
molecules

Article

Design, Molecular Modeling and Synthesis of
Metal-Free Sensitizers of Thieno Pyridine Dyes as
Light-Harvesting Materials with Efficiency
Improvement Using Plasmonic Nanoparticles

Mohamed E. Khalifa 1,* , Abdulraheem S. A. Almalki 1, Amar Merazga 2 and
Gaber A. M. Mersal 1,3

1 Department of Chemistry, Faculty of Science, Taif University, Taif 21974, Saudi Arabia
2 Department of Physics, Faculty of Science, Taif University, Taif 21974, Saudi Arabia
3 Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
* Correspondence: mohamedezzat200@hotmail.com or mohamedezzat@tu.edu.sa; Tel.: +966-569846966

Received: 17 March 2020; Accepted: 14 April 2020; Published: 15 April 2020
����������
�������

Abstract: Considering the thiophene unit as an electron-rich heterocycle, it is investigated with
the aim of elucidating its potential efficiency for solar cell application. With the introduction of
active substituents such as COOEt, CONH2 and CN into the thiophene segment, three novel thieno
pyridine sensitizers (6a–c), based on donor-acceptor D-π-A construction, are designed and synthesized.
The effect of the anchoring groups is investigated based on their molecular orbital’s (MO’s) energy
gap (Eg). The electrostatic interaction between the synthesized dyes and metal nanoparticles,
namely gold, silver and ruthenium, is believed to improve their performance as organic sensitizers.
The dye-sensitized solar cells (DSSCs) are manufactured using the novel diazenyl pyridothiophene
dyes, along with their metal nanoparticles conjugates as sensitizers, and were examined for efficiency
improvement. Accordingly, using this modification, the photovoltaic performance was significantly
improved. The promising results of conjugate (6b/AgNPs), compared with reported organic and
natural sensitizers (JSC (1.136 × 10−1 mA/cm2), VOC (0.436 V), FF (0.57) and η (2.82 × 10−2%)),
are attributed to the good interaction between the amide, methyl, amino and cyano groups attached
to the thiophene pyridyl scaffolds and the surface of TiO2 porous film. Implementation of a molecular
modeling study is performed to predict the ability of the thiophene moiety to be used in solar
cell applications.

Keywords: tetrahydrobenzothiophenes; thienopyridine; HOMO-LUMO; organic sensitizers; dye-
sensitized solar cells; metal nanoparticle; plasmonic

1. Introduction

Modern organic solar cells (OSC) are considered as third generation solar cells, as they were first
fabricated by Grätzel et al. in 1991 [1]. They have remarkable advantages among potential renewable
energy sources such as lower cost, simple fabrication and lower toxicity, and they are environmentally
eco-friendly [2]. Dye-sensitized solar cells (DSSCs) of an organic nature are superior to metal-based
sensitizers regarding the cost, environmental issues and higher molar extinction coefficients [3].
Typically, the common architect system (D-π-A) for DSSCs consists of a hydrophobic electron-rich
donor π-conjugated bridge unit and a hydrophilic electron-deficient acceptor [4]. In this structure,
the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals
(LUMO) are mainly localized around the donor and acceptor parts of the dye molecule, respectively [5].
This orientation favors the electron injection and slows down recombination between electrons in
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the TiO2 photoanode conduction band (i.e., the semiconductor and oxidized molecules) through the
anchoring/acceptor group adsorbed on its surface (i.e., a cyano, carboxylic or phosphonic group) [6,7].
The sensitizer is illuminated by the light; thus, the excited electrons will transfer from donor to acceptor
terminals through the π-conjugation bridge and then inject into the conduction band. The design
and mechanism of organic sensitizers for DSSCs have been explained in detail by Obotowo et al. [8].
The efficiency of a DSSC as light harvesting matter depends mainly on the nature and the amount of
the adsorbed dye molecules on the photoanode [9,10] and the thickness of the photoanode as well [11].
To achieve the most optimized D-π-A dyes, they should be designed for broader absorption in the near
IR region, minimizing the energy level mismatch between the oxidation potential of the dye’s excited
state and TiO2 conduction band, and the HOMO and electrolyte as well, reducing the rate of charge
recombination at the photoanode-electrolyte interface, prohibiting dye aggregation and increasing
the stability of the DSSC [6]. Thiophene derivatives (e.g., bithiophenes [5], oligo thiophenes [5],
aryl thiophenes [12] and aryl bithiophenes [13]) have attracted the attention of many researchers to
synthesize donor-acceptor substituted π-conjugated systems, such as formyl π-conjugated systems,
through cross-coupling/metalation followed by DMF quenching [5] and Vilsmeier-Haack-Arnold
formylation reactions [13,14]. Plasmon resonance employing noble metals (i.e., Ag and Au) has
been recently introduced to the DSSCs, where the metal nanoparticles’ surface plasmon resonance
phenomena are assumed to enhance their light harvesting efficiency [15]. It was reported that silver
nanoparticles achieved light trapping in solar cells at a higher rate than that of other noble metals in
visible range, due to their higher relative scattering efficiency [16]. In the light of the previous literature,
it is of interest to design new, organic DSSCs of thienopyridyl thiophene dyes, identify their electrical
characteristics and examine their utility in solar cell applications. In addition, the influence of the
plasmonic resonance of different metal nanoparticles (namely gold, silver and ruthenium) on the redox
properties has been investigated, aiming to enhance their light harvesting efficiency. Computational
modeling study has also been performed in order to predict the reactive sites of the dyes’ molecules
and their ability to serve in the field of solar cell applications. Density functional theory (DFT) method
exhibits outstanding explanation of the structural, spectral and electronic properties of the studied
molecules [17–19]. The B3LYP calculation functional method has been chosen to predict the energetic,
electronic and spectral properties for many molecules in high precision [20–22].

2. Results and Discussion

2.1. Chemistry

As a part of our continuous efforts for the synthesis of novel organic dye-sensetized solar
cells [23–26], the thiophene nucleus has particularly attracted our attention. In this regard, we herein
report the synthesis of novel scaffolds of diazenyl pyridothiophene derivatives (6a–c) as metal-free
organic sensitizers.

The synthesis procedures are carried out using the 2nd version of Gewald strategy to achieve the
final products starting from preparing the 2-amino-3-cyano-4-methylthiophene compound (1) [27].
As shown in Scheme 1, the acetone mixes readily with sulphur, malononitrile and the base catalyst
(morpholine) to afford the target 2-aminothiophene derivative (1).
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The mechanism of this reaction was proposed by Gewald [27]. The structure of the
prepared starting compound (1) is secured by its micro and spectroscopic analyses and found
to be in good agreement with the literature [28]. The cyclization of 2-amino-3-cyano-4-
methylthiophene (1) with ethyl-cyanoacetate in the presence of sodium ethoxide affords
the 4-amino-6,7-dihydro-3-methyl-6-oxothieno[2,3-b]pyridine-5-carbonitrile (3), as depicted in
Scheme 2 [29].
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Scheme 2. Synthesis of 4-amino-6,7-dihydro-3-methyl-6-oxothieno[2,3-b]pyridine-5-carbonitrile (3).

This reaction is assumed to proceed through formation of the non-isolable intermediate (2)
followed by intramolecular cyclization to afford the cyclic pyridone (3) according to the Thorpe-Ziegler
reaction mechanism [30].

On the other hand, preparation of 2-amino-4,5,6,7-tetrahydrobenzo thiophene derivatives (4a–c)
was very interesting with the aim of coupling with the precursor compound (3) to collect the new
products of (6a–c), as described in Scheme 3. Three components’ reactions (cyclohexanone, active
nitriles and elemental sulfur in ethanol) in the presence of a catalytic amount of morpholine undergoes
Gewald synthesis to give the target products (4a–c) [31–34].
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Therefore, diazotization of 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophenes (4a–c) in HCl and
sodium nitrite gives the corresponding non-isolable diazonium salts (5a–c), which undergo coupling
reactions with 4-amino-6,7-dihydro-3-methyl-6-oxothieno[2,3-b]pyridine-5-carbonitrile (3) in the
presence of sodium acetate and ethanol to furnish the corresponding diazenyl pyridothiophene
derivatives (6a–c) (Scheme 3).

The chemical structures of diazenyl pyridothiophene derivatives (6a–c) are confirmed by their
spectral data. The characteristic IR absorption bands of compounds (6a–c) prove the presence of NH2

groups at 3322–2935 cm–1, the cyano groups at 2209–2210 cm–1. Furthermore, the strong bands at
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1530–1537 cm–1 attribute to the NH bending and the informative bands at 1582–1704 cm–1 correspond
to the carbonyl groups (ester, pyridone and amide). The 1H NMR spectra of (6a–c) exhibit the highly
deshielded NH protons at the range of δ = 9.11–10.96 ppm These findings are supported by similar
reported compounds and may be attributed to the tautomerization possibility of 2-pyridone isomeric
from the 2-hydroxypyridine form [35]. The NH2 protons appear in the range of 6.35–6.56 ppm.

2.2. Metal Nanoparticles (MNPs) Characterization

The presence of MNPs was previously confirmed and characterized (c.f. supplementary file S2) [36].
The UV-Vis spectra of the surface plasmon bands appear at 537 and 425 nm, confirming the production
of AuNPs and AgNPs, respectively, while disappearance of the absorbance band at 318 nm confirms
the production of RuNPs. The high resolution transmittance spectroscopy images (HRTEM) estimate
that the sizes of the Au, Ag and Ru nanoparticles with an average diameter of 17, 9 and 5.5 nm,
respectively. The results are in good agreement with the literature [37,38].

2.3. Absorption Spectra Analysis

The UV-Vis absorption spectra (A) of the synthesized dyes (6a–c) are measured in DMF (Figure 1),
where the values of maximum absorbance wavelengths (λmax) are affected by the strength of the donor
in direct proportion. Dye (6b) has a carbonyl group with a stronger accepting character than that of
carboxylate and cyano chromophores of (6a) and (6c), respectively; thus, it shows the highest λmax.
Since the absorption of D-π-A could be shifted towards longer (λ) (i.e., intramolecular donor and
acceptor charge transfer), these dyes may be applied for solar cells [24]. Concurrently, the energy levels
could be adjusted by incorporating different anchoring nuclei and the π bridge.
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Figure 1. UV-Vis normal absorption spectra (A) and molar absorption coefficients (ε) (B) of dyes (6a–c)
measured in DMF (5 × 10−2 mM).

According to the light absorption behavior (Figure 2), dye (6b) has the highest adsorption amount
on the TiO2 nanocrystalline surface and hence is chosen to study its performance in conjugation with
different metal nanoparticles.
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The adsorbed dye/Au, Ru and/or Ag nanoparticle conjugates (6b/NPs) on nanoporous TiO2

exhibit the role of their plasmonic resonance phenomena in the enhancement of adsorption efficiency
(Figure 3). Generally, the conjugation with nanoparticles shows a slightly higher adsorption amount
on the TiO2 nanocrystalline surface, in the order Ag > Ru > Au, than in the case of dye only.
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2.4. Electrochemical Characterization

The oxidation and reduction modes corresponding to the removal of electrons from the
HOMO and filling the LUMO with electrons, respectively, are determined using cyclic voltammetric
measurements [39]. The MO’s energy levels are calculated from the onset oxidation and reduction
potentials (Eonset for HOMO and LUMO, respectively) of cyclic voltammograms (CVs), where the
magnitude of their energy gaps (Eg) are estimated.

Figures 4–6 show CVs for dyes (6a-c) in dichloromethane (DCM) with 100 mM tetrabutyl
ammonium perchlorate (TBAP) as supporting electrolyte, where a single reversible oxidative wave in
a positive potential and an irreversible reductive one in a negative potential appear.
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From CV analysis, the Eg for each compound is calculated using the difference between the
electrochemical HOMO and LUMO obtained in terms of the optical energy gap of the absorption edge
of the electronic spectra (Equations (1) and (2)).

EHOMO = −
(
Eonst (oxidation) + 4.4

)
eV (1)

ELUMO = −
(
Eonst (reduction) + 4.4

)
eV (2)

Table 1 obviously shows that dye (6b) has the lowest HOMO-LUMO energy band gap (Eg) among
the alternates, indicating the highest performance [40].

Table 1. Electrochemical analysis data of the synthesized dyes (6a–c).

Dye E HOMO (eV) E LUMO (eV) Eg (eV)

6a −3.30 −3.55 0.25
6b −3.40 −3.20 0.20
6c −3.13 −3.73 0.60

Accordingly, dye (6b) is therefore selected to study its performance in conjugation with different
metal nanoparticles (i.e., Au, Ag and Ru NPs). The Eg values of (6b/NPs) conjugates are calculated and
tabulated in Table 2.
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Table 2. Electrochemical analysis data of the synthesized dye (6b) conjugated with Au, Ag and Ru NPs.

Dye/MNPs E HOMO (eV) E LUMO (eV) Eg (eV)

6b/AuNPs −3.10 −3.43 0.33
6b/AgNPs −3.31 −3.40 0.09
6b/RuNPs −2.91 −3.43 0.52

Dye (6b/AgNPs) has the lowest Eg; thus, the conjugation with silver nanoparticles enhances the
efficiency of dye (6b) compared with ruthenium and gold conjugates in descending order.

2.5. Photovoltaic Performance (PV) Study

The PV performances of the fabricated DSSC devices using dyes (6a-c) along with their NP
conjugates on the nanoporous TiO2 are studied. The PV parameters and characteristic J-V curves of
the fabricated devices are revealed in Table 3 and Figure 7.

Table 3. J-V characteristics of solar devices based on the synthesized dyes (6a-c) and (6b/NPs) conjugates.

Dye JSC (mA.cm−2) VOC (V) FF η (%)

6a 4.309 × 10−2 0.054 0.27 6.17 × 10−4

6b 4.313 × 10−2 0.141 0.53 3.24 × 10−3

6c 3.243 × 10−2 0.102 0.38 1.27 × 10−3

6b/Au-NPs 4.065 × 10−2 0.182 0.38 2.79 × 10−3

6b/Ru-NPs 5.561 × 10−2 0.197 0.39 4.16 × 10−3

6b/Ag-NPs 1.136 × 10−1 0.436 0.57 2.82 × 10−2

JSC, short-circuit photocurrent density; VOC, open-circuit photovoltage; FF, fill factor; η, total power
conversion efficiency.
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(6b/NPs) conjugates.

The PV parameters of dyes are in the order 6b > 6c > 6a under the same experimental conditions.
The promising results of the JSC values, VOC values and FF values, compared with reported natural
and organic sensitizers, may be due to the better interaction between the functional branches of the
thiophene nuclei and the surface of the TiO2 porous film [41]. The cell based on dye (6b) exhibits
the highest efficiency (JSC = 4.313 × 10−2 mA.cm−2, VOC = 0.141 V, FF = 0.53, η = 3.24 × 10−3%)
in accordance with the electrochemical measurements. The finding may be explained by the cell’s
higher adsorption on the TiO2 nanocrystalline surface among group members, as shown in Figure 2.
This phenomenon affords additional absorption sites for the dye, which is correlated with better
harvesting efficiency of the photoelectrode, resulting in an improvement in the JSC. The improvement
in the open-circuit voltage (VOC) for dye (6b) may contribute to an increase of the electron lifetime in
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the DSSC by preventing dark current. The increase of the total power conversion efficiency (η) of dye
(6b) could be ascribed to its better donating ability.

Furthermore, conjugation of the dye molecules with metal nanoparticles exhibits a remarkable
change in photovoltaic performance, as described by Table 3 and Figure 7. It’s obviously clear that
conjugation of dye (6b) with silver nanoparticles enhances the efficiency (η = 2.82 × 10−2%) compared
with conjugates with Ru and Au in descending order (6b/RuNPs; η = 4.16 × 10−3% and 6b/AuNPs;
η = 2.79 × 10−3%), which could be explained by its higher adsorption on nanoporous TiO2 (Figure 3).

Overall, the reason for the lower efficiencies of organic sensitizers compared with other metal-based
sensitizers may be due to the LUMO level being slightly lower than the energy of the conduction
band of TiO2. This leads to an insufficient electron injection into the TiO2 conduction band from the
excited form of the sensitizers. Many publications have tried to resolve this issue [42] and this will be
considered in our future research by modifying the sensitizers’ design (i.e., photoanode).

2.6. Computational Study

Quantum chemical calculations are used mainly for geometrical optimization, predicting the
Mulliken atomic charges, calculating the frontier molecular orbitals (FMOs) and determining the shape
and energy for the compounds under investigation, with the aid of the Gaussian 03W program suite at
semi-empirical PM6 level [43]. The geometrical structure is among the important factors governing the
chemical and biological activities [44]. The Mulliken atomic charge is also an important factor that
affects reactivity towards an electrophilic or nucleophilic reaction [45]. The FMOs are used to find
frontier electron density, where the most reactive sites in the molecule are [46].

2.6.1. Molecular Geometry

The dihedral angles data of the DFT-optimized structures indicate the twisted geometry of dyes
(6a–c) (Table S1 and Figure 8).
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For instance, the thiophene rings are almost planar, whereby the S atoms are lying above or below
the plane of other C atoms by ~0.5-6.0◦. The carbon atoms of the thiophene ring fused with pyridine
have a distorted planar geometry.

The azo groups are almost planar with the carbon atoms to which they attached, while for the
cyclohexyl ring, it is found that both fused moieties are tilted on each other. Moreover, the cyclohexyl
rings are bent, and Cthio-Ccyc-Ccyc-Ccyc ranged from 42◦ to 46◦.

Concerning the substituents at 3-position on the cyclohexyl ring fused with thiophene, the carbonyl
carbon of COOEt and CONH2 in the (6a) and (6b) derivatives, in addition to the cyano group carbon
in (6c), are almost planar with the thiophene ring. The oxygen atoms of the ester and amide group
are found to lie above the thiophene plane by 46.59◦ and 39.62◦, respectively. The cyano and amino
substituents on the pyridine ring in the (6a) derivative were on opposite sides, while they were almost
planar in (6b) and (6c).

The bond length data, compared with single-crystal X-ray diffraction for peer dyes (Table S2, c.f.
supplementary file S1), reveal that the N-N(azo)bonds are 1.24–1.25◦, which is in the range reported
from the X-ray crystals (1.18–1.31 Å) [47]. Moreover, the DFT Cthio-Nazo bonds’ lengths are in the
range 1.41 Å to 1.47 Å (X-ray range 1.36–1.50 Å) [48]. Furthermore, the range of thiophene C-S bonds’
lengths are 1.63–1.74 Å for the cyclohexyl fused rings, while those of fused pyridine are in the range of
1.66–1.81 Å, which is in good correlation with the X-ray crystallography data of similar compounds,
1.62–1.76 Å [47].
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Finally, the molecular charge distribution is expressed by dipole moment (µtotal) and is given as a
vector in three dimensions, µx, µy, and µz. Therefore, it can depict the charge movement direction
across the molecule depending on the centers of positive and negative charges. For instance, the dipole
moments components become zero in symmetric geometrics [49]. The investigated compounds have
non-zero components in the Z-direction. This confirms their non-planar structure.

As per dipole moment values (Table 4), dye (6c) is found to be the most polarized among the
group members (µtotal = 11.54 Debye), which may be due to the high electron withdrawing character
of the cyano group. It has almost a planar structure (µz = 8.32 Debye). Accordingly, the investigated
compounds may be arranged as 6b < 6a < 6c in polarization characters.

Table 4. Chemical reactivity descriptors (eV) and dipole moment (Debye) of investigated dyes (6a–c).

6a 6b 6c

EHOMO −7.23 −7.22 −7.23
ELUMO −5.29 −5.32 −5.44

∆E 1.94 1.90 1.79
χ 6.26 6.27 6.34
η 0.97 0.95 0.89
δ 1.03 1.05 1.12
ω 20.17 20.71 22.49
I 7.23 7.22 7.23
A 5.29 5.32 5.44
µtotal 10.09 8.32 11.54
µx 9.69 −7.82 10.43
µy −1.80 −2.53 −4.93
µz 2.16 −1.28 −0.26

2.6.2. Frontier Molecular Orbitals

The energies of the FMOs describe the molecule’s ability to donate and accept an electron. They are
calculated and presented in Table 4.

The HOMO-LUMO gap (Eg or ∆E) is used for predicting the relationship of the chemical structure
and the electronic properties (i.e., frontier electron density and chemical stability) and could explain
the ultimate charge transfer across the molecule [50].

The 3D plots of FMOs for the investigated compounds can offer deep perspective about the
aromaticity and lone pair (Figure 9) [51]. The positive and negative phases of the wave functions are
represented in red and green color, respectively.
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The HOMO of the (6a–c) derivatives are spread over the whole molecule indicating very small
participation for the substituents at position 3 of the thiophene ring fused with the cyclohexyl ring,
while the LUMO display strong participation for these groups. The values of energy of both the HOMO
and LUMO reflect this effect where the EHOMO data indicate that all compounds have almost the same
value, −7.22 eVm, while the ELUMO values of the investigated compounds increase gradually and can
be ordered as 6a (−5.25) < 6b (−5.32) > 6c (−5.44).

The electronegative groups cause a decrease in the value of ELUMO [52], and therefore, it could be
concluded that the cyano group is the most electronegative, while the ester group is the least, in the
(6c) and (6a) derivatives, respectively.

The ∆EHOMO-LUMO data refer to the highest value of dye (6c), while the (6b) derivative has the
lowest, 1.79 and 1.90 eV, respectively. This can be attributed to the increase in the mesomeric effect
of substituents on the thiophene ring, which lead to a decrease in the Eg. This enabled molecules to
absorb more photons from sunlight beams [53]. Thus, dye (6b) with the lowest ∆E value is probably
the most suitable for solar cell application.

2.6.3. Mulliken Atomic Charges

The Mulliken atomic charges data of the investigated compounds show that the nitrogen atoms of
the azo group have positive charges (Table S3, c.f. supplementary file S1). The charge value on the S
atom of the pyridine ring fused with thiophene, S(18), confirms the high electron withdrawing character
of the cyano group at 3-position compared to the amide and ester group, respectively. Moreover,
the charge on the oxygen atom of carbonyl, O(26), for the amide group in (6b) and ester group in
(6a) may be due to the higher electronegativity of the O than the N atoms, which are adjacent to the
carbonyl group.

Fukui function analyses were used for evaluating the most active nucleophilic and electrophilic
attack sites (Table S4, c.f. supplementary file S1). Compound (6a) shows that the most susceptible atoms
for nucleophilic and electrophilic attacks are almost the same. Moreover, the data of dye (6b) exhibit
that the susceptible sites for electrophilic attacks, i.e., electron donation, are S(18), O(26), N(13) and
N(12) atoms. Furthermore, dye (6c) analysis shows the susceptible sites for electrophilic or nucleophilic
attacks are almost the same but with a different order.

2.6.4. Chemical Reactivity Descriptors

The chemical reactivity descriptors [50] such as electronegativity (χ), global hardness (η), softness
(δ), and electrophilicity (ω) are discussed and calculated (c.f. supplementary file S1 and Table 4).
As depicted in Table 4, dye (6c) has the higher Lewis acid character (χ), higher hardness (η) and higher
electrophilicity index (ω) than the other two derivatives, which are almost equivalent.
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3. Materials and Methods

3.1. General

All the chemicals and reagents were analytical grade or chemically pure and were supplied by
Sigma Aldrich Co., Darmstadt, Germany. All of the micro, spectral analyses and electrochemical
analyses were performed by the Micro Analytical Centers at Taif University, Taif, Saudi Arabia (IR
spectra, UV-visible spectra (200–800 nm at RT), TEM and cyclic voltammetry) and at Mansoura
University, Mansoura, Egypt (1H NMR, 13C NMR, MS, HRMS and computational studies).
Methodology and instrumentations used were previously reported [54] and are explained in detail in
the supplementary file S2.

3.2. Preparation and Characterization of Metal Nanoparticles (MNPs) and their Dye Conjugates

Metal nanoparticles were prepared in our laboratory in dimethyl formamide (DMF) according
to the reported methods [36,55]. Characteristics of the synthesized metal nanoparticles (i.e., Au, Ag
and Ru) were described in the literature [36,38] (c.f. supplementary file S2). For the preparation of
the dyes/metal nanoparticle conjugates, the solid dyes were added to 5 mL of the freshly prepared
hot MNPs colloidal solution in DMF. The cooled dye/MNP solutions were characterized using
UV-Vis spectrophotometry.

3.3. Electrochemical Analysis

CV measurements were performed using a conventional three electrode cell configuration. Dyes
(0.5 mM) were dissolved in DCM with TBAP (100 mM) as supporting electrolyte. CVs were recorded
after background subtraction and IR compensation to minimize the double-layer charging current
and solution resistance. CV data were measured at scan rate (0.02–5 V/s) in non-aqueous media
at (25 ± 2) ◦C. All working solutions were thoroughly degassed and the experimental entries were
maintained under nitrogen atmosphere. Methodology and instruments are explained in detail in the
supplementary file S2.

3.4. Fabrication of Dye-Sensitized Solar Cell (DSSCs) and Photovoltaic Characterizations

Double-layer TiO2 photoelectrodes (10 + 5) µm were prepared and immersed into 0.5 mM of the
synthesized compounds (6a–c) in ethanol, for 24 h at room temperature, and the Pt-counter electrodes
were also prepared using reported techniques [11,56]. Both electrodes were sealed with 60 mm
thick Surlyn (DuPont). Photoelectrochemical tests of the sealed cells were made by illuminating the
dye-coated TiO2 film through the conducting glass support from the anode side with a solar simulator
(WXS-155S-10) at AM 1.5 illuminations (light power of 100 mW cm−2, the equivalent of one sun at the
surface of test cell). The detailed method is discussed in supplementary file S2.

3.5. Molecular Modeling

Geometrical optimization for the investigated compounds was performed using the Gaussian 09W
program suite using the Becke3–Lee–Yang–Parr (B3LYP) exchange-correlation functional with standard
6-311++G (d,p) basis set [57–60]. Methodology and quantum chemical calculations are explained in
detail in the supplementary file S1.

3.6. Synthesis and Characterization

3.6.1. Synthesis of 2-amino-3-cyano-4-methylthiophene (1)

The compound was synthesized according to the reported method and found to be in agreement
with literature [28]. Pink crystals; yield 95% (10.5 g); m.p.: 120–121 ◦C (Lit. 118–119 ◦C).
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3.6.2. Synthesis of 4-amino-6,7-dihydro-3-methyl-6-oxothieno[2,3-b]pyridine-5-carbonitrile (3)

A mixture of 2-amino-3-cyano-4-methylthiophene 1 (1.38 g, 10 mmol) and ethyl cyanoacetate
(2.26 g, 20 mmol) was refluxed in sodium ethoxide (0.22 g Na/30 mL absolute ethanol, 10 mmol) for
2 h. The reaction mixture was left to cool and then poured onto ice-cold water containing HCl for
neutralization. The solid product formed was collected using filtration, dried and recrystallized from
ethanol to afford solid brown, yield 77.5% (1.59 g); m.p.: > 250 ◦C (Lit. > 360 ◦C [29]).

3.6.3. General Procedure for the Synthesis of 4,5,6,7-tetrahydrobenzo[b]thiophenes (4a–c)

The cyclohexanone (0.98 g, 10 mmol) was mixed with active nitrile compounds (i.e., (a) ethyl
cyanoacetate, 1.13 g; (b) cyanoacetamide, (c) 0.84 g; malononitrile, 0.66 g, 10 mmol), elemental sulfur
(0.32 g, 10 mmol) and a catalytic amount of morpholine (2 mL) in ethanol (30 mL), according to the
Gewald method [27]. The reaction mixture was then heated at 70 ◦C in a water bath (WB) for 2 h and
left overnight to precipitate. The crystals of (4a–c) were collected with good yields and recrystallized
from ethanol.

Ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate 4a. Yellow needles; yield 67% (1.5 g);
m.p.: 114–116 ◦C (Lit. 117–118 ◦C [61], 116–118 ◦C [31]).

2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide 4b. Yellowish orange needles; yield 67%
(1.5 g); m.p.: 180–181 ◦C (Lit. 180–181 ◦C [32], 185 ◦C [33]).

2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile 4c. Brown needles; yield 60% (1.1 g); m.p.:
140–142 ◦C (Lit. 147–148 ◦C [34]).

3.6.4. General Procedure for Synthesis of thienopyridyl-azo-tetrahydrothiophene Derivatives (6a–c)

Molar quantities of thiophenes 4a–c (2.25 g, 1.96 g, 1.78 g, respectively, 10 mmol) in (3 mL) conc.
HCl and (5 mL) of an aqueous NaNO2 solution (10 mmol, 0.69 g) were mixed and well stirred at 0–5 ◦C
for 30 min. The freshly prepared diazonium salts (5a–c) were added afterwards to (20 mL) of ethanolic
solution for the coupling of component 2-aminothiazole 1 (2.05 g, 10 mmol) containing sodium acetate
(3 g) with slow and continuous stirring at 0–5 ◦C for 2 h. The resulting products (6a–c) were collected,
dried and recrystallized from MeOH/Dioxan.

Ethyl(E)-2-((4-amino-5-cyano-3-methyl-6-oxo-6,7-dihydrothieno[2,3-b]pyridin-2-yl)azo)-4,5,6,7-
tetrahydrobenzo[b]thiophene-3-carboxylate 6a. Brown crystals; yield 67.3% (2.96 g); m.p.: 109–110 ◦C.
IR: νmax = 3322–2936 (N–Hstr. and NH2), 2210 (CN), 1704 (COstr.-), 1672 (COstr.-), 1582 (N–Hbend.), 1450
(CH2) and 1396 (CH3) cm−1; 1H NMR: δ/ppm = 1.34 (t, J = 7.2 Hz, 3H, CH3), 1.83 (t, J = 4.4 Hz, 4H,
2CH2), 2.43 (s, 3H, CH3), 2.71 (t, J = 4.4 Hz, 2H, CH2), 2.83 (t, J = 4.4 Hz, 2H, CH2), 4.30 (q, J = 7.2 Hz,
2H, CH2), 6.41 (s, 2H, NH2) and 9.87 (s, 1H, NH); 13C NMR: δ/ppm = 8.2, 13.8, 22.8 (3C), 23.7, 60.4, 79.6,
110.1, 112.6, 115.1, 125.9, 127.3, 129.5, 133.2, 137.4, 159.6, 165.7, 168.1, 173.8; MS (m/z, %): 441 (M+, 63.4);
HRMS calc. for C20H19N5O3S2: 441.0929, found: 441.0911.

(E)-2-((4-Amino-5-cyano-3-methyl-6-oxo-6,7-dihydrothieno[2,3-b]pyridin-2-yl)azo)-4,5,6,7-tetrahydrobenzo
[b]thiophene-3-carboxamide 6b. Reddish brown crystals; yield 96% (3.9 g); m.p.: 172–174 ◦C. IR: νmax =

3324–2935 (N–Hstr. and NH2), 2209 (CN), 1664 (COstr.-), 1637 (COstr.- amidic),1582 (N–Hbend.), 1449 (CH2)
and 1394 (CH3) cm−1; 1H NMR: δ/ppm = 1.83 (t, J = 4.4 Hz, 4H, 2CH2), 2.59 (s, 3H, CH3), 2.66 (t, J = 4.4 Hz,
2H, CH2), 2.83 (t, J = 4.4 Hz, 2H, CH2), 6.35 (s, 2H, NH2) 7.81 (s, 2H, NH2) and 10.96 (s, 1H, NH); 13C NMR:
δ/ppm = 7.9, 22.9 (2C), 23.1, 24.2, 80.1, 109.8, 113.3, 115.2, 116.4, 124.9, 133.2, 135.4, 138.5, 165.8, 167.5, 168.1,
176.0; MS (m/z, %): 412 (M+, 25.1); HRMS calc. for C18H16N6O2S2: 412.0776, found: 412.0761.

(E)-4-Amino-2-((3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)azo)-3-methyl-6-oxo-6,7-dihydrothieno
[2,3-b]pyridine-5-carbonitrile 6c. Dark Brown crystals; yield 74.6% (2.9 g); m.p.:148–149 ◦C. IR: νmax =

3327–2935 (N–Hstr. and NH2), 2209 (CN), 1664 (COstr.-), 1582 (N–Hbend.), 1448 (CH2) and 1396 (CH3) cm−1;
1H NMR: δ/ppm = 1.73 (t, J = 4.4 Hz, 4H, 2CH2), 2.51 (s, 3H, CH3), 2.72 (t, J = 4.4 Hz, 2H, CH2), 2.89 (t,
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J = 4.4 Hz, 2H, CH2), 6.56 (s, 2H, NH2) and 9.11 (s, 1H, NH); 13C NMR: δ/ppm = 8.1, 22.7 (2C), 23.4, 23.9,
81.0, 102.3, 110.1, 113.5, 114.9, 115.2, 133.5, 134.1, 135.1, 140.3, 166.0, 167.8, 176.0; MS (m/z, %): 394 (M+, 13.1);
HRMS calc. for C18H14N6OS2: 394.0671, found: 394.0660.

4. Conclusions

Our work demonstrates that the introduction of a substituted thiophene segment is of
great benefit as a D-π-A organic sensitizer for solar cell applications. Thus, three novel
diazenyl pyridothiophene derivatives (6a–c) were synthesized as the result of the diazo coupling
reaction of 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophenes (4a–c) with 4-amino-6,7-dihydro-3-methyl-6-
oxothieno[2,3-b]pyridine-5-carbonitrile (3). Their chemical structures are established on the basis of
their spectral data. The substituent groups (i.e., COOEt, CONH2 and CN) are conjugated with the
whole molecule, leading to light-harvesting capability of the dye and, more importantly, quite a smooth
electron injection process. The effect of the anchoring groups is studied based on the band gap energy
(Eg) of their FMOs. Spectroscopy and electrochemical analysis confirmed that the keto acceptor of dye
(6b) is a relatively stronger acceptor and improved the photovoltaic performance compared with other
substituents. The modeling study is in good agreement with the practical findings. Plasmon resonance
employing noble metals (i.e., gold, silver and ruthenium) has been recently introduced to the DSSCs
using electrostatic interaction with the synthesized diazenyl thieno-pyridyl dyes, where the localized
surface plasmon resonance phenomena of metal nanoparticles enhance the light harvesting efficiency.
The conjugation with silver nanoparticles (6b/AgNPs) exhibits the best results over the studied
alternatives. This finding is supported by the data measured and calculated of the HOMO-LUMO
band gap energy. The introduction of stronger accepting and donating groups and increasing the
planarity of the system using a triple bond bridge will provide a powerful strategy for the development
of thiophene based highly efficient D-π-A organic sensitizer in the future.

Supplementary Materials: The following are available online, Modeling S1: Modeling study, Experimental S2:
Experimental.
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