.;hH, we can estimate the Jaccard

Similarity as

1

H

XH
i =1

1fhiðGðS0ÞÞ = hi

G

S1

!!)
z
ðaÞ

JSk

S0;S1

!

z
ðbÞ a0;1ð1� zÞk

2
:

(Equation 5)
A B

(B) Cumulative distribution function (CDF) of the k-mer distributions for various ge

to help with visualization. We see that the distributions deviate significantly from a

NCTC 4163 and NCTC 4174 have the largest and smallest deviation from the un

4 Patterns 1, 100081, September 11, 2020
Hence, by choosing Hmoderately large, one should be able to

accurately estimate JSkðS0;S1Þ, which provides a proxy for the

alignment size. With H hashes, one would take OðnLHÞ time to

compute the hashes and Oðn2HÞ time to compute collisions,

which is Oðn2HÞ time in regimes of interest where n[L.

Drawbacks of Jaccard Similarity

The key assumption that drives the approximation in Equation 5

is that that all k-mers are roughly equally likely to occur in the

reads. On real datasets, however, k-mer distributions are far

from uniform, as illustrated in Figure 4B for several genomes.

An uneven distribution of the k-mers throughout a genome in-

creases the likelihood that the non-overlapping parts of two

reads S0 and S1 share k-mers. In this case, for a randomly drawn

hash function h, Equation 4 still holds but Equation 5 no longer

holds. In particular, if the hash function h is such that common

k-mers are given low hash values, the min-hash collision proba-

bility, given by Pr½hðGðS0ÞÞ = hðGðS1ÞÞ�, can be significantly

higher than the right-most expression in Equation 5. For this

reason, when the k-mer distribution throughout a genome is un-

even, Equation 5 yields a poor estimate for the read overlap size.

This is illustrated in Figure 6A for PacBio Escherichia coli reads,30

where we show that Jaccard similarity is a poor predictor of

alignment sizes.

One simple way to address this issue is to ‘‘mask’’ common k-

mers11,24 and then compute the Jaccard similarity on the remain-

ing k-mers. However, these approaches are arbitrary and require

the tuning of parameters that can in general depend on the dis-

tribution. Intuitively, they can be thought of as applying a hard

threshold to determine which k-mer matches are due to noise

and which are actual signals.

Another approach is to consider a soft version of this thresh-

olding, where different k-mers are given different weights in the

computation of a weighted Jaccard similarity. This idea has

been explored in the context of detecting near duplicate images

in image databases. In particular, a tf-idf (term frequency-inverse

document frequency) weighting was used to weight visual words

(i.e., image features) according to the inverse of their frequency

in the database.28 This way, image features that are very com-

mon across the images in the database count less toward deter-

mining whether two images are similar.

The approach we present in the next section bears similarities

with the method by Chum et al.28 A key difference is that we

assign weights to hash functions rather than individual k-mers.

Moreover, these weights are assigned in an implicit way by a
Figure 4. Alignment Size Distribution for

PacBio Datasets and k-mer Distribution for

Several Bacterial Genomes

(A) A histogram of the alignment size (measured in

terms of fraction of shared sequence) detected by

Daligner14 in reads of E. coli K-12 dataset of Pacific

Biosciences.30 We note that more than 99:9% of

pairs of reads have no alignment between them.We

also note that practical aligners are not able to

capture small overlaps, which are difficult to

distinguish from spurious alignments generated by

noise, creating the ‘‘notch’’ in the histogram.

nomes. For each genome, we sort the k-mers in decreasing order of frequency

uniform distribution (dark-yellow line). In particular, we remark that the CDFs for

iform distribution among the NCTC datasets analyzed in this paper.

ll
OPEN ACCESSArticle
spectral approximation to a min-hash collision matrix, which al-

lows the weights to adjust to the specific reads being aligned.
Spectral Jaccard Similarity
We propose a new Jaccard-similarity-inspired approach to esti-

mate the overlap between reads that avoids the need for hard

thresholds for determining ‘‘common k-mers’’ or ‘‘bad hashes’’

and instead assigns soft penalties to individual hash functions

according to howbiased an estimator they are for alignment size.

Suppose readsS0 andS1 of length L have an overlap of size aL

for some 0%a%1, and no other significant repeats across them.

If there were no shared k-mers in the non-overlapping part of the

reads, wewouldmodel themin-hash collision event for a random

hash function h, as

1fhðGðS0ÞÞ = hðGðS1ÞÞg � Ber
�
p0;1

�
; (Equation 6)

where p0;1 =
a

2�a
(this expression can be modified to account for

errors as in Equation 3). However, when the distribution of k-

mers is uneven, the min-hash collision probability is larger than

p0;1. Moreover, some hash functions are worse than others: if h

assigns lower values to common k-mers, it is more likely to over-

estimate p0;1. We model this effect by rewriting Equation 6 as

1fhðGðS0ÞÞ = hðGðS1ÞÞg � Ber
�
p0;1

�
nBerðqhÞ; (Equation 7)

where n is the Boolean ‘‘or’’ operator and qh˛½0;1� is a hash-

specific parameter that can be intuitively understood as how un-

reliable h is due to common k-mers. Notice that the hash-specific

noise term always leads to overestimation of p0;1. We also

emphasize that the qh values are unknown. Therefore, we cannot

directly estimate the pi;j and instead we need to jointly estimate

all model parameters.

To perform this joint estimation, we define the min-hash colli-

sion matrix as follows. For a fixed reference read S0, a list of

target reads S1;S2;.;Sn, and a list of hash functions h1;.;hH,

the ði;jÞth entry of the min-hash collision matrix is the binary indi-

cator variable for whether there is a min-hash collision between

S0 and Si when using hash function hj; i.e., 1fhjðGðS0ÞÞ =

hjðGðSiÞÞg. Note that JSkðS0;SiÞ can be directly estimated from

the min-hash collision matrix by computing the fraction of 1s in

the ith row.

As it turns out, if we assume that the entries in the min-hash

collision matrix were generated according to Equation 7, we

can jointly estimate the p0;is and the qhjs by performing an

SVD on an offset version of themin-hash collision matrix. This al-

lows us to use efficient algorithms for computing the SVD in or-

der to obtain estimates for the parameters p0;i.

We refer to the parameter p0;i in the model given by Equation 7

as the ‘‘Spectral Jaccard Similarity’’ (SJS) between S0 and Si.

Note that the definition of these parameters in itself does not

depend on the estimation procedure based on SVD outlined

above. In that sense, the use of the word ‘‘spectral’’ in SJS refers

to the fact that themodel in Equation 7 provides a decomposition

of the standard Jaccard similarity (modeled by Equation 6) into

two components: one due to the alignment between S0 and S1

and one due to k-mers that are common throughout the genome.

As we describe in Appendix A in Supplemental Information,

the model described in this section can be alternatively
described in terms of a generative model for the sequences

that are being aligned. Under this alternative description, p0;1 is

precisely the alignment fraction between S0 and S1 (i.e., the

size of the alignment between them divided by the total span

of unique sequence segments in S0 and S1). Next, we describe

the computation of the SJS in more detail.

Computing the Spectral Jaccard Similarity

Algorithmically, we approximate all pairwise alignments by iter-

ating over each read in the dataset, treating it as the reference

read, and computing the SJS between the reference and all other

reads. For a reference read S0, we define the min-hash collision

matrix as A0˛f0;1gn3H where

A0½i; j� = 1
�
hjðGðS0ÞÞ = hjðGðSiÞÞ

� � Ber
�
p0;i

�
nBer

�
qhj

�
:

(Equation 8)

For cleanliness of notation, we will write p0;i =pi and qhj = qj.

Note that both the pis and the qjs depend on the choice of S0,

but we do not make that dependence explicit in the notation.

The key observation about our model is that, in expectation,

the matrix A0 defined in Equation 8 is rank one after accounting

for offset. More precisely, since EA0½i; j� = pi +qj � piqj = ð1 �
piÞðqj � 1Þ+ 1, we have that for pbðp1;.;pnÞ and

qbðq1;.;qHÞ,

EA0 � 11u = ð1�pÞðq� 1Þu: (Equation 9)

We illustrate this point by comparing the sorted singular values

of Ai � 11u for the PacBio E. coli K-12 dataset, shown in Fig-

ure S7. We note that the fact that A0 � 11u is in expectation a

rank-one matrix allows us to estimate p and q through an SVD

on A0 � 11u. More precisely, if we let u and v be respectively

the leading left and right singular vectors of A0 � 11u, then we

expect u to be approximately proportional to ð1�pÞ and v to

be approximately proportional to ðq � 1Þ, up to flipping signs.

We normalize the qjs to be between 0 and 1 for plotting pur-

poses, noting that algorithmically we are only interested in the

SJS values (the pis). We require a slightly more sophisticated

normalization method for the pis. See Appendix B in Supple-

mental Information for more details on the normalization of pis

and qjs.

To illustrate the comparison between Jaccard similarity and

SJS, we consider the example shown in Figure 5. The standard

min-hash Jaccard similarity approach would estimate

JSkðS0;SiÞ to be the fraction of 1s in the ith row. We see that

while rows 1 and 3 have the same estimated Jaccard similarity,

they have different SJS values. This is because columns 2 and 5

are found to be noisier (i.e., worse hash functions), and so while

rows 1 and 3 have two collisions each, a collision on column 1 is

deemed more indicative of alignment, and thus row 3 has a

higher SJS than row 1.

It turns out that the estimates of pi obtained via SVD are a

much better proxy for the size of the alignment between reads

S0 and Si than the standard Jaccard similarity, particularly

when the k-mer distribution is uneven. To illustrate this point,

we computed the SJS values pi (from amin-hash collision matrix

with n= 1004 and H = 1000) and the exact Jaccard similarity

JSkðS0;SiÞ for the corresponding pairs of reads, for the E. coli

PacBio dataset. As illustrated in Figure 6, while theR2 coefficient
Patterns 1, 100081, September 11, 2020 5

Figure 5. Example of Comparison between

Jaccard Similarity and SJS on a Small Matrix

While the standard Jaccard similarity approach

would assign the same value to rows 1 and 3, SJS

takes into account the fact that columns 2 and 5 are

seen as less reliable indicators of alignment.

ll
OPEN ACCESS Article
between (exact) Jaccard similarity and overlap size is only 0.18,

for SJS the R2 coefficient is 0.48.

While pi parameters, or the SJS values, track the alignment

between pairs of reads, we have not given a precise meaning

to the qjs we recover. Intuitively, a large qj means that the corre-

sponding hash function is more likely to create a spurious min-

hash collision, thus being a less reliable estimator for the align-

ment size. We provide a more in-depth interpretation in Vali-

dating the Model. In Figures 10A and 10B, we plot the frequency

of the argmin k-mer for different hash functions, and verify that

large qjs correspond to hash functions whose argmin k-mers

have high frequency. We point out that we compute SJS on a

reference-by-reference basis instead of considering a single ma-

trix with all

�
n
2

	
rows at once. Note that, in principle, SJS can be

computed on the matrix with all

�
n
2

	
read pairs as rows. How-

ever, as illustrated in Appendix C in Supplemental Information,

allowing the qj hash parameters to be reference specific in-

creases their ability to capture the discriminative power of

each hash function, as this depends onwhich k-mers are present

in the reference read. Furthermore, this reference-by-reference

approach avoids the computation of an SVD for a very large

matrix.

From a computational perspective, this algorithm computes

all H hashes in OðnLHÞ time, collisions in Oðn2HÞ time, and per-

forms n ðn3HÞ SVDs. In regimes of interest where n[L, this

last term dominates. Computing a full ðn3HÞ SVD requires

Oðminðn2H;nH2ÞÞ = OðnH2Þ, giving a computational complexity

of Oðn2H2Þ, which naively is slower than the min-hash based

Jaccard similarity computation. However, note that we only

need to compute the principal left singular vector, which can

be done efficiently via power iteration, reducing the OðnH2Þ run
time to ~OðnHÞ, where ~O suppresses logarithmic factors in n

and H. Further improvement is available in the practical case
A B

6 Patterns 1, 100081, September 11, 2020
whenever most of the ðS0;SiÞ pairs have no overlap, as most

of the pis are expected to be close to zero. When this holds

true, we are able to approximate the principal right singular vec-

tor q efficiently, allowing us to approximate p via a single matrix-

vector product, speeding up our method significantly toOðn2HÞ,
the same complexity of Jaccard similarity. This approach is dis-

cussed in more detail in Approximation in the Case where Most

pis Are Zero.

We point out that it may be possible to modify the approach

described in this section in order to further improve the compu-

tational efficiency of computing SJS. In particular, since we are

typically only interested in identifying pairs of reads with a signif-

icant overlap, we can reduce the overall number of min-hash

comparisons needed by performing fewer min-hash compari-

sons for pairs of reads with small alignments. In particular, the

adaptive Monte Carlo method29 can be used to adaptively

decide the number of min-hash comparisons performed for

each pair of reads. Another strategy that can lead to computa-

tional savings is to explore the use of ‘‘bottom sketches’’ as

done by Ondov et al.16 More precisely, for a single hash function,

one can compute sminimizers per read (the bottom-s sketch). As

explained by Ondov et al.,16 the bottom sketches can be

compared to produce a direct estimate of the Jaccard similarity

between the reads. This offers the potential to significantly

reduce the overall number of hash functions needed to estimate

pairwise sequence alignments. Note, however, that based on

this approach each of the entries in the min-hash collision matrix

is no longer in f0;1g (it is instead a number describing the simi-

larity between the bottom sketches). Hence, the binary model

described in Equation 7 would need to be updated to allow a

larger set of output values.

Results
To compare the performance of Jaccard similarity and SJS at

estimating alignment sizes, we highlight experimental results
Figure 6. Comparison between Alignment

Estimates and True Alignments

Linear regression fit to positive alignments found by

Daligner to (A) Jaccard similarity between corre-

sponding reads and (B) SJS between the reads,

which provides a better fit.

A

C D

B Figure 7. Comparison of ROC Curves on

Various Datasets

ROC curves across different PacBio datasets and

different q thresholds using Daligner ground truth

and 1,000 hashes.

(A) ROC of E. coli (K-12 from PacBio website) for

alignment threshold q = 0:3.

(B) ROC of E. coli for alignment threshold q = 0:8.

(C) ROC of NCTC 4174—the least repetitive dataset

we consider —with alignment threshold q = 0:3.

(D) ROC of NCTC 4163—the most repetitive dataset

we consider—with alignment threshold q = 0:3.

Figure S8 shows a similar plot with Minimap2 as

ground truth. AUCs across a variety of datasets are

shown in Figure 8.

ll
OPEN ACCESSArticle
on three PacBio datasets: a standard E. coli dataset,30 and two

NCTC datasets,23 NCTC 4163 and NCTC 4174, which represent

distinct levels of deviation from a uniform k-mer distribution, as

illustrated by the k-mer CDFs in Figure 4B.

As a first experiment, for the E. coli dataset, we plot the Da-

ligner14 alignment sizes versus Jaccard similarity and SJS scores

in Figure 6. By comparing the linear regression fit for Jaccard sim-

ilarity and SJS we see that SJS has a significantly stronger linear

relationship with the Daligner alignments. However, we note that

the R2 values are not necessarily indicative of performance in

this scenario, as they only indicate howwell we can fit a linear rela-

tionship to the data. For the goal of identifying pairs of reads with

an alignment larger than a certain threshold, a better way to

assess the performance of SJS is to analyze ROC curves.

We consider the problem of identifying pairs of reads with an

overlap of size at least q. We compute exact Jaccard similarity

values and compare them with SJS values computed based

on 1,000 hash functions (see Trade-Off between Filter Accuracy

and Number of Hash Functions for results with different numbers

of hash functions). We discuss the preprocessing steps per-

formed on these datasets in Appendix E of Supplemental Infor-

mation. In Figure 7, we plot ROC curves for different values of

q and different datasets. We utilize Daligner alignments as

ground truth for the alignment sizes. We point out that using

the Daligner outputs as ground truth is not ideal, since the tool

itself utilizes an empirical Jaccard-similarity-based filter to align

reads; this choice of ground truth biases the result in favor of

the conventional Jaccard similarity. Despite this, we note that

SJS performs significantly better than Jaccard similarity on all
datasets tested, even when the output

metric inherently favors Jaccard similarity.

In addition, we obtain similar results when

Minimap2 is used to generate ground truth

alignments in place of Daligner (Figure S6).

The fact that Minimap2 and Daligner use

different procedures to filter pairs of reads

provides additional evidence that the supe-

rior performance of SJS over Jaccard sim-

ilarity is not simply due to using Daligner to

define the ground truth.

We note that the performance of both

Jaccard similarity and SJS filters degrades

as the k-mer distribution becomes skewed.

To formally capture this skew for a dataset
of reads D= fS1;.;Sng with an average read length of L, we let

the k-mer distribution of D be defined as the empirical distribu-

tion of the znL k-mers in the reads of D. We then have the

following definitions.

Definition 1: For a dataset D and hash function h, the collision

probability of read S, denoted colprobD;hðSÞ, is the probability

that a set of L� k + 1 randomly chosen k-mers drawn indepen-

dently and uniformly at random from the k-mer distribution of D

has the same min-hash on hash h as S.

This collision probability of read S in a dataset D with hash h

can be computed in closed form, as discussed in Appendix D

in Supplemental Information. Furthermore, we can extend this

definition in order to capture the overall hardness of approxi-

mating pairwise alignments in a dataset D as follows.

Definition 2: The mean collision probability of a dataset

D= fS1;.;Sng is given by

1

n

Xn
i =1

Eh

colprobD;hðSiÞ

�
; (Equation 10)

where Eh is the expectation with respect to a randomly chosen

hash function h.

While computing the expectation Eh over hash functions h is

computationally infeasible, it can be approximated by an

average over a set of randomly chosen hash functions h1;.;

hm. As we discuss in Appendix D in Supplemental Information,

we can use the set of hash functions that were used to compute

the min-hashes to give a closed form approximation of the mean

collision probability of a dataset.
Patterns 1, 100081, September 11, 2020 7

A B Figure 8. Impact of the Dataset Collision

Probability on the SJS Performance

(A) The higher themin-hashcollisionprobability is, the

worse both methods perform, indicating a ‘‘harder’’

dataset. However, the performance of the SJS filter

degrades less than that of the Jaccard similarity filter.

(B) Ratio between the improvement of the SJS filter

over random guessing and the improvement of the

Jaccard similarity filter over random guessing, as a

function of collision probability of the reads’ k-mer

distribution.

The results in both plots were computed for q= 0:3

using 1,000 hashes. A similar plot with Minimap2

providing ground truth alignments can be found in

Figure S5.

ll
OPEN ACCESS Article
In Figure 8A we plot the performance of SJS and Jaccard sim-

ilarity as a function of the computed collision probabilities for 40

datasets from the NCTC 3000 project.23 This shows the uniform

improvement in performance afforded by SJS, in that for every

dataset the SJS AUC is higher than the Jaccard similarity AUC.

Furthermore, it shows that as the k-mer distribution becomes

more skewed, the degradation in performance suffered by SJS

is smaller than that suffered by Jaccard similarity. We plot the ra-

tio of the improvement of the two AUCs over random guessing

in Figure 8B. This shows that the improvement of SJS over

Jaccard similarity is larger when the k-mer distribution is more

skewed.
Discussion
In this paper, we introduced the notion of SJS as an alternative to

the standard k-mer Jaccard similarity for estimating the overlap

size between pairs of noisy, third-generation sequencing reads.

SJS is a probabilistic approach that utilizes min-hash collisions

as a way to estimate the size of the overlap between pairs of

reads. However, unlike previous approaches, SJS attempts to

learn how good different hash functions are at estimating overlap

size for that specific dataset. In particular, when the k-mer distri-

bution of the dataset in question is very uneven, the gain of SJS

over Jaccard similarity is greater.

We conclude the paper by discussing some additional as-

pects of the algorithm implementation and providing some

further validation of the model. First, we show how the fact that

the columns of the Amatrix are typically sparse can be exploited

in order to approximate the SVD using a single matrix-vector

multiplication, which can significantly speed up the computation

of SJS. Second, we validate our earlier claim that qjs represent

how bad a hash function is for the purpose of alignment. Third,

we examine the performance of SJS as a function of the number

of hashes used and show that it can match the performance of

exact Jaccard similarity with around 150 hashes, as shown in

Figure 10B.

A final implementation-related point, the calibration of the SJS

values across different reference reads, is discussed in Appen-

dix B in Supplemental Information. More precisely, we describe

how we normalize the pis obtained for different reference reads

(i.e., from the SVD of different matrices Ai and Aj) so that the SJS

values are comparable. We also point out that, when computing

SJS for two reads A and B, the choice of reference read matters,

as illustrated in Figure S3.
8 Patterns 1, 100081, September 11, 2020
Approximation in the Case where Most pis Are Zero

Given a min-hash collision matrix A˛f0; 1gn3H, define

p =
1

n

Xn
i = 1

pi;qj =
1

n

Xn
i = 1

Ai;j;

for 1%j%H; i.e., p is the average pi value and qj is the fraction of

ones in column j. We note that, since Ai;j � BerðpiÞnBerðqjÞ,
when most pis are zero, most of the entries in column j are

distributed as BerðqjÞ. It follows that E

qj

�
=qj +p� pqjzqj

since pz0. This means that the leading right singular

vector is approximately q = ½q1;.;qH�u. Since the rank-one

approximation is

A� 11uzð1� pÞðq� 1Þuzð1� pÞðq� 1Þu;

by multiplying both sides by ðq� 1Þ, we obtain

ðA� 11uÞðq� 1Þzjjq� 1jj22ð1� pÞ

0pz1� 1

q� 12
2

ðA� 11uÞðq� 1Þ; (Equation 11)

which gives us amethod to compute the SJS with amatrix-vec-

tor multiplication rather than an SVD. This can intuitively be un-

derstood as follows. We wish to approximate the principal left

singular vector of the matrix A� 11u. We are, however, given

some side information; we are able to easily obtain a high-qual-

ity approximation of the principal right singular vector as q� 1.

This allows us to effectively perform one step of the Power Iter-

ation method, as ðA� 11uÞðq� 1Þ which, after normalization,

gives us a very good approximation of the principal left singular

vector.

In Figure 9A, we show that for an E. coli dataset where most

reads do not have any overlap, q is very correlated with q. In Fig-

ure 9B, we show that the approximate SJS values computed us-

ing Equation 11 are highly correlated with those computed

through a full SVD.

We note that one could have attempted to use row averages

instead of column averages in this approximation procedure.

However, this would correspond to computing the standard

Jaccard similarities. Jaccard similarity is not as well correlated

with the SJS, as we show in Figure 9C. Furthermore, we

note that Equation 11 implies that pife ½Að1� qÞ�i, which is

expanded as

A B C

Figure 9. Approximating Right Singular Vector with Column Averages

When most piz0, it is possible to approximate the SVD by a simple matrix-vector multiplication as described in Equation 11. In particular, we verify empirically

that (A)qzq and that (B) the p obtained fromEquation 11 is nearly the same as the one computed by SVD. If one instead tries to approximate p by considering row

averages (C), the approximation is not as good.

ll
OPEN ACCESSArticle
pife 1

H

 XH
j = 1

Ai;j

1� 1

n

Xn
[= 1

A[;j

!!
; (Equation 12)

where fe indicates ‘‘monotonic function of.’’ Since JSkðS0;SiÞz
1
H

PH
j = 1Ai;j; our method can be understood as downweighting the

contribution of hash functions that yield many collisions. We call

this scheme approximate SJS (aSJS), and show that this

approximation performs nearly as well as SJS in Figures S9

and S4.

While performing a spectral decomposition is costly, the

approximation method provided by Equation 11 is efficient.

Comparing the running time of the different approaches, after

the common min-hash computation step, we see that on the E.

coli dataset with n= 1;000 reads and H= 1;000 hashes, SJS

takes 1352.9 s, min-hash approximation of Jaccard similarity

takes 4.47 s, and aSJS takes 10.88 s. Experiments were run

on one core of an AMD Opteron Processor 6378 with 500 Gb

of memory. We point out that performing the same experiment

on different datasets leads to similar results, as the operations

involved (SVD and matrix-vector multiplication) depend almost

exclusively on the matrix dimensions, not the content of the colli-

sion matrices themselves.

Validating the Model

In the section Spectral Jaccard Similarity, we proposed the

model in Equation 7 with the interpretation that qj represented

how likely were min-hash collisions given the hash function hj.

In this section, we empirically verify that claim. In Figure 10, we

show the collision probability of a reference read on a hash func-

tion hj as a function of our computed qj for the E. coli and Kleb-

siella pneumoniae (NCTC 5047) datasets. We see a very strong

correlation between the computed collision probability and the

qj parameters, validating our model.
A B
Trade-Off between Filter Accuracy and Number of Hash

Functions

While throughout this paper we present results for SJS using

1,000 hash functions, our method performs well even with a

smaller number of hash functions. In Figure S10, we plot ROC

curves for SJS and aSJS (described in Approximation in the

Case where Most pis Are Zero) using different numbers of

hashes to compare the performance of these filters on the E.

coli K-12 dataset. We note that as few as 150 hashes are enough

for SJS to dominate the exact Jaccard-similarity-based filter.

The performance of the approximation is similar.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for full details.

Resource Availability

Lead Contact

Ilan Shomorony, ilans@illinois.edu.

Materials Availability

This study did not generate new unique materials or reagents.

Data and Code Availability

The code generated during this study are available at https://github.com/

TavorB/spectral_jaccard_similarity. This study used only publicly available

datasets.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100081.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from the NSF GRFP; Alcatel-

Lucent Stanford Graduate Fellowship; NSF grant under CCF-1563098; and
Figure 10. Comparison between Collision

Probability and Hash Unreliability Parameter

For each hash function hj, we compared the colli-

sion probability on hash hj with the corresponding qj

for (A) the E. coli dataset and (B) the K. pneumoniae

dataset (NCTC 5047).

Patterns 1, 100081, September 11, 2020 9

mailto:ilans@illinois.edu
https://github.com/TavorB/spectral_jaccard_similarity
https://github.com/TavorB/spectral_jaccard_similarity
https://doi.org/10.1016/j.patter.2020.100081
https://doi.org/10.1016/j.patter.2020.100081

ll
OPEN ACCESS Article
the Center for Social Inclusion, an NSF Science and Technology Center under

grant agreement CCF-0939370.

AUTHOR CONTRIBUTIONS

All authors contributed to the research and writing of the manuscript. All au-

thors have read and reviewed the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 26, 2020

Revised: June 9, 2020

Accepted: July 3, 2020

Published: July 31, 2020

REFERENCES

1. Weirather, Jason L., de Cesare, Mariateresa, Wang, Yunhao, Piazza,

Paolo, Sebastiano, Vittorio, Wang, Xiu-Jie, Buck, David, and Au, Kin Fai

(2017). Comprehensive comparison of pacific biosciences and oxford

nanopore technologies and their applications to transcriptome analysis.

F1000Res. 6, https://doi.org/10.12688/f1000research.10571.2.

2. Needleman, Saul B., and Wunsch, Christian D. (1970). A general method

applicable to the search for similarities in the amino acid sequence of

two proteins. J. Mol. Biol. 48, 443–453.

3. Smith, Temple F., andWaterman, Michael S. (1981). Identification of com-

mon molecular subsequences. J. Mol. Biol. 147, 195–197.

4. Myers, Eugene W. (1986). An O(nd) difference algorithm and its variations.

Algorithmica 1, 251–266.

5. Vaser, Robert, Sovi�c, Ivan, Nagarajan, Niranjan, and �Siki�c, Mile (2017).

Fast and accurate de novo genome assembly from long uncorrected

reads. Genome Res. 27, 737–746.

6. Wick, Ryan R. (2019). Rebaler—a reference-based long read assemblies

of bacterial genomes. https://github.com/rrwick/Rebaler.

7. Berlin, Konstantin, Koren, Sergey, Chin, Chen-Shan, Drake, James P.,

Landolin, Jane M., and Phillippy, Adam M. (2015). Assembling large ge-

nomes with single-molecule sequencing and locality-sensitive hashing.

Nat. Biotechnol. 33, 623.

8. Chin, Chen-Shan, Alexander, David H., Marks, Patrick, Klammer, Aaron

A., Drake, James, Heiner, Cheryl, Clum, Alicia, Copeland, Alex,

Huddleston, John, Eichler, Evan E., Eichler, Evan E., Eichler, Evan E.,

and Eichler, Evan E. (2013). Nonhybrid, finished microbial genome assem-

blies from long-read smrt sequencing data. Nat. Methods 10, 563.

9. Chin, Chen-Shan, Paul, Peluso, Sedlazeck, Fritz J., Nattestad, Maria,

Concepcion, Gregory T., Clum, Alicia, Dunn, Christopher, O’Malley,

Ronan, Figueroa-Balderas, Rosa, Morales-Cruz, Abraham, et al. (2016).

Phased diploid genome assembly with single-molecule real-time

sequencing. Nat. Methods 13, 1050.

10. Kamath, Govinda M., Shomorony, Ilan, Xia, Fei, Courtade, Thomas A., and

Tse, David N. (2017). Hinge: long-read assembly achieves optimal repeat

resolution. Genome Res. 27, 747–756.

11. Koren, Sergey, Walenz, Brian P., Berlin, Konstantin, Miller, Jason R.,

Bergman, Nicholas H., and Phillippy, Adam M. (2017). Canu: scalable

and accurate long-read assembly via adaptive k-mer weighting and repeat

separation. Genome Res. 27, 722–736.
10 Patterns 1, 100081, September 11, 2020
12. Li, Heng (2016). Minimap and miniasm: fast mapping and de novo assem-

bly for noisy long sequences. Bioinformatics 32, 2103–2110.

13. Li, Heng (2018). Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics 34, 3094–3100.

14. Myers, Gene (2014). Efficient local alignment discovery amongst noisy

long reads. In International Workshop on Algorithms in Bioinformatics

(Springer), pp. 52–67.

15. Denver, Dee R., Brown, Amanda M.V., Howe, Dana K., Peetz, Amy B., and

Zasada, Inga A. (2016). Genome skimming: a rapid approach to gaining

diverse biological insights into multicellular pathogens. PLoS Pathog.

12, e1005713.

16. Ondov, Brian D., Treangen, Todd J., Melsted, Páll, Mallonee, Adam B.,

Bergman, Nicholas H., Koren, Sergey, and Phillippy, Adam M. (2016).

Mash: fast genome and metagenome distance estimation using minhash.

Genome Biol. 17, 132.

17. Sarmashghi, Shahab, Bohmann, Kristine, Gilbert, M. Thomas P., Bafna,

Vineet, and Mirarab, Siavash (2019). Skmer: assembly-free and align-

ment-free sample identification using genome skims. GenomeBiol. 20, 34.

18. Roberts, Michael, Hayes, Wayne, Hunt, Brian R., Mount, Stephen M., and

Yorke, James A. (2004). Reducing storage requirements for biological

sequence comparison. Bioinformatics 20, 3363–3369.

19. Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local al-

gorithms for document fingerprinting. In Proceedings of the 2003 ACM

SIGMOD International Conference on Management of Data, pages 76–

85, 2003.

20. Zheng, Hongyu, Kingsford, Carl, and Marçais, Guillaume (2020). Improved

design and analysis of practical minimizers. BioRxiv. https://doi.org/10.

1101/2020.02.07.939025.

21. Buhler, Jeremy (2001). Efficient large-scale sequence comparison by lo-

cality-sensitive hashing. Bioinformatics 17, 419–428.

22. Marçais, Guillaume, DeBlasio, Dan, Pandey, Prashant, and Kingsford, Carl

(2019). Locality-sensitive hashing for the edit distance. Bioinformatics 35,

i127–i135.

23. Public Health England. National Collection of Type Cultures (NCTC) 3000

Project. https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/.

24. Leskovec, Jure, Rajaraman, Anand, and Ullman, Jeffrey D. (2014). Mining

of Massive Datasets (Cambridge university press).

25. Broder, Andrei Z. (1997). On the resemblance and containment of docu-

ments. In Proceedings. Compression and Complexity of SEQUENCES

1997 (IEEE), pp. 21–29.

26. Manber, Udi, et al. (1994). Finding similar files in a large file system. Usenix

Winter 94, 1–10.

27. Broder, Andrei Z., Glassman, Steven C., Manasse, Mark S., and Zweig,

Geoffrey (1997). Syntactic clustering of the web. Comput. Netw. ISDN

Syst. 29, 1157–1166.

28. Chum, Ondrej, Philbin, James, Zisserman, Andrew, et al. (2008). Near

duplicate image detection: min-hash and tf-idf weighting. BMVC 810,

812–815.

29. Bagaria, Vivek, Kamath, Govinda M., and Tse, David N. (2018). Adaptive

Monte-Carlo optimization. arXiv, 1805.08321.

30. Pacific Biosciences (2013). PacBio E. coli bacterial assembly. https://

github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly.

https://doi.org/10.12688/f1000research.10571.2
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref2
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref2
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref2
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref3
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref3
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref4
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref4
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref5
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref5
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref5
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref5
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref5
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref5
https://github.com/rrwick/Rebaler
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref7
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref7
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref7
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref7
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref8
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref8
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref8
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref8
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref8
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref9
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref9
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref9
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref9
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref10
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref10
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref10
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref11
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref11
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref11
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref11
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref12
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref12
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref13
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref13
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref14
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref14
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref14
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref15
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref15
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref15
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref15
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref16
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref16
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref16
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref16
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref17
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref17
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref17
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref18
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref18
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref18
https://doi.org/10.1101/2020.02.07.939025
https://doi.org/10.1101/2020.02.07.939025
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref21
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref21
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref22
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref22
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref22
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref24
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref24
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref25
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref25
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref25
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref26
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref26
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref27
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref27
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref27
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref28
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref28
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref28
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref29
http://refhub.elsevier.com/S2666-3899(20)30109-4/sref29
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly

	Spectral Jaccard Similarity: A New Approach to Estimating Pairwise Sequence Alignments
	Introduction
	Results and Discussion
	Jaccard Similarity
	Drawbacks of Jaccard Similarity

	Spectral Jaccard Similarity
	Computing the Spectral Jaccard Similarity

	Results
	Discussion
	Approximation in the Case where Most pis Are Zero
	Validating the Model
	Trade-Off between Filter Accuracy and Number of Hash Functions

	Experimental Procedures
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References

