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Abstract

Background: There is clinical evidence to show that sperm DNA damage could be a marker of sperm quality and
extensive data exist on the relationship between DNA damage and male fertility status. Detecting such damage in
sperm could provide new elements besides semen parameters in diagnosing male infertility. We aimed to assess
sperm DNA fragmentation and oxidation and to study the association between these two markers, routine semen
parameters and malondialdehyde formation.

Methods: Semen samples from 55 men attending the Histology-Embryology Laboratory of Sfax Faculty of
Medicine, Tunisia, for semen investigations were analysed for sperm DNA fragmentation and oxidation using flow
cytometry. The Sperm was also assessed spectrophotometrically for malondialdehyde formation.

Results: Within the studied group, 21 patients were nonasthenozoospermic (sperm motility ≥ 50%) and 34
patients were considered asthenozoospermic (sperm motility < 50%). A positive correlation was found between
sperm DNA fragmentation and oxidation (p = 0.01; r = 0.33). We also found a negative correlation between sperm
DNA fragmentation and some sperm parameters: total motility (p = 0.001; r = -0.43), rapid progressive motility
(type a motility) (p = 0.04; r = -0.27), slow progressive motility (type b motility) (p = 0.03; r = -0.28), and vitality
(p < 0.001; r = -0.65). Sperm DNA fragmentation was positively correlated with coiled tail (p = 0.01; r = 0.34). The
two parameters that were found to be correlated with oxidative DNA damage were leucocytes concentrations
(p = 0.01; r = 0.38) and broken neck (p = 0.02; r = 0.29). Sperm MDA levels were negatively correlated with sperm
concentration (p < 0.001; r = -0.57), total motility (p = 0.01; r = -0.35) and type a motility (p = 0.03; r = -0.32); but
not correlated with DNA fragmentation and DNA oxidation.

Conclusions: Our results support the evidence that oxidative stress plays a key role in inducing DNA damage; but
nuclear alterations and malondialdehyde don’t seem to be synchronous.

Background
Infertility affects around 15% of couples in reproductive
age and male factor is a major contributor by approxi-
mately half of these cases [1]. Along with the conven-
tional semen parameters, new tests have been developed
to better investigate the pathophysiology and aetiology
of male infertility. The role of oxidative stress as a
major cause of male infertility has been well established.
In fact, reactive oxygen species (ROS) attack all cellular
compounds including membrane polyunsaturated fatty
acids, proteins, and nucleic acids [2,3]. Detection of

such damage in sperm could provide new elements
besides semen parameters in diagnosing male infertility.
Oxidative stress is assessed using a variety of methods
based on the measurement of relatively stable peroxida-
tion products which include three major groups: lipid
peroxidation products, oxidised proteins, fragmented
DNA or DNA oxidation biomarkers [4].
Lipid peroxidation is one of the deleterious effects of

ROS and is considered as an indicator of membrane
polyunsaturated fatty acid oxidation [5-8]. Malondialde-
hyde (MDA) assay is a simple tool used in monitoring
such damage. Its outcome correlates well with other
techniques for assessing peroxidation including chemilu-
minescence and colorimetric reactions [8], despite
having some drawbacks. These latter are minor when
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placed against the high sensitivity and convenience of
the method [8]. Also this assay has proved to be useful
in male infertility diagnosis [8-10].
Moreover, it was reported that ROS, in addition to

reacting with the polyunsaturated fatty acids, might
also react with DNA nucleotides leading to base modi-
fications particularly 8-hydroxy-2’-deoxyguanosine
(8-oxoguanine formation and DNA fragmentation
[2,11-13]. The first type of damage is often referred to
as oxidative DNA damage [14,15], and evidence suggests
that it is mediated most likely by nitric oxide, superox-
ide ions, and hydroxyl radicals [15]. The oxidative DNA
biomarker 8-oxoguanine is commonly used to evaluate
oxidative DNA alterations due to its high specificity and
sensitivity, relative abundance in DNA, and potent
mutagenicity [14,16]. Detection of this oxidized DNA
base remains the best direct assessment of sperm
DNA oxidative damage [8]. The second type of damage
(DNA fragmentation) was largely studied regarding its
relationship with sperm quality and its impact on repro-
ductive outcomes; however results remain controversial
[11-13] and the exact molecular mechanisms underlying
DNA fragmentation in human spermatozoa remain
poorly understood. Numerous tests have been intro-
duced to analyse sperm DNA fragmentation among
which Terminal deoxynucleotidyl transferase (Tdt)
mediated dUTP Nick End Labelling (TUNEL), COMET
(or SCGE, single cell gel electrophoresis), SCSA (Sperm
Chromatin Structure Assay), and SCD (Sperm chroma-
tin dispersion) are the most used [11,13].
In this study we aimed to evaluate the concentration

of sperm MDA and the levels of DNA fragmentation
and oxidation in infertile men and to investigate the
eventual correlations between routine semen para-
meters, sperm DNA damage and malondialdehyde
formation.

Methods
Patients
This study was approved by the Institutional Review
Board of Sfax Faculty of Medicine, Tunisia. A total of
55 men attending the Histology-Embryology Laboratory
of Sfax Faculty of Medicine (Tunisia) for semen investi-
gations were included in this study. Written informed
consent was obtained from all the subjects for publica-
tion of this case report. The patients neither had any
urogenital diseases or infections nor did they undergo
x-ray or chemotherapy. They were aged between 26
and 62 years old with a mean age (± SD) of 37.49 ±
0.89 years. According to the World Health Organization
(WHO) criteria [17], semen samples were classified as
nonasthenozoospermic (sperm motility ≥ 50%) or asthe-
nozoospermic (sperm motility < 50%).

Semen analyses
Semen samples were obtained by masturbation into
sterile containers after 3-5 days of sexual abstinence and
left to liquefy at 37°C. Basic semen analyses were
performed within1 hour of collection and consisted in
the measurement of semen volume, sperm concentra-
tion (hemocytometer method), motility (total motility,
rapid progressive (type a), slow progressive (type b), non
progressive (type c)), vitality and morphology. Semen
samples were also assessed for leucocytes concentration
using peroxidase method. All parameters were carried
out according to the WHO guidelines [17].
Sperm DNA fragmentation and oxidation were evalu-

ated in fresh semen. The remainder of the sample was
aliquoted and stored at -80°C for further analysis of
malondialdheyde levels.

TUNEL Assay
For the evaluation of DNA fragmentation, a commercial
kit (In situ Cell Death Detection Kit, Fluorescein, Roche,
Germany) based on an enzymatic reaction of labelling
free 3’-OH termini was used. As previously described
[16], 3.106 cells were washed with phosphate-buffered
saline (1xPBS, pH 7.4) then fixed with 200 μl of 4%
paraformaldehyde for 1 hour at room temperature in
the dark. Afterwards, sperm cells were washed with 1 ×
PBS and permeabilized using 0.1% Triton X-100 in 0.1%
sodium citrate for 15 minutes on ice. After washing
with PBS, sperm DNA was labelled by incubating sper-
matozoa with 50 μl of the TUNEL reaction mixture
(Tdt enzyme and FITC-labelled nucleotides) in a humi-
dified atmosphere for 60 minutes at 37°C in the dark,
with mixing each 15 minutes. Washed and labelled
sperm cells were then resuspended in 1xPBS for flow
cytometry analysis. A negative control (sample without
the addition of Tdt enzyme) and a positive control
(sample treated with DNase I (3U/ml, Invitrogen) for
10 minutes at room temperature to generate DNA
strand breaks) were also assessed by TUNEL assay.

Assessment of oxidative DNA damage by Flow Cytometry
We used the oxyDNA kit (Biotrin International, Ireland)
which is specific for detection of 8-oxoguanine as one of
the major studied oxidised nucleotides. The test is based
on the direct binding of a probe conjugated to fluores-
cein isothiocyanate (FITC-conjugate) to DNA adduct
8-oxoguanine. In brief, as previously described [16,18],
one aliquot of each semen sample containing 3.106 sper-
matozoa was washed with 1xPBS, fixed, permeabilized
with ice-cold 70% ethanol and kept 1 hour at -20°C.
Fixed cells were centrifuged at 1600 rpm for 5 minutes,
washed with PBS, then resuspended in 1 ml wash
solution (Tris-buffered saline/Tween 20 containing
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thrimerosal) and pelleted at 1600rpm/min for 5 minutes.
Fifty μl FITC conjugate were incubated for 1 hour with
pelleted sperm cells in the dark at room temperature,
with mixing every 15 minutes. Finally, cells were
washed, resuspended in 500 μl 1xPBS for flow cytometry
analysis. For the positive control, sperm cells were
washed in 1ml PBS then incubated in H2O2 (4 M) solu-
tion for 1 hour at 37°C. The negative control consisted
of selected spermatozoa from healthy men. This control
had a percentage of labelled sperm < 2%.

Flow Cytometry and data analyses
Flow cytometric analysis was carried out using an EPICS
XL flow cytometer (Beckman Coulter) equipped with a
15mW argon-ion laser for excitation at 488 nm. At least
10000 events per sample were analysed. Light-scattering
and fluorescence data were obtained at a flxed gain setting
in logarithmic mode. Debris was excluded by establishing
a region around the population of interest on the basis of
light scatter characteristics (forward-angle light scatter
(FSC) vs. side-angle light scatter (SSC). The percentage of
labelled sperm was characterized by identifying a region
that included > 90% of events in the frequency histogram
of the positive controls both in the assessments of DNA
fragmentation and oxidation (Figures 1 and 2 respectively).
Data were expressed as percentage of stained cells from
histograms using System II software. Typical examples of
histograms obtained by flow cytometry with markers (M)
for the detection of fluorescence are shown in Figure 1
(TUNEL assay) and Figure 2 (8-oxoguanine detection).

Measurement of lipid peroxidation
Lipid peroxidation in spermatozoa was measured in 43
semen samples with the commonly used thiobarbituric
acid reactive substances (TBARS) method, according to
Yagi [19]. It was not measured in the remaining 12
semen because of reduced volume or sperm count.
Sperm cells in samples prepared for MDA measurement
was adjusted to 107. Briefly one part of each sample was
added to two parts of TBA reagent (15% v/v trichloroa-
cetic acid and 0.25 N HCl). The mixture was then trea-
ted in a boiling water bath for 15 min. After cooling,
samples were centrifuged at 4,000 × g for 10 min. The
content of MDA was measured spectrophotometrically
by the determination of the supernatant absorbance at
532 nm. The MDA fluorescence intensity of spermato-
zoa was determined using various concentrations of tet-
raethoxypropane as standards. The results were
expressed as nmol MDA/107 cells. The MDA assay used
had an intra-assay coefficient of variation of 7.4%.

Statistical analysis
The SPSS (SPSS Inc., Chicago, IL) software (version 18)
was used for statistical analyses. Non-parametric test

Figure 1 TdT (terminal deoxynucleotidyltransferase)-mediated
dUTP nick-end labeling (TUNEL) assay of spermatozoa.
Histograms show: (A) negative control with 1.35% TUNEL positive
cells. (B) Positive control (spermatozoa treated with DNaseI) with
90.2% TUNEL positive cells. (C) Semen sample of one patient with
21.4% TUNEL positive cells. M: window adjusted to detect the
percentage of TUNEL positive cells.
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(Mann-Whitney U-test) was performed to compare
sperm parameters and flow cytometry data between
nonasthenozoospermic and asthenozoospermic semen.
The relationship between semen parameters, DNA frag-
mentation, DNA oxidation and MDA levels was ana-
lysed using Spearman’s correlation coefficients. We
applied linear regression to determine the correlation
between leucocytes concentration and sperm damage
parameters (DNA fragmentation and oxidation and
MDA) with adjustment of sperm motility and concen-
tration. Statistical significance was established for a p-
value of < 0.05.

Results
The mean values (± SD) and ranges of routine semen
parameters, MDA levels and percentage of sperm DNA
damages are summarized in Table 1. Within the studied
group, 21 semen were considered nonasthenozoosper-
mic and 34 were considered asthenozoospermic semen.
TUNEL-coupled flow cytometry results are expressed as
percentage of DNA fragmented sperm cells. Figure 1
presents frequency distribution histograms of negative
control (Figure 1A), positive control (Figure 1B), and of
a test semen sample (Figure 1C). Figure 2 illustrates the
results of DNA oxidation. Histograms show the percen-
tages of sperm with DNA oxidation in negative control
(Figure 2A), positive control (Figure 2B), and in a sperm
sample from one patient (Figure 2C).
The means (± SD) of sperm MDA concentrations and

of DNA fragmentation percentage were significantly
higher in the asthenozoospermic group than in non-
asthenozoospermic one (8.81 ± 1.01 vs 4.99 ± 0.76 8.81
± 1.01 nmol/107 sperm; p = 0.008 and 28.01 ± 2.23% vs
19.34 ± 2.55%; p = 0.006 respectively). However, the
levels of 8-oxoguanine (± SD) were not significantly

Figure 2 Flow cytometric 8-oxoguanine detection histograms.
(A) Negative control with 1.95% FITC labelled cells. (B) Positive
control with 96.3% FITC labelled cells. (C) Semen sample of one
patient with 13.7% FITC labelled cells. M: window adjusted to detect
the percentage of DNA oxidation in sperm cells.

Table 1 Summary statistics of semen parameters in the
study population (n = 55)

Mean ± SD Range

Sperm concentration (.106/mL) 83.7 ± 10.92 2.1 - 456

Sperm motility (%) 42 ± 1.54 0 - 60

Type a motility a (%) 13.64 ± 1.07 0 - 30

Type b motility a (%) 23.09 ± 0.92 0 - 35

Type c motility a (%) 5.45 ± 0.23 0 - 10

Vitality (%) 73.36 ± 1.5 38 - 92

Morphology (%) 8.13 ± 1.07 0 - 41

Leucocytes concentration (.106/mL) 0.43 ± 0.18 0.06 - 9.9

Sperm MDA concentration (nmol/107 sperm) 7.21 ± 0.72 0.87 - 18.95

Sperm DNA fragmentation (%) 24.64 ± 1.77 3.2 - 67.7

Sperm DNA oxidation (%) 14.35 ± 1.16 1.95 - 48.8
a Grade of sperm movement according to WHO criteria: a: rapid progressive
motility b: slow progressive motility, c: non progressive; MDA:
Malondialdehyde.
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different when comparing the two groups (14.63 ± 1.5%
vs 13.92 ± 1.88%; p = 0.8) respectively.
Numerous significant correlations were found between

basic semen parameters, sperm MDA levels and DNA
damages (Table 2).
In fact, sperm DNA fragmentation was positively corre-

lated with sperm DNA oxidation (p = 0.01; r = 0.33)
(Figure 3). Concerning correlations between DNA frag-
mentation and routine semen parameters: TUNEL assay

correlated negatively with sperm total motility (p = 0.001;
r = -0.43); the same negative but weaker correlations
were found with type a motility (p = 0.04; r = -0.27) and
type b motility (p = 0.03; r = -0.28); however, a strong
correlation was noted with sperm vitality (p < 0.001;
r = -0.65). Sperm DNA fragmentation was positively cor-
related with coiled tail (p = 0.01; r = 0.34). The two para-
meters that were found to be correlated with oxidative
DNA damage were leucocytes concentrations (p = 0.01; r
= 0.38) and broken neck (p = 0.02; r = 0.29). Sperm
MDA levels were negatively correlated with sperm con-
centration (p < 0.001; r = -0.57), total motility (p = 0.01;
r = -0.35) and type a motility (p = 0.03; r = -0.32). MDA
was neither correlated to DNA fragmentation (p = 0.5)
nor to DNA oxidation (p = 0.7) (Table 2).

Discussion
Numerous studies have focused on the relationship
between sperm DNA damage and standard semen para-
meters [20-24] but scarce others have searched for clues
to its origins [25-28]. Our study is one of the first
reports in which flow cytometric TUNEL and OxyDNA
assays in combination with the MDA test were
employed to investigate the role of oxidative stress in
generating sperm DNA damages.
As regards the relationship between sperm DNA

damages and semen quality, we found that DNA

Table 2 Correlations between semen parameters, MDA levels, DNA fragmentation and DNA oxidation (n = 55)

MDA Sperm
Concentration

Total
motility

Type a
motility

Type b
motility

Vitality Leucocytes
concentration

Normal
morphology

DNA
fragmentation

DNA
oxidation

MDA - p < 0.001
r = -0.57

p = 0.01
r =
-0.35

p = 0.03
r = -0.32

p = 0.9
r = 0.01

p = 0.9
r =
0.01

p = 0.9
r = 0.09

p = 0.82
r = -0.03

p = 0.5
r = -0.1

p = 0.7
r = -0.06

Sperm
Concentration

- p = 0.01
r = 0.34

p < 0.001
r = 0.53

p = 0.1
r = -0.2

p = 0.9
r =
-0.01

p = 0.53
r = 0.08

p = 0.08
r = 0.23

p = 0.05
r = 0.26

p = 0.1
r = 0.17

Total motility - p < 0.001
r = 0.82

p = 0.001
r = 0.44

p <
0.001
r =
0.58

p = 0.9
r = 0.01

p = 0.002
r = 0.40

p = 0.001
r = -0.43

p = 0.8
r = 0.02

Type a motility - p = 0.98
r = -0.00

p =
0.002
r = 0.4

p = 0.45
r = 0.10

p = 0.001
r = 0.42

p = 0.04
r = -0.27

p = 0.8
r = 0.01

Type b motility - p =
0.004
r =
0.38

p = 0.21
r = 0.12

p = 0.19
r = 0.17

p = 0.03
r = -0.28

p = 0.9
r = -0.01

Vitality - p = 0.83
r = 0.28

p = 0.43
r = 0.10

p < 0.001
r = -0.65

p = 0.6
r = -0.06

Leucocytes
concentration

- p = 0.6
r = -0.07

p = 0.32
r = -0.13

p = 0.01
r = 0.38

Normal
morphology

- p = 0.69
r = -0.05

p = 0.29
r = -0.14

DNA
fragmentation

- p = 0.01
r = 0.33

DNA oxidation -

Significant correlations (p and r values): bold characters; MDA: Malondialdehyde.

Figure 3 Correlation between sperm DNA fragmentation and
sperm DNA oxidation (n = 55).
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fragmentation was higher in asthenozoospermic patients
than that in nonasthenzoospermic ones. The high preva-
lence of DNA fragmentation in dyspermic semen
samples as compared to normospermic was reported
previously [20-24,29]. Sperm DNA fragmentation corre-
lated also with some semen parameters according to
other studies [28-32]. Regarding DNA oxidation, we
detected no significant difference between the two study
groups however; 8-oxoguanine levels were correlated
with leucocytes concentration and with one of sperm
morophological abnormalities (broken neck). These
findings are in concordance with some reports [33] but
in disagreement with others [18,34-36]; this controversy
could be due to the use of different methods that lack
standardization and validation in different subject popu-
lations [37]. For instance, the detection of 8-oxoguanine
was carried out using HPLC [35,36], ELISA [33] and in
recent reports flow cytometry [18,26,28].
Besides the evaluation of sperm DNA fragmentation

and oxidation, we used the malondialdehyde (MDA)
assay to measure lipid peroxidation in spermatozoa.
This assay was chosen, first for its simplicity and sensi-
tivity [38]; Secondly because the association between
poor sperm quality and high MDA concentration was
shown in many previous studies [33,38,39]; whereas,
only few reports [33,40] were interested in studying the
relationship between MDA levels and sperm DNA
damage, particularly 8-oxoguanine [33]. In the study of
Nakamura et al [33], authors did not find a significant
correlation between 8-oxoguanine, as measured by
ELISA, and malondialdehyde concentrations in seminal
plasma. In another report [40], MDA content was
shown to be linked to sperm DNA decondensation but
not with DNA fragmentation. Also, based on a meta-
analysis of published results [4], Dotan et al, reported
that malondialdehyde was correlated to several peroxi-
dation products including F2-Isoprostanes, lipid hydro-
peroxides, conjugated dienes, glutathione and protein
carbonyls; but not with DNA fragmentation products
(using comet assay) and antioxidants concentration.
As expected, our results showed that sperm MDA

concentration was significantly higher in asthenozoos-
permic than in nonasthenzoospermic patients. Besides,
we found that MDA levels were negatively correlated to
sperm concentration and motility which was consistent
with previous reports [39,40]. In other studies, it was
reported that peroxidation reaction affects membrane
structure and fluidity and causes damage to axonemal
proteins leading to a permanent impairment in sperm
motility [2,3,38].
Among the interesting findings of our study, a signifi-

cant correlation was observed between sperm DNA frag-
mentation and oxidative DNA damage. This result was
similar to that reported in a recent study by Aitken et

al., [28] suggesting a link between the two types of DNA
damage and supporting the recently published data
arguing in favour of a ROS attack on sperm DNA
[26-28,41]. Nevertheless, we did not find a correlation
between sperm DNA alterations (oxidative DNA damage
and sperm DNA fragmentation) and lipid peroxidation
as assessed by MDA assay. Although these two types of
sperm damage are oxidative in origin, it was suggested
that there are two independent steps in generating
sperm DNA damage and lipid peroxidation [40]. The
lack of correlation between sperm DNA damage and
MDA levels reported in the present study could be also
due to some technical considerations. In fact, as pro-
posed by Mitchell et al [42], it would have been interest-
ing to use a reducing agent like DTT to relax sperm
chromatin and give the detection reagents (used in Oxy-
DNA and TUNEL assays) access to the internal DNA
structure regarding the highly compact nature of sperm
chromatin.
The second important result we reported for the first

time was the significant correlation between leucocytes
concentration and 8-oxoguanine. However, leucocytes
concentration was correlated neither to DNA fragmen-
tation nor to MDA levels. This makes us suggest a
direct implication of leucocytes, as an exogenous
factor, in generating base modifications, and a more
susceptibility of DNA bases to ROS action; obviously,
8-oxoguanine formation reflects a direct and specific
action of ROS on sperm DNA [8]. It seems also that
the plasma membrane is less vulnerable to oxidative
damage than DNA since at certain levels of ROS,
sperm with significant oxidative DNA damage could
retain the ability to fertilize probably because their
membranes are still intact [43]. Our data showed also
correlations between DNA damages and some mor-
phological abnormalities. It was suggested that sperm
cells themselves especially morphologically abnormal
spermatozoa may generate ROS which could induce
sperm DNA damage [44,45].
From literature data, many hypotheses were postulated

to explain the origin of sperm DNA damage such as
defective chromatin packaging during spermiogenesis
[11,43,46], aberrant or abortive apoptosis before ejacula-
tion and oxidative stress [8,11,12]. The latter plays a
major role in generating sperm DNA fragmentation;
firstly because high levels of ROS were correlated to
DNA single and double strand breaks [2,43]; secondly,
sperm DNA damage induced by the hydroxyl radical or
after exposure to ionizing radiation was associated with
the formation of 8-oxoguanine in a first stage and fol-
lowed by single-stranded DNA breaks [12,14]. Recently,
it was suggested that aberrant spermatogenesis could
lead to alterations in chromatin packaging and a defi-
ciency in protamination which would make sperm DNA
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more susceptible and vulnerable to a variety of stressors,
mostly the ROS action [27]. In addition, it was hypothe-
sised that activation of caspases and endonucleases which
is triggered by cytochrome C release from mitochondria
and mediated largely by ROS could induce sperm DNA
fragmentation [12]. Nevertheless, Aitken et al [27] postu-
lated that the physical architecture of spermatozoa could
prevent these nucleases from translocating to the nucleus
and suggested that DNA fragmentation could result from
nonenzymatic reaction or from the action of activated
endonuclease already integrated into the chromatin body.
The most recent studies on the origin of sperm DNA
damage suggested that there might be a cascade of
changes that progress from the induction of oxidative
stress and oxidized DNA base adduct formation to DNA
fragmentation and cell death [28].
Sperm damages could be also caused by different

events related to iatrogenic, idiopathic, environmental
and pathological factors and to lifestyle [8]; however, it
was not possible to study the impact of such factors
since the patients included in our study neither had uro-
genital diseases, infections or medication treatments nor
did they undergo x- ray or chemotherapy.
Sperm DNA damage is thought to be detrimental to

ART outcomes, particularly to pregnancy rates
[12,13,31,28]. Moreover, it was shown that oxidative
sperm DNA damage influences fecundity [47] and that a
higher percentage of spermatozoa with 8-oxoguanine
was associated with a lower embryo quality after IVF or
intracytoplasmic sperm injection [18].
Finally, it should be noted that the techniques used to

assess sperm DNA integrity need more validation and
standardization in order to better understand the nature
and the causes of DNA abnormalities in human sperma-
tozoa [37,48]. In recent studies the proposed modified
protocols, particularly for TUNEL assay seemed to be
simpler and more robust [42,49].

Conclusions
The present study suggests a link between DNA frag-
mentation and oxidative base damage but lipid peroxi-
dation seems to be an independent sperm decay
although all of these alterations are linked to oxidative
stress. Free radicals-induced sperm damage has been
studied extensively and there is evidence showing that a
significant proportion of the DNA damage observed in
human spermatozoa is oxidative in nature. However,
other molecular mechanisms underlying such damage
need to be elucidated by further studies that should take
into consideration the major role of oxidative stress in
causing sperm DNA damage. In addition, the use of
antioxidants could have beneficial effects in preventing
such damage and ameliorating semen parameters and
reproductive outcomes [1].
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